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The improvement of Reynolds-Averaged Navier-Stokes (RANS) models has become one

major issue in the field of computational fluid dynamics (CFD). Despite being largely used in

industry, eddy-viscosity models still lack accuracy even for simple flow configurations. In this

scenario, we investigate new data-driven approaches for the development of machine-learning

augmented turbulence models. The main contribution of this work is providing a machine-

learning oriented turbulence model that estimates directly the eddy-viscosity correction, and

that does not require the use of additional transport equations. The configuration studied is

a turbulent flow over a parametric set of bumps characterized by different levels of curvature,

pressure gradient and flow separation. An artificial neural network (ANN) model is trained,

cross-validated and tested to construct a mapping between the input features and the two

quantities of interest : the eddy viscosity discrepancy and the true eddy viscosity estimated

from the LES. We showed that the ANN predicts the eddy viscosity discrepancy with good

accuracy but when coupled to a RANS solver, the improved solution is very noisy. On the

other hand, when predicting the eddy viscosity directly, the ANN-based model successfully

reproduce the general flow-field behaviour, in terms of pressure and skin-friction distribu-

tions. The present methodology was proved to be robust even in predicting extrapolated

flows. The methods and results of this work provide useful guidance for turbulence model

developers.
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I. INTRODUCTION

Reynolds-Averaged Navier-Stokes (RANS) simulations are still a workhorse in the aerospace,

mechanical, and chemical industries. Thanks to their low computational cost, they remain an

indispensable tool in the design, analysis, and optimization of many aerodynamic components. In

this approach, only the mean flow is considered and a mathematical model is required to capture

the effect of turbulence via the unknow Reynolds stresses. The essence of RANS modeling is based

on expressing these unknown terms as a function of known mean quantities. One of the most

widespread assumption in RANS modeling is based on the Boussinesq hypothesis, which assumes

a linear relationship between the turbulent Reynolds stresses and the mean-velocity gradient ten-

sor. The proportionality constant is called the turbulence-eddy viscosity, νt. Thus, the effect of

turbulence is taken into account by increasing the fluid viscosity, based on local flow characteris-

tics. Popular eddy-viscosity models are the Spalart-Allmaras (SA) model [1], relying on a modeled

transport equation for the modified eddy viscosity, the shear-stress transport (SST) model [2],

relying on two transport equations for the kinetic turbulence energy and the specific dissipation

rate, and the k−ε model that transports the turbulent kinetic energy and the turbulent dissipation

[3, 4]. Eddy-viscosity RANS turbulence models gained attractiveness in industrial applications for

three reasons: (i) they are relatively easy to implement, (ii) they present good convergence prop-

erties because of the additional dissipation and (iii) they have proven to give reliable predictions,

especially when dealing with attached flows [5, 6]. However, it is well known that complex effects

such as flows with separations, high streamline-curvature, strong pressure gradients, etc. are poorly

modeled by this approach.

With the undeniable success of machine learning (ML) in numerous fields, from image and

speech recognition, up to self-driven cars and medical diagnosis, CFD aerodynamic calculations

are also beginning to benefit from this technology [7–9]. It is therefore natural to use this technique

to improve the performance of RANS turbulence models.

In early works, machine learning was applied with the goal of correcting directly the Reynolds

stress tensor. Tracey et al. [10] used kernel regression to correct the eigenvalues of the Reynolds

stress anisotropy tensor by using input features from a low-fidelity model and training over a DNS

dataset. Ling et al. [11, 12] have proposed a novel neural network architecture to embed key physical

modeling properties with Galilean invariance into the predicted Reynolds stress anisotropy tensor.

Wang et al. [13] proposed a data-driven, physics-informed machine learning technique based on

random forests for reconstructing discrepancies in RANS modeled Reynolds stresses. They observed
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that small errors in the machine-learning-predicted Reynolds stresses could lead to large errors in

the mean velocity field when solving the RANS equations. To fix this issue, Wu et al. [14] proposed

to decompose the Reynolds stresses into linear and nonlinear parts and to treat them separately

to enhance the learning procedure. Weatheritt and Sandberg [15] created models for the Reynolds

stress anisotropy in terms of invariants of the velocity gradient tensor using symbolic regression and

gene-expression programming (GEP). Their method provides an algebraic expression, which can be

straightforwardly implemented in RANS solvers and, depending on their form, easily interpretable

from a physical point of view. These GEP-trained models have shown improved predictive accuracy

in a posteriori tests such as rectangular ducts [16] and turbomachinery flows [17].

In contrast, Duraisamy and co-workers [18, 19] introduced a full-field multiplicative correction

coefficient into the production term of the transport equations of turbulent quantities (e.g., ν̃ in

the SA model and ω in the k − ω models). The correction terms were inferred employing data-

assimilation (DA) techniques, termed field-inversion, based on DNS and experimental data and

transformed into model forms using machine learning. Good results were obtained for channel flows

and flows over airfoils. Following Franceschini et al. [20], Volpiani et al. [21] opted to introduce

a correction to the Boussinesq-hypothesis by adding a forcing term in the momentum equations.

They employed variational data assimilation to infer the vectorial source correction from high-

fidelity numerical data and machine learning to reconstruct this quantity from the local mean-flow

features. Their methodology showed excellent results when applied to periodic hill configurations.

In this paper, we aim at performing machine-learning based RANS simulations of a family of

two-dimensional bumps. The initial geometry was proposed by Webster et al. [22], who investigated

experimentally a turbulent boundary layer flowing over a 2D bump providing sufficient surface

curvature and streamwise pressure gradient effects. A sketch of the baseline geometry is shown in

Fig. 1. The bump profile consists of a circular arc of length L = 254 mm and height h = 20.1 mm. It

was defined by three tangential circular arcs arranged in a way that the leading and trailing edges

were tangent to the flat surface. The same geometry was used in the LES study carried out by

Wu and Squires [23] at relatively lower inlet momentum-thickness Reynolds number (Reθ = 1500

in the LES and Reθ = 4030 in the experiment). The simulations showed good predictions of the

mean flow and turbulence intensities in comparison with the experimental data of Webster et al.

[22]. Since the flow remained attached in the original setup, more recently, Matai and Durbin [24]

generated a LES database of flow over bi-dimensional bumps that exhibit different levels of flow

separation by changing the bump height. This high-fidelity database is used in this study in the

training and validation steps of our ML algorithm.
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FIG. 1. Computational domain for the flows over the family of bumps. The baseline geometry is shown in

black.

The novelty of this work is that, instead of focusing on correcting the Reynolds-stress tensor or a

specific term in the transport equation of turbulent quantities, we focus on correcting the turbulent-

eddy viscosity directly. A big advantage of this approach is that the new model is extremely

simple and easy to implement. For example, full second-moment Reynolds stress models not only

have a transport equation for each one of the 6 Reynolds stress components, but also a seventh

transport equation for the length-scale-determining variable [25, 26]. In the present formulation,

there is no need to transport unclosed terms, which can reduce implementation, verification, and

computational time. The inconvenience of using an eddy-viscosity-based turbulence model is that

it is inherently restricted to the Boussinesq approximation. Even if this hypothesis is inaccurate

in many cases [27], we still believe that such a correction can be useful for the fluid-mechanics

community. Therefore, in the proposed methodology, that seeks a machine-learned correction of

the SA model, we only need to solve mass and momentum conservation equations. However, input

features of the neural-network architecture are derived from the baseline RANS-SA simulations,

which are used as initial conditions in the computation of the corrected fields. Another interesting

aspect of the current work is the absence of the field-inversion step. This is circumvented by

computing directly the estimated eddy-viscosity field from statistics of the reference flow. This

makes the model design easier, but has the inconvenience of relying on detailed information of the

statistics.



5

TABLE I. Summary of configurations studied in this work. The reference data was performed by Matai and

Durbin [24].

Simulation Height (mm) Characteristics Usage

h20 20 (0.0659C) No separation training

h26 26 (0.0878C) Incipient separation testing

h31 31 (0.1032C) Separated flow training

h38 38 (0.1259C) Separated flow testing

h42 42 (0.1377C) Separated flow training

II. CONFIGURATION AND REFERENCE FLOWFIELD

The high-fidelity reference dataset is the solution of large-eddy simulations of flows around a

family of bidimensional bumps made available by Matai and Durbin [24]. The baseline geometry,

primarily investigated in wind tunnel by Webster et al. [22], is a circular arc of length 254.0 mm,

with concave fillets in both sides, so that the total length of the arc is c = 305.0 mm. In the LES,

the computational domain starts at x/c = −1/3, ends at x/c = 5/3 and the top wall is located at

c/2. The bump starts at x/c = 0.0 and ends at x/c = 1.0, as it is represented in figure 1. The

simulations were performed for five geometries, in which the bump heights h were set as different

values (see figure 1), summarized in Table I.

The incompressible wall-resolved LES was computed using OpenFOAM with the dynamic

Smagorinsky subgrid model. The inlet boundary condition is a fully developed turbulent flow, with

a boundary layer momentum thickness of θ = 3.6 mm and free stream velocity of u∞ = 16.8 m/s.

The Reynolds number based on these two quantities is Reθ = 2500, which leads to a kinetic viscosity

of ν = 2.4192 ⋅ 10−5 m2/s. More details about the simulation can be found in reference [24].

The flow configuration studied here is characterized by different levels of curvature, pressure

gradient and flow separation. For the lowest bump height (h20), the flow remains attached all

along the bottom wall. Case h26 is characterized by a flow on the verge of separation. The other

configurations (h31, h38, h42) develop a small separated region near the end of the bump and its

length increases with the protuberance height.

Figure 2 displays the reference pressure and skin friction coefficients for cases h20, h31 and h42

and confirms these findings. As the height of the bump h increases, the minimum value of Cp

at the crest decreases, since the flow will be more accelerated. The opposite is observed for the

maximum value of Cf , which will increase with the bump height. In addition, for cases h31 and

h42, in which there is separation, the Cp curve between 0.8 ≤ x/c ≤ 1.0 becomes flat. At the end of
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FIG. 2. Pressure (left) and skin friction (right) coefficients for cases h20 (a), h31 (b) and h42 (c). Reference

LES simulation (symbols) and baseline RANS-SA with original domain and slip BC on the top wall (dashed

lines) and with shorter domain (dash-dotted lines).

the bump, the adverse pressure gradient becomes stronger, and the Cf curve progressively presents

a region of negative values between for cases h31, h38 and h42.

III. GOVERNING EQUATIONS

The incompressible steady-state RANS system of equations is derived by decomposing the flow

variables into mean and fluctuating terms, here formalized as ui(x, t) = ui(x) + u
′

i(x, t) for the

velocity and p(x, t) = p(x) + p′(x, t) for the pressure. The resulting system of equations reads:

∂ui
∂xi

= 0, (1)

ui
∂uj

∂xj
= − ∂p

∂xi
+ ∂(2νSij)

∂xj
+ ∂τij
∂xj

(2)



7

with the mean strain tensor Sij = (ui,j +uj,i)/2 and the molecular viscosity ν. The term τij = −u′iu′j
is the Reynolds stress tensor, and can be obtained through high-fidelity simulations.

In the RANS framework, the Reynolds stress tensor is frequently modeled following the Boussi-

nesq approximation:

τij = 2νtSij −
2

3
kδij with k = 1

2
u′iu

′

i . (3)

The turbulent kinetic energy k is usually incorporated in the pressure. The kinetic-eddy viscosity

νt is determined by solving the one equation Spalart-Allmaras turbulence model for the quantity

ν̃ ([1]):

uj
∂ν̃

∂xj
−∇ ⋅ (σ−1(ν + ν̃)∇ν̃ ) = P ν̃ (ν̃,∇u) −D ν̃ (ν̃,∇u) +C ν̃ (∇ν̃) (4)

where the terms P ν̃ , D ν̃ and C ν̃ are the production, destruction and cross-diffusion terms of

the quantity ν̃, and are given by:

P ν̃ = cb1S̃ν̃, D ν̃ = cw1fw [ ν̃
d
]
2

, C ν̃ =
cb2
σ

∂ν̃

∂xk

∂ν̃

∂xk
. (5)

More details about the model variables and the physical definitions of each term are found in

ref. [1]. Further information about the numerical implementation in the finite-element software

FreeFEM [28] is available in [20, 21].

In our simulations, at the inlet, velocity profiles were set to be identical to the reference flow, and

the modified turbulent viscosity was estimated from the LES solution (in the same way that will be

discussed in the following section). This allows for the RANS solution to be developed in the same

conditions as the LES. At the outlet, we impose zero normal stresses; and zero normal gradient

of ν̃. No-slip boundary conditions were imposed at the lower wall, and initially, slip boundary

conditions were used at the top. However, in the reference solution files available from the NASA

website [29], the boundary conditions on the top wall are questionably different from the article

specification. It seems that there is a drastically reduction of the velocity at the top wall, yet the

mesh size close to this boundary does not allow the correct representation of a boundary layer.

RANS simulations using slip boundary conditions give erroneous pressure distribution across the

lower wall (see Fig. 2). To remedy any inconsistencies, we decided to use a shorter domain and

impose the exact LES variables at the top boundary. Even though we know this fix is not ideal, at

least we have compatible boundary conditions. We would like to highlight the importance of having
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high-fidelity data with well-defined numerical conditions. The results obtained with the new top

boundary conditions are also shown in Fig. 2. The difference between RANS using the original

and the shorter domain relies on the Cp distributions. The new condition gives much closer results

if compared to the original LES. As for the Cf curve, this quantity was found to be much less

sensitive with respect to the boundary condition specification. The major misprediction between

RANS/LES resides above the bump: while the baseline RANS simulation presents an increase in

Cf , with its maximum value at the crest, followed by a decrease until the end of the bump, the

reference Cf curve presents a different behavior between 0.6 ≤ x/c ≤ 0.8, right after the change in

pressure gradient. The RANS-SA model differs from the reference results by overestimating the

drop at x/c = 0.9, and, after the bump, underestimating the recovery of Cf for all three cases.

IV. TURBULENT EDDY-VISCOSITY ESTIMATION

In the RANS framework, the most widespread models in the aerospace industry relies on the

Boussinesq assumption and the computation of a turbulent-eddy viscosity. Classical models eval-

uate the turbulent-eddy viscosity by solving partial differential equations (PDE) that describe the

transport of turbulent variables such as a modified viscosity ν̃, the turbulence kinetic energy k,

its specific rate of dissipation ω, the turbulent dissipation ε, etc. The main goal of this work is

to provide a PDE-free eddy-viscosity model that evaluates νt by means of machine learning tech-

niques. With this in mind, a good and realistic estimate of the turbulent-eddy viscosity is needed

to perform the neural network training. The most immediate method to obtain the exact field of

νt is by calculating it directly from the reference mean and fluctuating fields. From the Boussinesq

relation (3), we can derive the following turbulent-eddy viscosity expression [30]:

νLESt = −(ui′uj ′ − 2/3kδij) ∂jui
2SijSij

. (6)

To avoid divisions by zero or negative values of turbulent viscosites, instead of Eq. (6) we used

νLESt =
max (0,−(ui′uj ′ − 2/3kδij) ∂jui)

max (0,2SijSij) + ε
. (7)

where ε is a small parameter.

Yet, the insertion of a physical quantity obtained from DNS or LES into a RANS simulation

does not guarantee an improvement in the solution. Thompson et al. [31], for instance, computed
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FIG. 3. Normalized turbulent viscosity νT /ν computed from the LES (left), computed using the SA model

(middle) and their difference (right) for cases h20 (top), h31(middle) and h42 (bottom).

the true Reynolds stress tensor fields directly from DNS data and did not obtain sufficiently im-

proved RANS solutions. Raiesi et al. [32] also did not reach better accuracy when calculating the

turbulent kinetic energy and dissipation rate directly from DNS and LES data-sets. Therefore, it

is possible that the direct extraction of the exact turbulent viscosity may not necessarily imply an

augmented RANS solution. We believe that this evaluation step is important, hence, simulations

were performed with the modified νLESt to assess the effective improvement of the resulting flow.

The second way to estimate the turbulent-eddy viscosity is through a field inversion. In this

approach, the estimation of the turbulent viscosity requires the correction of a RANS simulation,

with the purpose of approximating the assimilated flow to the reference solution. However, Frances-

chini et al. [20] carried out a few of such inversions on a backward-facing step, which resulted in

poor assimilated solutions, presenting strong unphysical distortions in separation regions. Even

if other parameters could be assimilated to correct νt, in this work we focus solely in the direct

computation of the turbulent viscosity.

The turbulent viscosity fields obtained from Eq. (7), the baseline simulation and their differences

∆νt = νLESt − νSAt are shown in Figures 3 for cases h20, h31 and h42. The modeled eddy viscosity

νSAt resembles qualitatively the one obtained by direct calculation. In general, both contours

show that there is a zone of significant turbulent viscosity right before and after the bump. The

turbulent viscosity also increases in the rear region when the height of the bump increases. The

main divergence between the modeled and the exact νt is that the first one is overpredicted in

the shear layer over the crest and after the obstacle and underpredicted in the boundary-layer

region close to the wall. The patterns of ∆νt depend on the bump high and it is quite hard for a
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FIG. 4. Pressure (left) and skin friction (right) coefficients for cases h20 (a), h26 (b), h31 (c), h38 (d) and

h42 (e). Cp and Cf curves are shown for the reference LES simulation (symbols), baseline RANS-SA (solid)

and RANS-νLESt (dashed line).
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FIG. 5. Profiles of streamwise velocity component for cases (a) h26 and (b) h38. Profiles are shown for the

reference LES simulation (solid), baseline RANS-SA (dashed) and RANS-νLESt (dashed-dotted line).

turbulence model to find the right amount of νt for each scenario. With this in mind, we expect

to predict this quantity using artificial neural networks.

Once the turbulent-viscosity fields are estimated for each case, Eqs. (1) and (2) can be solved

for the velocity and pressure with no further modeling. Most of our analysis are focused on the

prediction of mean pressure and skin-friction distributions, because of their major importance in the

aerospace industry. The comparison between LES, baseline RANS and RANS using νLESt is shown

in Fig. 4. Figure 4 puts in evidence that the RANS simulations done with νLESt present significant

improvement over the RANS-SA solutions. Both quantities of interest, Cp and Cf approximate

very well to the reference curves, indicating that the extraction of the turbulent viscosity from

the high-fidelity solution leads to a satisfactory correction of the flow, especially for flows without

separation. As the bump height increases, it is observed that the Cp and Cf curves in figure 4,

lose some accuracy, in particular between 0.8 ≤ x/c ≤ 1.0. Yet, this change in precision is expected

since the modified RANS simulation is still constrained to the Boussinesq hypothesis, which lacks

accuracy in regions of separation. Figure 5 shows a comparison of streamwise velocity profiles

between LES, baseline RANS-SA and RANS using νLESt for cases h26 and h38. The baseline and

modified RANS profiles are similar for the attached case h26. This indicates that the standard

SA model manages to predict the resulting flow field in cases with small or no separation (at least

faraway from the wall). However, very close to the wall the skin friction is not correctly predicted,
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as indicates Fig. 4. For case h38, we notice a better prediction of the mean velocity field for the

simulation employing the modified eddy viscosity. It is worth mentioning that for flows presenting

large separations, the approximation (7) may lose accuracy. Still, in general, the RANS results

using νLESt showed that it is a very good estimation of the true turbulent viscosity. We believe that

trying to predict ∆νt or νLESt using machine learning can improve considerably the prediction of

the mean RANS solutions. We highlight that Tan et al. [33] also tried to predict the eddy viscosity

discrepancy but using the random forest algorithm. In their paper, however, the reference viscosity

was given by the SST model and training and validation was done for a single case. They analysed

the influence of several input features in the output prediction, but unfortunately did not test their

algorithm in a RANS solver.

V. MACHINE LEARNING STRATEGY

The objective of an artificial neural network (also known as multi-layer perceptron) is to improve

complex computational models. Artificial neural networks are nonlinear functions parameterized

by weights w and biases b that can be learned from data. The concept of neural networks was

inspired from the structure of biological neural circuits. Its basic unit is called perceptron. The

ensemble of perceptrons organized in layers composes our neural network. The activation q
(l)
i of

perceptron i in the lth layer can be represented as

q
(l)
i = φ

⎛
⎝∑j

w
(l)
ij q

(l−1)
j + b(l)i

⎞
⎠
. (8)

In other words, the input data from the (l − 1)th layer are multiplied by a weight w, linearly

combined and then passed through a nonlinear activation function φ. Therefore, ANN are built

by consecutive composition of linear functions (matrix-vector multiplication) followed by nonlinear

activation functions. Some of the widely used activation functions are the sigmoid function σ(x) =

1/(1 + exp−x) or the rectifier linear unit (ReLU), σ(x) = max(0, x). For deep networks, ReLU is

known to be a good candidate [34] and, for this reason, was kept in this study.

This feedforward algorithm is a mathematical model equivalent to a non-linear function with a

high number of parameters (w,b), that relates the inputs in the first layer to the outputs in the

last layer. This function is referred here as N(Q(x)), where Q(x) is the vector representing the

input layer variables and N is the final neural network output.
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A. Training and validation

The five available LES data sets are divided into: training cases, from which the neural network

will learn; and testing cases, which will be used to validate our augmented RANS model. This

separation, summarized in table I, aims towards a realistic scenario of data-driven models’ usage in

the future, since it represents a situation where high-fidelity data is available for a certain number

of flows, and prediction is needed for an entirely new flow, somewhat similar to the training cases,

but for which a reference solution is not available. This division reaches for the neural network’s

predictive capability of doing an interpolation between training cases, for a flow configuration that

presents curvature, pressure gradient and separation. In particular, bump h26 represents a test

case of a flow in the verge of separation, between an attached flow, h20, and a separated flow,

h31. Even further, bump h38 represents an intermediate case between two separated flows, h31

and h42. Therefore, the neural network model must adapt to different types of flow conditions.

Once the training data is defined, the neural network learning process consists of an optimization

problem, where the objective is to tune the weights and biases such that the resulting network is

fitted to the training data. The goal is therefore to search for the optimal parameters (w,b) that

minimize the cost function:

L(w,b) = 1

2

n

∑
k=1

( Ntraink
−N(Qtraink

,w,b) )2 (9)

Here, n is the size of the training data and k is one data point, to which is associated a set of

reference inputs Qtraink
and output Ntraink

. Moreover, N(Qtraink
,w,b) is the neural network’s

predicted output for the given reference inputs, which evidently depends on the parameters (w,b)

as well.

Consequently, the optimal parameters will lead to a neural network that minimizes the difference

between the predicted and reference outputs. In other words, it will provide an approximation of

the functional form N(Q(x)) that better describes the training data.

Validation of the training procedure is done by previously separating the dataset into training

and validation data. Here, 75% of the h20, h38 and h42 datasets were used for training, and 25%

were used for validation. A fit function, relative to the standard deviation of the validation data,

was defined to measure the predictive capability of the neural network during training.
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fit = 1 −

m

∑
k=1

(N(Qvalk
) −Nvalk)2

m

∑
k=1

(Nval −Nvalk)2
(10)

Here, m is the size of the validation data-set and k is one data point, to which is associated a

set of reference inputs Qvalk
and output Nvalk . This fit parameter is evaluated during the training

process to assess the quality of the network. It is taken into consideration for the choice of the

hyper-parameters such as: number of hidden layers, number of neurons in each hidden layer and

optimizer learning rate. The low memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) method

was chosen as the optimizer with a learning rate of 0.1, and the back-propagation algorithm was

applied for gradient calculation. The weights were initialized following the method proposed by

Glorot & Bengio [35], and all the biases were initialized as 0.1. The open-source library PyTorch is

employed in order to re-use well-implemented methods for these procedures. Appropriate hyper-

parameters for the network training are found by a grid search implementation. The training of

the network was terminated using an early-stopping criterion. If validation errors did not improve

after 5 epochs, the optimization was interrupted.

B. Input features

For the prediction of our quantity of interest, a set of physical quantities is formulated to serve

as inputs for the neural network. These input features are created from physical reasoning and are

based only on information about the mean flow, in accordance with the nature of RANS solutions.

Knowing that the formulation of input features is equivalent to defining model variables for νt/ν,

one important remark is that the inputs should be non-dimensional and rotationally invariant, in

order to respect the turbulence modeling principles of dimensional homogeneity and objectivity.

Ling and Templeton [36] have composed a collection of 12 input features, among which we

highlight: Q-criterion; ratio of pressure stresses to shear stresses; Gorlé et al. [37]’s marker for

deviation from parallel shear flow; streamline pressure gradient; viscosity ratio; and turbulence

intensity. In this paper, we also added turbulence quantities related to the model that we aim

to fix. We employ the SA ratio of production to destruction and the ratio of production to

diffusion. All input features are summarised in Table II. Since we do not transport the turbulent

kinetic energy, we reconstruct this variable using the 2013 version of the Quadratic Constitutive

Relation (QCR) [38], with kqcr = 3
2ccr2νt

√
2SijSij . To avoid feature domination, input features are
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TABLE II. Set #1 of local input features.

Feature Description Formula

q1 Q-criterion
∥Ω∥2 − ∥S∥2

∥Ω∥2 + ∥S∥2

q2 Ratio of pressure normal stresses to shear stresses

√
∂p̄
∂xk

∂p̄
∂xk√

∂p̄
∂xk

∂p̄
∂xk

+ 1
2

∂ū2
k

∂xk

q3 Gorlé et al. [37] marker
∥ūiūj ∂ūi

∂xj
∥

∥ūiūj ∂ūi

∂xj
∥ +

√
ūlūlūi

∂ūi

∂xj
ūk

∂ūk

∂xj

q4 Streamline pressure gradient
ūk

∂p̄
∂xk

∥ūk ∂p̄
∂xk

∥ +
√

∂p̄
∂xk

∂p̄
∂xk

ūiūi

q5 Viscosity ratio
νt

νt + 100ν

q6 SA ratio of production to destruction
cb1S̃ν̃

∣cb1S̃ν̃∣ + cw1fw ( ν̃
d
)2

q7 SA ratio of production to diffusion
cb1S̃ν̃

∣cb1S̃ν̃∣ + cb2
σ

∂ν̃
∂xk

∂ν̃
∂xk

q8 Turbulence intensity
kqcr

kqcr + 1
2
ū2
i

normalized in a way that all features exhibit a maximum value of approximately 1 and a minimum

value of around 0 if the feature is positive (or -1 if the feature is both positive and negative).

C. Output quantity and assessment of the quality of the neural network

In this study, we explored two ways of correcting the turbulence-eddy viscosity field by means of

ML techniques. In a first moment, we trained artificial neural networks to compute the normalized

discrepancy between LES- and SA- based turbulence viscosities: ∆νt/ν; and in a second moment,

we focus on predicting the normalized turbulence viscosity νLESt /ν directly. We then investigated

the performance and robustness of each formulation.

Once the training was carried out using the input features from Table II, we compared the

performance of each neural network taking into consideration the fit parameter given by Eq. (10).

The resulting neural networks architecture and performance are shown in Table III for both ap-

proaches. Even though table III presents the fit parameter for the entire dataset, the choice of

the best model performance cannot take into account the validation cases. This is because, in a

realistic scenario, the high-fidelity data would not be available for bumps h26 and h38, therefore
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the evaluation of the resulting models must be made by considering only the training data. We

observe that the neural network that predicts νt/ν has a slight advantage over the one that predicts

∆νt/ν. Nonetheless, both performances are still outstanding. The fit parameter is close to 99% in

both cases.

Moreover, we note in Fig. 6(a) that it is easier to approximate νt/ν rather than ∆νt/ν since

the ANN needs less iterations to maximize the fit function. Figure 6(b) shows the evolution of

the mean training and validation cost functions throughout the iterations for NN2. The figure

confirms that training was stopped before the validation loss and fit parameter became a plateau,

respecting the defined criteria to avoid overfitting.

To have a more visual representation, the predicted outputs from NN1 and NN2 are plotted

respectively in Figs. 7 and 8 together with their true fields for cases h26 and h38 that have not been

used during training. We note that the neural network captures, in general, the physical behaviour

of the expected quantities. Concerning the viscosity discrepancy, despite the noisy prediction, the

ANN successfully predicts the right levels of ∆νt in most of the domain. Some miss predictions still

exist very locally. Regarding the total turbulence viscosity, the overall prediction is also excellent.

Close to the wall, the ANN was able to reproduce the regions of high νt upstream and downstream

of the bump, and at the crest. And towards the free stream, the predicted νt becomes zero, as in

the reference field.

Finally, Fig. 9 shows a visual representation of how the training process makes an effort to

approximate the network’s outputs to the training data. Most of the points reside in the vicinity

of the reference line, yet they are not exactly identical, and there is still a part of the dataset that

does not approach the line as desired. We also remark that the comparison between subfigures 9(a)

and 9(b), for instance, confirms that the network that predicts νt/ν approximates slightly better

to the reference datasets than the one that predicts ∆νt/ν.

VI. A POSTERIORI RESULTS

In this section, predictive tests are performed using the new NN-based model. The first step of

the algorithm is to compute the input features from the initial baseline RANS-SA solution. Then,

the neural-network routine generates the output parameter, which is subsequently introduced into

the RANS solver. The converged state can be then compared with the reference and baseline

solutions. We point out that the predictive test-cases should not include any data employed in the

training phase.
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Label
Output

variable

NN

structure

fit (%)

h20 (T) h26 (V) h31 (T) h38 (V) h42 (T) all

NN1 ∆νt/ν 8 × (4 × 80) × 1 99.1 98.6 98.8 96.2 98.6 98.0

NN2 νt/ν 8 × (4 × 80) × 1 99.6 98.9 99.6 98.7 99.6 99.3

TABLE III. Evaluation of the NN performance through the fit parameter. (T) indicates the training cases

and (V) the verification cases not used during training. NN structure is in the form Ninputs × (Nlayers ×
Nneurons)×Noutputs, where Nlayers is the number of hidden layers and Nneurons the number of neurons per

hidden layer.
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FIG. 6. Evolution of the fit parameter (a) and of the mean losses (b) throughout the iterations.

In a first stage, we want to predict the following non-dimensional correction term ∆νt/ν given

by NN1. Figure 10 displays the distribution of the mean pressure and skin-friction coefficients for

the reference solution, baseline RANS and NN1-based RANS. Despite the good prediction of the

difference between the correct and modeled eddy viscosities (Fig. 7), when this quantity is given

as an input for a RANS solver, the resulting flow field comes out noisy. However, we note that the

shape of the Cp and Cf distributions are correctly captured by the augmented model. The new

NN1-model also manages to predict the separation and reattachment locations in both scenarios,

which is quite impressive taking into consideration that they present different flow physics. It is

important mentioning that in order to have an exploitable model, two corrections needed to be

implemented in the solver: (i) we needed to ensure that the total eddy viscosity was always positive

and (ii) to enforce a zero viscosity at the wall as in the original SA model. These two considerations

were necessary in order to bypass numerical instabilities or nonphysical results in the wall region

(see Fig. 11).



18

(a) (b)

(c) (d)

FIG. 7. Comparison of turbulent viscosities for cases h26 (top) and h38 (bottom). Left: ∆νt/ν. Right:

∆νNNt /ν predicted by NN1.

(a) (b)

(c) (d)

FIG. 8. Comparison of turbulent viscosities for cases h26 (top) and h38 (bottom). Left: νLESt /ν. Right:

νNNt /ν predicted by NN2.

(a) (b)

FIG. 9. Normalized output quantities from neural network NN1 (a) and NN2 (b). The scatter points should

approximate to the solid line plotted as reference.
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FIG. 10. Pressure (left) and skin friction (right) coefficients for testing cases h26 (top) and h38 (bottom).

Reference LES simulation (symbols), baseline RANS-SA (solid lines), RANS-NN1 (dashed lines)

Results concerning the NN2-based model is shown in Fig. 12 for test cases h26 and h38. Despite

not being perfect, this second model successfully predicts a flow with incipient separation for case

h26 and the correct size of the separation bubble for case h38 and the results are much smoother

than in the former simulation. Note also that, arguably, simulation h38 performed slightly better

than h26. This can be explained by the fact that in the training database only one configuration

presented attached flow, while the other two presented some kind of separation. Therefore, the

majority of the training set was closer to configuration h38 rather than h26. We believe that

the overall prediction could be improved if more cases were considered. We plot in Fig. 13 the

streamwise velocity profiles for the LES, RANS-SA and RANS-NN2 for validation purposes. We

note that the overall flow field is improved and resembles the one from simulation using νLESt

(Fig. 5). We conclude that predicting νNNt using a neural network and subsequently adding the

difference νNNt − νSAt to the SA field inside the RANS solver gives better results than predicting

this difference ∆νNNt directly with the neural network.

One of the reviewers questioned the performance of the NN-based model to extrapolate to con-

figurations with larger heights. Unfortunately the original database does not cover cases larger

than h42. So, to answer this question, we opted to train a new model (named NN3) using configu-

rations h20, h26, h31 and h38. Having four cases (instead of three) in the training set enriches the

resulting model and makes it unbiased (two configurations present attached and two configurations
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FIG. 11. Skin friction coefficient for testing case h26 without the null viscosity at the wall. Reference LES

simulation (symbols), baseline RANS-SA (solid line), RANS-NN1 (dashed line)
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FIG. 12. Pressure (left) and skin friction (right) coefficients for testing cases h26 (top) and h38 (bottom).

Reference LES simulation (symbols), baseline RANS-SA (solid lines), RANS-NN2 (dashed lines)

present separated flows). The performance of NN3 model is displayed in Table IV. Results are out-

standing for the training cases (fit parameter over 99%) and for the validation case (fit parameter

around 98 %). Testing the NN3 model in a RANS solver also showed excellent performance if

compared to the baseline RANS-SA simulation (Fig. 14). Surprisingly, the results are even more

accurate than the ones displayed in Fig. 5. So, in some way, the neural network managed to find

an improved function that better described the validation set. We conclude that machine-learning

assisted turbulence models can have a great impact in the prediction of key flow features.
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FIG. 13. Profiles of streamwise velocity component for case h38. Profiles are shown for the reference LES

simulation (solid), baseline RANS-SA (dashed) and RANS-NN2 (dashed-dotted line).

Label
Output

variable

NN

structure

fit (%)

h20 (T) h26 (T) h31 (T) h38 (T) h42 (V) all

NN3 νt/ν 8 × (4 × 80) × 1 99.7 99.8 99.8 99.7 98.0 99.0

TABLE IV. Evaluation of the NN performance through the fit parameter. (T) indicates the training cases

and (V) the verification cases not used during training. NN structure is in the form Ninputs × (Nlayers ×
Nneurons)×Noutputs, where Nlayers is the number of hidden layers and Nneurons the number of neurons per

hidden layer.

VII. SUMMARY

In this work, a data-driven turbulence model has been developed based on artificial neural

networks to improve the accuracy of classical RANS models. The present model was conceived

within the constraints of the Boussinesq hypothesis, and it aims at correcting the prediction of

the turbulent viscosity field when compared to the baseline Spalart-Allmaras model. Taking the
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FIG. 14. Pressure (left) and skin friction (right) coefficients for testing case h42. Reference LES simulation

(symbols), baseline RANS-SA (solid lines), RANS-NN3 (dashed lines)
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LES solution as the true field, it was observed that for a bump configuration the baseline model

mispredicts the pressure and velocity fields, reflecting on a significant difference in the Cf evolution

above the bump. To enhance the model prediction, the neural network is treated as a non-linear

approximator that corresponds to an estimated functional form of the turbulent viscosity or its

discrepancy. This form is defined through supervised learning, where the network parameters are

optimized such that the function fits to the given reference data-set. In this way, the novelty of the

proposed model is that it corrects directly the eddy-viscosity field and no additional turbulence

quantity needs to be transported, leading to a PDE-free eddy-viscosity model.

Therefore, in a first step, the reference turbulent viscosity was extracted from the true fields

of LES simulations. This method lead to an important augmentation of the resulting RANS

solution, generating a more accurate description of Cp and Cf . In a second step, a set of local

input features were formulated following physical reasoning and modeling constraints. Two output

quantities: the turbulence viscosity discrepancy ∆νt = νLESt − νSAt and the expected turbulence

viscosity itself νLESt were inferred using artificial neural networks. Both NN architectures seemed

to give good prediction for each quantity of interest. The predicted field still contains noise due to

the approximate nature of the neural networks, which might be a problem when injected in a RANS

solver. Subsequently, both neural networks were tested in two scenarios never seen in the training

process. Results obtained with NN1 that predicted the eddy-viscosity discrepancy did show an

improved solution, despite the noisy skin-friction profile. On the other hand, NN2 that focused on

predicting the correct eddy viscosity was able to reproduce the general flow-field behaviour with

a much smoother solution. The method was proved to be robust even in predicting extrapolated

flows. The results achieved using the proposed method are encouraging, but new analysis are still

necessary to improve a posteriori computations.
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