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Fig. 1. We propose a Monte Carlo approach to tackle multiple physics with a single algorithm, translating their coupling into a single path-space composed of
randomly chained sub-paths for each physics. Application is exemplified with heat transfer. (a) An infrared image of a steady state thermal exchanger, with
temperature imposed on the left and right walls. (b) Monte Carlo paths alternate between heat-transfer modes (here conduction and radiation). (c) A huge
benefit is the fast production of transient simulations, at any time, using the information gathered in (a), i.e. from only one Monte Carlo run at steady state.

In the past decades, Monte Carlo methods have shown their ability to solve
PDEs, independently of the dimensionality of the integration domain and
for different use-cases (e.g. light transport, geometry processing, physics
simulation). Specifically, the path-space formulation of transport equations
is a key ingredient to define tractable and scalable solvers, and we observe
nowadays a strong interest in the definition of simulation systems based on
Monte Carlo algorithms. We also observe that, when simulating combined
physics (e.g. thermal rendering from a heat transfer simulation), there is a
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lack of coupled Monte Carlo algorithms allowing to solve all the physics at
once, in the same path space, rather than combining several independent
MC estimators, a combination that would make the global solver critically
sensitive to the complexity of each simulation space. This brings to our
proposal: a coupled, single path-space, Monte Carlo algorithm for efficient
multi-physics problems solving.

In this work, we combine our understanding and knowledge of Physics
and Computer Graphics to demonstrate how to formulate and arrange dif-
ferent simulation spaces into a single path space. We define a tractable
formalism for coupled heat transfer simulation using Monte Carlo, and we
leverage the path-space construction to interactively compute multiple sim-
ulations with different conditions in the same scene, in terms of boundary
conditions and observation time. We validate our proposal in the context of
infrared rendering with different thermal simulation scenarios: e.g., room
temperature simulation, visualization of heat paths within materials (detec-
tion of thermal bridges), heat diffusion capacity of thermal exchanger. We
expect that our theoretical framework will foster collaboration and multidis-
ciplinary studies. The perspectives this framework opens are detailed and
we suggest a research agenda towards the resolution of coupled PDEs at the
interface of Physics and Computer Graphics.
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CCS Concepts: • Computing methodologies→ Simulation types and
techniques;Rendering; Physical simulation; •Applied computing→
Physics;Mathematics and statistics.
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1 INTRODUCTION
In the past decades, the simulation of radiative transfer has been ex-
tensively studied in Computer Graphics in the context of Physically
Based Rendering (PBR), leading to the development of powerful
models, algorithms and rendering systems [Jakob et al. 2022; Pharr
et al. 2016]. Such systems are nowadays tailored to cope with the
ever-increasing complexity of the scenes (e.g. in terms of geometry
and materials) and the simulation needs (e.g. spectral complexity,
coupling several physics). This is achieved by leveraging efficient
data structures and data models to manage and access the scene
data, and also by exploiting the scalability of Monte Carlo methods
to solve the Radiative Transfer Equation in path-space.

In the present work, we advocate that these rendering approaches,
which are originally motivated by movies and games use-cases, will
lead to potential breakthroughs in other fundamental fields, as illus-
trated in climate science by Villefranque et al. [2022]. We propose to
demonstrate this potential for the simulation of heat transfer, a pro-
cess that involves radiative transfer (similarly to standard rendering),
but also conduction and convection. In order to couple these three phe-
nomena, we build upon the proposal of Tregan et al. [2023], which
introduces a single coupled path-space for modeling the heat-transfer,
and which is expected to be solved by Monte Carlo. Starting from
this theoretical model, we formulate and demonstrate a practicable,
tractable, and scalable Monte Carlo simulation framework. Unlike
discretized methods or naive coupling, our framework allows to
render infrared imageswithout having to resolve the temperature field
first. To generate a thermal image (see Figure 1(b)), rendering paths
start from the camera, traverse the physics of coupled heat transfer
in all its temporal dimensions, and lead back to the "sources": not
the objects surface temperature, but the heating sources within the
scene, or the boundary conditions.
A notable property of our approach is its scalability: it provides

the capability to simulate coupled physical processes at very large
scale with complex geometry, for instance a thermal simulation at
the city scale (see Figure 4). In addition, the paths information can be
collected and stored by running one single steady-state Monte Carlo
simulation (Figure 1(a)), and can then be reused to simulate any
transient state at no cost, e.g. to produce transient infrared movies
rendering the energy propagation in capacitive objects (Figure 1(c)).
The same path information can also be reused for instant rendering
of any other boundary and initial conditions, providing interactive
feedback (see the supplemental video). We believe that, combined
with the visual analysis of the thermal paths throughout the scene,
interactive thermal simulation is a game changer for use cases related
to energy-transition, e.g. the rehabilitation of buildings.

From the very origin, the computer graphics community is strongly
connectedwith physics and physicists have always heavily benefited
of computer graphics. However, both communities have been his-
torically structured upon their own agendas, and decisive advances
had to first pervade one community through domain-specific com-
munications before they became visible by the other. In this sense,
even when they address closely similar questions, the two commu-
nities advance separately. For instance, physicists could import in
their own field the usage of geometrical libraries and acceleration
grids [Villefranque et al. 2019] only once they became a major ref-
erence in computer graphics [Wald et al. 2014]. In mirror, computer
graphics researchers have imported null-collision algorithms only
recently [Raab et al. 2008] despite very early references in particle
transport [Coleman 1968]. Even more recent was the convergence
towards common theoretical foundations of differential light trans-
port in computer graphics and domain deformation sensitivities in
transport physics [Howell and Daun 2021; Lapeyre et al. 2020; Li
et al. 2018; Zhang et al. 2019; Zhao et al. 2020].
Our approach focuses on coupling multiple physics in a single

path space. The idea of coupling is precisely one of these interface
questions that has recently emerged in both Computer Graphics
(multiscale coupling [Bitterli and d’Eon 2022; Guo et al. 2018; Heitz
et al. 2016; Wang et al. 2022]) and Physics, in fields such as electro-
magnetic, solid physics, photochemistry [Dauchet et al. 2018, 2013;
Galtier et al. 2016; Gattepaille et al. 2018]. We believe that computer
graphics and physics research would strongly benefit from a com-
mon theoretical framework to foster collaboration on that topic.
This leads us to share our understanding and knowledge of Physics
and Computer Graphics to propose the following contributions:

• building upon the proposal of Tregan et al. [2023], we define a
tractable formalism for heat transfer simulation using Monte
Carlo, and present how we leverage the path-space infor-
mation to interactively compute multiple simulations with
different conditions in the same scene, in terms of boundary
conditions and observation time (see Section 4),
• we present some results that highlight the practical signifi-
cance of this proposal (see Section 5),
• the perspectives we expect from this framework are detailed
in Section 6 and, beyond heat transfer, we explain how its core
principles open avenues towards the resolution of coupled
PDEs in a broader sense.

2 RELATED WORKS
Radiative transfer and Physically Based Rendering. In Computer

Graphics, the radiative transfer is modeled either using the render-
ing equation [Kajiya 1986] on surfaces, or by the Radiative Transfer
Equation [Chandrasekar 1960] (RTE) in volumes. In order to effi-
ciently render images, these equations have been reformulated to
model the simulation as a path space sampling problem [Veach 1998],
which can be accelerated using dedicated data structures [Pharr
et al. 2016]. The transfer on surfaces is modeled using Bidirectional
Reflectance Distribution Functions (BRDF), e.g. modeling the micro-
geometry of rough surfaces [Bitterli and d’Eon 2022; Wang et al.
2022] or diffractive ones [Holzschuch and Pacanowski 2017], glint
paints [Chermain et al. 2020], or volumic micro-structures when
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the medium is diffuse and/or multi-layer [Randrianandrasana et al.
2021]. These models might require a spectral [Wilkie et al. 2014] or
wave-optics [Steinberg et al. 2022] rendering. In case of volumes,
macroscopic transport can be modeled in participating media with
spatial and spectral heterogeneities [Galtier et al. 2013; Kutz et al.
2017] efficiently stored in dedicated data structures [Villefranque
et al. 2019], and can be computed using Monte Carlo, even if being
non-linear. Considering that light has a finite speed, movies of light
propagation can be generated using transient rendering [Jarabo
et al. 2014; Marco et al. 2019].

Monte Carlo beyond radiative transfer. In order to model realistic
scenes, the light transfer needs to be simulated, but it also requires
some phenomena to be described by other physical rules, e.g. fluids
dynamics for clouds or smokes [Rioux-Lavoie et al. 2022]. Hence,
even if they focus on radiative transfer, contributions proposed by
the computer graphics community are not restricted to this unique
physic. For instance, the Walk-on-Sphere (WoS) algorithm, intro-
duced in physics by Muller [1956], has been recently implemented
by Sawhney and Crane [2020] to solve PDE-based geometry pro-
cessing tasks. This algorithm has been extended to spatially varying
coefficients [Sawhney et al. 2022] and bi-directional resolution from
the sources [Qi et al. 2022]. These works open new perspective
to process a wide range of physical models using Monte Carlo.
However, in these works, when simulating infrared pictures, the
WoS is used to compute temperatures using Monte Carlo, and only
then, this information is used to render the final image, in a post-
processing step [Sawhney et al. 2022]. By contrast, we focus in
the present paper on the idea of coupling several physics, pushing
the idea that multiple models can be simulated at once, processing
physics and rendering in a single step, using a single path space.

Coupling several physics. Rather than relying on a precomputa-
tion, we focus on solving the physical simulation at the same time
as rendering. This idea of coupling has already been introduced for
light transport in rendering, even if not explicitly stated. Specifically,
several works have proposed to model light interaction at different
scales for materials with micro-geometries, e.g. rough [Bitterli and
d’Eon 2022; Heitz et al. 2016; Wang et al. 2022], multi-layer [Guillén
et al. 2020; Guo et al. 2018] of granular diffuse [Meng et al. 2015]
materials. This scale coupling appears when evaluating the BRDF
in the scene (macroscopic scale) using a microscopic Monte Carlo
estimation. Usually, the goal is not to evaluate this microscopic es-
timation per se, but rather to build a model in pre-process, e.g., to
minimize variance. For these reasons, most models use position-free
approximations and ignore lateral transport in the material.
Except this coupling of the RTE at different scales, we are not

aware of other work solving multiple physics coupling using Monte
Carlo. For solving problems involving different physics, the defini-
tion of a single path space seems to be promising: there is no need
then to use different Monte Carlo algorithm for going from one
physical model to another, but rather to follow a unique path going
from one space to another.

Paper organization. Coupled heat simulation (i.e. radiative trans-
fer, convection and conduction, as reminded in Sec. 3) can indeed
be expressed in a single path space (Sec 4.1), as demonstrated in

theoretical physics by Tregan et al. [2023]. We build upon this result
to adapt its formulation to computational and practical constraints
(Sec. 4.2). Our proposed coupled model is not only spatial: it is also
temporal so that it handles unstationary states (Sec. 4.3). We then
show how a single simulation allows to build propagation anima-
tions, as well as to change boundary conditions, using path-replay
ideas [Mul 2016; Vicini et al. 2021] (Sec. 4.4).

3 THE PHYSICAL MODEL AND ITS DIDACTIC VERSION
In this section, we review the physical model of heat-transfer, i.e.
convection, conduction and radiative transfer. First, we present the
model in its general formulation. We recall the RTE with some ther-
mal sources associated to matter in a state of local thermodynamic
equilibrium (Sec. 3.1) and the advecto-diffusion model (Sec. 3.2) (i.e.
conduction and convection), and we explain their coupling (Sec. 3.3).
Since our concern lies essentially on the coupling, we then present
a simplified version of the model (Sec. 3.4), which will be used here-
after. A synthetic summary of the fundamentals of thermodynamics
is given in App. A.1. Heat-transfer specialists can directly jump to
Section 4.

3.1 Thermal RTE
The model describing the transport of radiative energy is classi-
cally given by a) a linear single-velocity Boltzmann equation in
the volume (Eq. 1), and b) the Rendering Equation on the opaque
boundaries of the system (Eq. 2):

®𝜔 · ®∇𝐿𝜆 = −𝜅𝑎 [𝐿𝜆 − 𝐿
𝑒𝑞

𝜆
(𝜃 )] − 𝜅𝑠𝐿𝜆 +

∫
4𝜋

𝜅𝑠𝑝𝑠 ( ®𝜔 | ®𝜔𝑖 )𝐿𝜆,𝑖𝑑 ®𝜔𝑖 (1)

𝐿𝜆 = 𝜖𝐿
𝑒𝑞

𝜆
(𝜃 ) + (1 − 𝜖)

∫
2𝜋

𝑝𝑟 ( ®𝜔 | ®𝜔𝑖 )𝐿𝜆,𝑖𝑑 ®𝜔𝑖 (2)

where 𝐿𝜆 ≡ 𝐿𝜆 ( ®𝑥, ®𝜔, 𝑡) is the radiance (or specific intensity), ®𝑥, ®𝜔, 𝑡, 𝜆
denote respectively the position, direction, time and wavelength,
with 𝐿𝜆,𝑖 ≡ 𝐿𝜆 ( ®𝑥,−®𝜔𝑖 , 𝑡). The absorption and scattering coefficients
(𝜅𝑎 and 𝜅𝑠 ), the emissivity 𝜖 as well as the volumic and surface
phase functions (𝑝𝑠 and 𝑝𝑟 ) are all quantities that potentially depend
on ®𝑥, ®𝜔, 𝜆. The Planck function 𝐿

𝑒𝑞

𝜆
(𝜃 ) describes the equilibrium

radiance, and depends on the temperature 𝜃 and the wavelength.
Note that radiative transfer is considered in its stationary version,

due to the time scales of photon propagation compared to the time
scales of other transfer modes. Nevertheless, radiance keep time
dependency as soon as we consider coupled situations where the
temperature 𝜃 evolves over time. Also note that, the variation of
the index of refraction with the temperature being negligible in our
context, the refractive form of the RTE [Ament et al. 2014] is not
considered.

In radiative heat transfer, Equations 1 and 2 are strictly compatible
with the equilibrium constraints. This imposes the specific form
of the source terms (involving 𝐿𝑒𝑞

𝜆
) in the equations, regarding the

emission and absorption parts.

3.2 Advection-diffusion
The conductive and convective processes that we find respectively in
solid media and fluids are typically modeled by an advecto-diffusive
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description of the temperature 𝜃 :

𝜌𝑐
𝜕𝜃

𝜕𝑡
= −®∇ ·

[
−𝑘 ®∇𝜃 + 𝜌𝑐 ®𝑉𝜃

]
+ 𝑝

which can be written as:

𝜕𝜃

𝜕𝑡
= −®∇ ·

[
−𝛼 ®∇𝜃 + ®𝑉𝜃

]
+ 𝑆 (3)

where 𝜃 ≡ 𝜃 ( ®𝑥, 𝑡), ®𝑉 ≡ ®𝑉 ( ®𝑥, 𝑡), 𝛼 ≡ 𝛼 ( ®𝑥) = 𝑘 ( ®𝑥)
𝜌𝑐 and 𝑆 ≡ 𝑆 ( ®𝑥, 𝑡) =

𝑝 ( ®𝑥,𝑡 )
𝜌𝑐 . The properties 𝑘 , 𝜌 and 𝑐 are respectively the thermal con-

ductivity, the density and the heat capacity of the material. The term
−𝑘 ®∇𝜃 represents the surface density vector of conductive flux given
by Fourier’s law. The term 𝜌𝑐 ®𝑉𝜃 is the temperature advection flux
(transport of energy by the fluid movement). It vanishes in solids
( ®𝑉 = ®0). For fluids, the velocity field ®𝑉 is prescribed, and how it can
be computed by fluid mechanics models is not discussed here (see
Perspectives Sec. 6). Finally, in 𝑆 , 𝑝 is a source term of voluminal
power.
Advecto-diffusive phenomenology appears in numerous fields

of physics, well beyond thermal transfers. Classically, numerical
grid methods are employed to obtain the solutions. These have
the usual limitation in terms of scalability [Sawhney and Crane
2020] and statistical alternatives have emerged in the physics com-
munity as early as in the 1960s. In line with the theoretical work
of Feynman-Kac [Feynman and Brown 2005; Itô et al. 1996; Kac
1947; Kac et al. 1951], who writes the solution of these equations
as an expectation on drifted stochastic Brownian processes, sev-
eral Monte Carlo computational alternatives have emerged. The
seminal work on walk-on-sphere proposal [Muller 1956] introduces
an elegant algorithm with outstanding convergence properties. Re-
cent work by Sawhney et al. [2023] extends the initial WoS to cases
with Neumann-like boundary conditions. Nevertheless, handling
heterogeneous situations in diffusivity and velocity field remains
an open question and this research area is active, even for station-
ary cases [Lejay and Maire 2010, 2013; Sawhney et al. 2022]. The
instationarity brings an additional difficulty for the management
of the events ending inside the sphere. Some bridges have been
established between these proposals and the literature of first-pass
Green methods [Deaconu et al. 2017; Deaconu and Lejay 2006, 2007;
Hwang and Mascagni 2003; Karl 2019; Sabelfeld and Popov 2020],
which open interesting perspectives but, until now, do not allow to
scale up to practical geometric and temporal complexity.

3.3 Coupling
In most cases, the energy transfers within a system are based on
the coupling of the aforementioned modes. The radiative transfer
model is naturally coupled to the temperature field through the
Planck function, which appears in both the volume and boundaries
of the system (Eq. 1 and 2). The temperature field is given by the
advecto-diffusive heat transfer equation (Eq. 3) which is affected
itself by radiative exchanges. The coupling with radiation occurs in
two different ways: through sources in the volume and at the system
boundaries. Regarding the first point, the radiative source 𝑆 =

𝑝
𝜌𝑐

in the volume (see Eq. 3) is no longer prescribed but expressed from

the radiative flux:

𝑝 = −®∇ ·
(∫

4𝜋
𝑑 ®𝜔

∫ +∞

0
𝑑𝜆𝐿𝜆 ®𝜔

)
, (4)

where the dependency on the radiance 𝐿𝜆 becomes explicit. Regard-
ing the second point, exchanges through system boundaries, we use
the flux continuity property. The connection condition between a
fluid domain and an opaque solid is expressed by the continuity of
the temperature (𝜃 is unique at the interface) and the continuity of
energy fluxes. The conductive energy flux on the solid side of the
interface 𝜑𝑐𝑜𝑛𝑑,𝑆 is strictly equal to the sum of the radiative and
convective fluxes on the fluid side. Since the velocity of the fluid
is null at the boundary (no-slip condition), the convective flux is
restricted to the conductive part. Hence:

𝜑𝑐𝑜𝑛𝑑,𝑆 [𝜃 ] = 𝜑𝑐𝑜𝑛𝑑,𝐹 [𝜃 ] + 𝜑𝑟𝑎𝑑 [𝐿𝜆], (5)

where [·] denotes the operator dependence on temperature and
radiance. Equation 5 shows the coupling at the surface between the
variables 𝜃 and 𝐿𝜆 (the temperature field and the radiance at the
boundary).

3.4 A simplified version of the model to enlighten the
coupling

Now, we expose the simplified version of the heat transfer model
that will be used in Sec. 4 to design a single path-sampling Monte
Carlo algorithm for the coupling of conduction, convection and
radiation. For didactic reasons, we will stick to the very basis of
coupled heat transfer, making strong simplifications of the initial
model presented above. Each simplificationmade here will be closely
reconsidered in Perspectives (Section 6).

Opaque diffuse-gray solids and transparent fluids. The scene is
considered to be only made of either opaque solids (no radiation
inside the solids, only conduction) or transparent fluids. Radiative
transfer reduces therefore to straight line propagation across fluids
(neither diffusion nor absorption/emission in the fluid) so it is driven
by the standard Rendering Equation (Eq. 2) at all locations along
the solid-fluid interfaces.
The radiative properties of solid surfaces are independent of

temperature. Their emissivity 𝜖 is independent of direction and
wavelength (gray), and reflection can be either diffusive (cosine dis-
tributed) or specular (or a mix of both). Integrating over all frequen-
cies, in terms of 𝐿 =

∫ +∞
0 𝐿𝜆𝑑𝜆 and using

∫ +∞
0 𝜋𝐿

𝑒𝑞

𝜆
(𝜃𝑆 )𝑑𝜆 = 𝜎𝜃4

𝑆
(Stefan-Boltzmann law of black body emittance), Rendering Equa-
tion (2) writes:

𝐿 = 𝜖
𝜎𝜃4

𝑆

𝜋
+ (1 − 𝜖)

∫
2𝜋

𝐿𝑖 𝑝𝑟 ( ®𝜔 | ®𝜔𝑖 ) 𝑑 ®𝜔𝑖 (6)

where 𝜎 is the Boltzmann constant and 𝜃𝑆 the solid surface temper-
ature. The net radiative flux density at a solid surface of unit normal
®𝑛 is:

𝜑𝑟𝑎𝑑 =

∫
2𝜋

(
𝜖
𝜎𝜃 4

𝑆

𝜋︸︷︷︸
emitted

− 𝜖𝐿𝑖︸︷︷︸
absorbed

)
®𝜔𝑖 · ®𝑛 𝑑 ®𝜔𝑖 (7)
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𝜃𝑆 ( ®𝑥𝛾 ) unknown

𝜃𝑆 ( ®𝑥 ′𝛾 ) known→ end

𝛿

𝜃𝑆 ( ®𝑥𝛾 − 𝛿 ®𝑛)

®𝜔

𝜃𝑅 ( ®𝑥𝛾 , ®𝜔 )
𝜃𝐹

𝜃𝑆 ( ®𝑥𝑤𝑜𝑠 )

®𝑥𝛾 − 𝛿 ®𝑛

𝜃𝑆 ( ®𝑥𝑤𝑜𝑠 − 𝛿1 ®𝑛)
𝛿1

𝜃𝑆 ( ®𝑥𝑤𝑜𝑠 + 𝛿2 ®𝑛)
𝛿2

𝜃𝑆 ( ®𝑥𝐹 )

𝜃𝑆 ( ®𝑥 ′𝐹 )

𝜃 (known1 ) → end
𝜃 (known2 ) → end

(a) Eq. 19 (b) Eq. 23 (c) Eq. 24 (d) Eq. 26 (e) Eq. 28 (f) Summary

Fig. 2. Construction of a coupled path. (a) The path starts with a radiative sub-path 𝛾 initiated at the camera, potentially reflecting at the solid surface until
absorption at ®𝑥𝛾 . The Monte Carlo weight is 𝜃𝑆 ( ®𝑥𝛾 ) if the solid surface temperature is known (Eq. 19). (b) When the solid surface temperature is not known,
one of the three heat transfer modes is randomly selected (Eq. 23). If conduction is selected, the Monte Carlo weight is 𝜃𝑆 ( ®𝑥𝛾 −𝛿 ®𝑛) , i.e. the temperature of the
solid at an injection location 𝛿-away from the interface. If convection is selected, the Monte Carlo weight is the fluid temperature 𝜃𝐹 . If radiation is selected, a
direction ®𝜔 is sampled and the Monte Carlo weight is the incoming radiance temperature 𝜃𝑅 ( ®𝑥𝛾 , ®𝜔) . If this radiance temperature is unknown, a new radiative
sub-path is initiated as when starting from the camera. (c) In the conductive case, after injection within the solid, when the solid temperature is unknown, a
walk-on-sphere path is followed until the solid border is found at a location ®𝑥𝑤𝑜𝑠 (Eq. 24). The Monte Carlo weight is then 𝜃𝑆 ( ®𝑥𝑤𝑜𝑠 ) . (d) When the reached
location is at the interface between two solids and when the temperature of this interface is unknown, one of the two solids is randomly selected and the
Monte Carlo weight is the temperature of the selected solid 𝛿-away from the interface, i.e. 𝜃𝑆 ( ®𝑥𝛾 − 𝛿1 ®𝑛) or 𝜃𝑆 ( ®𝑥𝛾 + 𝛿2 ®𝑛) (Eq. 26). (e) In the convective case,
when 𝜃𝐹 is unknown, a location ®𝑥𝐹 is sampled at the surface of the solid surrounding the fluid cell. The Monte Carlo weight is the solid temperature 𝜃𝑆 ( ®𝑥𝐹 )
at this location (Eq. 28). (f) The algorithm alternates between different sub-path modes until it reaches a known temperature.

Uniform solids by parts. Solids are rigid (no deformation velocity
field) and are divided into sub-parts where conductivity and specific
heat capacity are uniform. For each sub-part, Eq. 3 therefore turns
into pure diffusion:

𝜕𝜃𝑆

𝜕𝑡
= 𝛼 Δ𝜃𝑆 , (8)

where 𝜃𝑆 ≡ 𝜃𝑆 ( ®𝑥, 𝑡) is the solid temperature. At any location at an
interface of unit normal ®𝑛 between two solids (denoted 𝑠1 and 𝑠2),
the conductive flux density on both sides is defined as

𝜑𝑐𝑜𝑛𝑑 = −𝑘 ®∇𝜃𝑆 · ®𝑛, (9)

while flux continuity implies that

𝜑𝑐𝑜𝑛𝑑,𝑠1 ( ®𝑥, 𝑡) = 𝜑𝑐𝑜𝑛𝑑,𝑠2 ( ®𝑥, 𝑡). (10)

Perfectly mixed fluid cells. All connected fluid cells are assumed
isothermal except for thin boundary layers along the solid-fluid
interfaces. Across these layers, the heat flux density𝜑𝑐𝑜𝑛𝑣 is modeled
as proportional to the difference between the temperature 𝜃𝐹 of the
isothermal fluid core and the surface temperature 𝜃𝑆 of the facing
solid (Newton law):

𝜑𝑐𝑜𝑛𝑣 = ℎ (𝜃𝑆 − 𝜃𝐹 ) . (11)

The proportionality coefficient ℎ (the convective exchange coeffi-
cient), via the Nusselt number, is a direct translation of the fluid
flux inside the boundary layer and is assumed to be independent
of the temperature. Under this assumption, as detailed in App. A.1,
Equation 3 can be rewritten:

𝜌𝑐V 𝑑𝜃𝐹

𝑑𝑡
=

∫
𝒮

ℎ( ®𝑥) (𝜃𝑆 − 𝜃𝐹 ) 𝑑 ®𝑥, (12)

where 𝜃𝐹 ≡ 𝜃𝐹 (𝑡), V is the volume of the fluid cell and 𝒮 is its
boundary. At any locations along a solid-fluid interface, there is
conduction on the solid side and both convection and radiation on
the fluid side. Here, energy conservation implies that

𝜑𝑐𝑜𝑛𝑑 ( ®𝑥, 𝑡) = 𝜑𝑐𝑜𝑛𝑣 ( ®𝑥, 𝑡) + 𝜑𝑟𝑎𝑑 ( ®𝑥, 𝑡). (13)

We note that in spite of the simplifications made here, this model
is the one that is most commonly used in many application areas.

4 COUPLING THE THREE HEAT TRANSFER MODES
In this section, we detail how to extend the model described in
Sec. 3.4 in order to make it tractable for real-world scenarios. The
key physical interactions modeled in our proposal (i.e. transport
in medium and interactions at boundaries) define the main steps
of our algorithm. The following section is structured around these
interactions, the corresponding equations are not only highlighted
but also illustrated in Figure 2 in order to simplify the reading. The
pseudocode is provided in App. B.

Overview. In Section 4.1, we define howwemodel backward paths
(from camera to sources) propagating through the entire system.
These paths combine the three heat transfer modes, and transport
temperature information from locations where temperature is im-
posed (sources) to locations where temperature is sought (camera
pixels). Section 4.2 shows how to address the geometric/physical
information using only line-surface intersection operators. For this,
we replace the standard walk-on-sphere algorithm with a delta-
sphere random walk algorithm for thermal diffusion inside solids. In
Section 4.3 we go beyond the stationary case and extend our model
to transient heat-transfer. Finally, we analyze in Section 4.4 the
physical pictures associated to the resulting path statistics, and how
this information can be used to reconstruct new infrared images
very rapidly when changing the sources. The question of further
using this propagation information is addressed in Section 5.

4.1 Paths combining the three heat transfer modes
Let us start with pure radiative transfer, typically addressing the
Monte Carlo estimation of the spectrally integrated radiance 𝐿 ≡
𝐿( ®𝑥, ®𝜔) at the location ®𝑥 of an infrared camera inside the fluid, as in
Fig. 2. A standard russian roulette algorithm leads to the backward
sampling of a multiple reflection random path Γ ending at location
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®𝑥Γ on the solid-fluid interface, the Monte Carlo weight being the
infrared source at this location, i.e.𝑊Γ =

𝜎𝜃 4
𝑆
( ®𝑥Γ)
𝜋 . If we temporarily

assume that the surface temperature of the solid is known, then
the Monte Carlo algorithm can be summarized as the following
expectation:

𝐿 = E

[
𝜎𝜃4

𝑆
( ®𝑥Γ)
𝜋

]
. (14)

Defining the radiance temperature as

𝜃𝑅 =

(
1
𝜎
𝜋𝐿

)1/4
, (15)

and assuming that all temperatures are close to a known reference
temperature 𝜃𝑟𝑒 𝑓 , it is standard practice to linearize radiance as
function of radiance temperature using the 1-order development

𝐿 =
𝜎𝜃4

𝑅

𝜋
≃

𝜎𝜃4
𝑟𝑒 𝑓

𝜋
+

4𝜎𝜃3
𝑟𝑒 𝑓

𝜋
(𝜃𝑅 − 𝜃𝑟𝑒 𝑓 ) . (16)

In the Monte Carlo context, this linearization can be repeated inside
the expectation in Eq. 14:

𝐿 ≃ E

𝜎𝜃4

𝑟𝑒 𝑓

𝜋
+

4𝜎𝜃3
𝑟𝑒 𝑓

𝜋

(
𝜃𝑆 ( ®𝑥Γ) − 𝜃𝑟𝑒 𝑓

) (17)

=

𝜎𝜃4
𝑟𝑒 𝑓

𝜋
+

4𝜎𝜃3
𝑟𝑒 𝑓

𝜋

(
E [𝜃𝑆 ( ®𝑥Γ)] − 𝜃𝑟𝑒 𝑓

)
(18)

and the right sides of Eq. 16 and 18 can be equaled to give the
radiance temperature expressed itself as an expectation:

radiance temperature

𝜃𝑅 = E [𝜃𝑆 ( ®𝑥Γ)] . (19)

As detailed in supplementary material (Sec. 3), the linearization
approximation can be removed, in which case Equation 19 expresses
𝜃𝑅 as the expectation of a random variable whose definition involves
𝜃𝑅 . We denote this situation as non-linear coupling, further discussed
in Section 6.

With these equations in hand, we have a Monte Carlo algorithm
where the radiance temperature is modeled as an expectation of
solid-surface temperatures. But in a coupled heat transfer problem,
there are surfaces where the temperature is not known. Instead,
it results from the combined presence of conduction on the solid
side, and convection plus radiation on the fluid side. Equation 13
translates this combination ; combined with the previous definitions
and the same linearization of (𝜎𝜃4

𝑆
− 𝜎𝜃4

𝑅
) as for Eq. 16, it leads to

− 𝑘 ®∇𝜃𝑆 · ®𝑛 = ℎ (𝜃𝑆 − 𝜃𝐹 ) +
∫

2𝜋
ℎ𝑅 (𝜃𝑆 − 𝜃𝑅)

®𝜔 · ®𝑛
𝜋

𝑑 ®𝜔 (20)

where ℎ𝑅 = 4𝜎𝜖𝜃3
𝑟𝑒 𝑓

.

The term ®∇𝜃𝑆 · ®𝑛 can be approximated using finite difference:

− ®∇𝜃𝑆 · ®𝑛 ≈
𝜃𝑆 ( ®𝑥 − 𝛿 ®𝑛) − 𝜃𝑆 ( ®𝑥)

𝛿
, (21)

where 𝛿 must be small compared to the solid thickness. Thanks to
this formulation, we can express 𝜃𝑆 as an expectation:

𝜃𝑆 ( ®𝑥) = 𝑃𝑐𝑜𝑛𝑑 𝜃𝑆 ( ®𝑥 − 𝛿 ®𝑛) + 𝑃𝑐𝑜𝑛𝑣 𝜃𝐹 + 𝑃𝑟𝑎𝑑
∫

2𝜋
𝜃𝑅
®𝜔 · ®𝑛
𝜋

𝑑 ®𝜔, (22)

with 𝑃𝑐𝑜𝑛𝑣 = ℎ
𝑘
𝛿
+ℎ+ℎ𝑅

, 𝑃𝑟𝑎𝑑 =
ℎ𝑅

𝑘
𝛿
+ℎ+ℎ𝑅

and 𝑃𝑐𝑜𝑛𝑑 = 1−(𝑃𝑐𝑜𝑛𝑣+𝑃𝑟𝑎𝑑 ).
Note that, contrary to the others simplifications and approximations
we made previously, approximation (21) is required to express 𝜃𝑆 as
an expectation, and can not be released.

To represent the test with three branches, we define the random
vector (H𝑐𝑜𝑛𝑑 ,H𝑐𝑜𝑛𝑣,H𝑟𝑎𝑑 ) on support {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
with respective probabilities 𝑃𝑐𝑜𝑛𝑑 , 𝑃𝑐𝑜𝑛𝑣 and 𝑃𝑟𝑎𝑑 , and defining ®Ω
as a random direction cosine-distributed around ®𝑛, then

solid temperature at a solid-fluid interface

𝜃𝑆 ( ®𝑥) = E
[
H𝑐𝑜𝑛𝑑 𝜃𝑆 ( ®𝑥 − 𝛿 ®𝑛) + H𝑐𝑜𝑛𝑣 𝜃𝐹 + H𝑟𝑎𝑑 𝜃𝑅 ( ®𝑥, ®Ω)

]
.

(23)

Reporting Equation 19 into Equation 23 we can use double random-
ization [Maire and Nguyen 2016]: expectation of an expectation is
an expectation and therefore linearly combining two path-sampling
Monte Carlo algorithm leads to one single path-sampling Monte
Carlo.

So we can now estimate the radiance temperature at an infrared
camera location by sampling a multiple reflection radiative path
until it stops at a solid-fluid interface. Then, in case the solid surface
temperature is not known, the algorithm simply continue the same
path by
• randomly choosing the heat transfer mode according to 𝑃𝑐𝑜𝑛𝑑 ,
𝑃𝑐𝑜𝑛𝑣 and 𝑃𝑟𝑎𝑑 ;
• in case conduction is selected, retaining the solid temperature
𝜃𝑆 ( ®𝑥 − 𝛿 ®𝑛) at a distance 𝛿 away from the interface;
• in case convection is selected, retaining the fluid temperature
𝜃𝐹 ;
• in case radiation is selected, first sampling the direction ®𝜔
and retaining the radiance temperature 𝜃𝑅 ( ®𝑥, ®𝜔).

The same logic of double randomization is used to continue the
algorithm for the selected heat transfer mode when the temperature
to be retained is unknown.

The conduction term in Equation 23 requires computing 𝜃𝑆 ( ®𝑥 −
𝛿 ®𝑛). This can be translated as the sampling of a walk-on-sphere
random path𝑊𝑂𝑆 within the corresponding uniform solid sub-part,
the path ending at a location ®𝑥𝑊𝑂𝑆 along the sub-part boundary:

walk-on-sphere

𝜃𝑆 ( ®𝑥 − 𝛿 ®𝑛) = E [𝜃𝑆 ( ®𝑥𝑊𝑂𝑆 )] . (24)

If at ®𝑥𝑊𝑂𝑆 the solid temperature is known, the algorithm stops
retaining this temperature as the Monte Carlo weight. If the solid
temperature is not known there are two cases. Either the sub-part
boundary is a solid-fluid interface, in which case we come back to
Equation 23 and continue the algorithm by selecting again one heat
transfer mode. Or the sub-part boundary is a solid-solid interface,
in which case we need to make a finite difference approximation on
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both sides. Equation 10 becomes

𝑘1
𝜃𝑆 ( ®𝑥 − 𝛿1®𝑛) − 𝜃𝑆 ( ®𝑥)

𝛿1
≈ 𝑘2

𝜃𝑆 ( ®𝑥) − 𝜃𝑆 ( ®𝑥 + 𝛿2®𝑛)
𝛿2

, (25)

and
solid temperature at a solid-solid interface

𝜃𝑆 ( ®𝑥) = E
[
H𝑐𝑜𝑛𝑑,1 𝜃𝑆 ( ®𝑥 − 𝛿1®𝑛) + H𝑐𝑜𝑛𝑑,2 𝜃𝑆 ( ®𝑥 + 𝛿2®𝑛)

]
,

(26)

where the Bernoulli randomvariablesH𝑐𝑜𝑛𝑑,1 has probability 𝑃𝑐𝑜𝑛𝑑,1 =
𝑘1
𝛿1
/( 𝑘1

𝛿1
+ 𝑘2
𝛿2
) andH𝑐𝑜𝑛𝑑,2 = 1−H𝑐𝑜𝑛𝑑,1. So the algorithm continues

with either a 𝛿1 jump inside solid 1 or a 𝛿2 jump inside solid 2, and
starts a new walk-on-sphere algorithm from the reached location.

The convection term in Equation 23 requires computing 𝜃𝐹 . The
stationary version of Equation 12 (i.e. 𝑑𝜃𝐹

𝑑𝑡
= 0) leads to

𝜃𝐹 =

∫
𝒮
ℎ( ®𝑥)𝜃𝑆 ( ®𝑥)𝑑 ®𝑥∫
𝒮
ℎ( ®𝑥)𝑑 ®𝑥

, (27)

and therefore
fluid temperature

𝜃𝐹 = E
[
𝜃𝑆 ( ®𝑋𝒮)

]
, (28)

where ®𝑋𝒮 is a random location along the fluid cell boundary with
probability density proportional to the convective exchange coeffi-
cient. So when 𝜃𝐹 is needed, a location is sampled on the boundary,
with location probability as a function of the intensity of convective
exchanges, and retains the solid temperature at this location.
Finally, the radiation term in Equation 23 requires computing

𝜃𝑅 ( ®𝑥, ®𝜔), and this is identical to our initial question of estimating
𝜃𝑅 at a camera location.

Altogether, as summarized in Figure 2, Equations 19, 23, 26 and 28,
combined with a walk-on-sphere algorithm for pure conduction
within the uniform solid sub-parts, provide a closed Monte Carlo
algorithm. This algorithm samples paths across the system, switches
between heat transfer modes at the solid-fluid interfaces, ends when
reaching a location where the temperature is known and retains this
temperature value as theMonte Carlo weight. At this stage, although
the core of the algorithm is defined, its efficient implementation
impacts the choices made on the physical model itself in order to
benefit from complex geometry scalability.

4.2 Walk-on-delta-sphere
According to our hypothesis, the solids are divided into uniform
sub-parts and the fluids are transparent, which means that all the
parts properties can be accessed from their envelop. Same thing for
the heat transfer parameters: conductivity and diffusivity on both
sides for solid-solid interfaces; conductivity and diffusivity on the
solid side, emissivity and convective heat transfer coefficient on the
fluid side for solid-fluid interfaces. Fast access to these data boils
down to the fast sampling of surface locations for each of the three
heat transfer modes.

As far as radiation is concerned, standard ray-tracing strategies
are immediately available to optimize the computational effort as-
sociated to line-surface intersections [Pharr et al. 2016]. For convec-
tion, sampling ®𝑋𝒮 is trivial: there is no dependence on location and
cumulated distributions can be pre-constructed for the geometrical
primitives (e.g. triangles) of the envelope, weighting them by their
size and the local value of the convective exchange coefficient. For
conduction, walk-on-sphere algorithms open a new set of questions.
If the discussion was strictly restricted to the basic heat transfer
model of the present section, then we could simply use the accel-
eration strategies that have recently been proposed for finding the
triangle corresponding to the smallest tangent sphere as function
of the sphere-center location [Shellshear and Ytterlid 2014; Wald
et al. 2014]. But our question is broader: we want to set up path-
sampling algorithms flexible enough for extension to heterogeneous
diffusivity, heterogeneous velocity (when advection is considered),
volume-coupling with radiation within semi-transparent media (flu-
ids or solids), and nonlinear coupling with additional physical mod-
els (e.g., diffusivity and velocity depend on temperature). These
questions are at least partially addressed in the walk-on-sphere liter-
ature [Sabelfeld 2019; Sabelfeld and Smirnov 2021], but they remain
very open. We then take a practical decision: considering that we
already made the choice of using a finite difference approximation
for the handling of solid-solid and solid-fluid interfaces, we choose
to replace the walk-on-sphere algorithm with a walk-on-𝛿-sphere
algorithm [Tregan et al. 2023], i.e. sampling the next location on
a sphere of fixed radius 𝛿 instead of the tangent sphere. For sta-
tionary diffusion inside uniform solids, exactly like walk-on-sphere,
the algorithm is exact far from the boundary. Starting from a loca-
tion ®𝑥 , we handle the presence of the boundary with the following
procedure:

• We sample an isotropically distributed random direction ®Ω.
• We test if a triangle is intersected before the distance 𝛿 in di-
rection ®Ω. If an intersection is found we store the intersection
distance 𝑠+, otherwise 𝑠+ = 𝛿 .
• We do the same, defining 𝑠− for the opposite direction −®Ω.
• We define 𝛿 = min(𝑠−, 𝑠+), and we jump at ®𝑥 + 𝛿 ®Ω, i.e. on the
sphere of radius 𝛿 (which will be of radius 𝛿 if no triangle
was intersected).

This is a first order spatial approximation (i.e. exact when the tem-
perature profile is trilinear). The pseudo-code of this algorithm, as
well as the full Monte Carlo procedure are given in App. B.

4.3 Extension to transient heat transfer
We model transient conduction and convection by keeping the
temporal terms in Equations 8 and 12, respectively. During the path
sampling, we also track time, such that the backward construction of
the path may stop because the initial time 𝑡𝐼 is reached. As the initial
conditions of the system are known, all temperatures are known at
𝑡𝐼 , whatever the reached location of the Monte Carlo weight.
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Convection. Because of the kinetic nature of Eq. 12, time tracking
can be directly computed for convection. The formal solution writes

𝜃𝐹 (𝑡) = exp
(
− 𝑡 − 𝑡𝐼
𝜏𝑐𝑜𝑛𝑣

)
𝜃𝐹 (𝑡𝐼 )+∫ 𝑡−𝑡𝐼

0

1
𝜏𝑐𝑜𝑛𝑣

exp
(
− 𝑡𝑏

𝜏𝑐𝑜𝑛𝑣

)
𝜃∗𝐹 (𝑡 − 𝑡𝑏 ) 𝑑𝑡𝑏

(29)

with 𝜏𝑐𝑜𝑛𝑣 =
𝜌𝑐V
ℎ𝒮

and ℎ = 1
𝒮

∫
𝒮
ℎ( ®𝑥)𝑑 ®𝑥 , and where 𝜃∗

𝐹
(𝑡) is the

same average surface temperature as in the stationary case. It was
already formulated as an expectation in Eq. 28, leading to:

𝜃∗𝐹 (𝑡) =
1
ℎ𝒮

∫
𝒮

ℎ( ®𝑥)𝜃𝑆 ( ®𝑥, 𝑡)𝑑 ®𝑥 = E
[
𝜃𝑆 ( ®𝑋𝒮, 𝑡)

]
. (30)

Observing that exp
(
− 𝑡−𝑡𝐼
𝜏𝑐𝑜𝑛𝑣

)
=

∫ +∞
𝑡−𝑡𝐼

1
𝜏𝑐𝑜𝑛𝑣

exp
(
− 𝑡𝑏
𝜏𝑐𝑜𝑛𝑣

)
𝑑𝑡𝑏 , Equa-

tion 29 can be written as an expectation by defining an exponentially
distributed random variable 𝑇𝑏,𝑐𝑜𝑛𝑣 of mean 𝜏𝑐𝑜𝑛𝑣 , itself defining
H𝐼 ,𝑐𝑜𝑛𝑣 = 𝐻 (𝑇𝑏,𝑐𝑜𝑛𝑣 − 𝑡 + 𝑡𝐼 ), where 𝐻 is the Heaviside function.
H𝐼 ,𝑐𝑜𝑛𝑣 is 1 if the initial condition is retained, 0 otherwise:

𝜃𝐹 (𝑡) =
∫ +∞

0

1
𝜏𝑐𝑜𝑛𝑣

exp
(
− 𝑡𝑏

𝜏𝑐𝑜𝑛𝑣

)
[
𝐻 (𝑡𝑏 − 𝑡 + 𝑡𝐼 )𝜃𝐹 (𝑡𝐼 ) + 𝐻 (−𝑡𝑏 + 𝑡 − 𝑡𝐼 )𝜃∗𝐹 ( ®𝑥, 𝑡 − 𝑡𝑏 )

]
𝑑𝑡𝑏

= E
[
H𝐼 ,𝑐𝑜𝑛𝑣𝜃𝐹 (𝑡𝐼 ) + (1 −H𝐼 ,𝑐𝑜𝑛𝑣)E

[
𝜃𝑆 ( ®𝑋𝒮, 𝑡 −𝑇𝑏,𝑐𝑜𝑛𝑣)

] ]
= E

[
H𝐼 ,𝑐𝑜𝑛𝑣𝜃𝐹 (𝑡𝐼 ) + (1 −H𝐼 ,𝑐𝑜𝑛𝑣)𝜃𝑆 ( ®𝑋𝒮, 𝑡 −𝑇𝑏,𝑐𝑜𝑛𝑣)

]
(31)

The resulting transient convective sub-path is sampled the following
way:
• 𝑇𝑏,𝑐𝑜𝑛𝑣 is sampled and is interpreted as an exponentially dis-
tributed backward jump in time;
• when this jump leads to a time 𝑡 −𝑇𝑏,𝑐𝑜𝑛𝑣 before 𝑡𝐼 , the initial
fluid temperature is retained;
• otherwise ®𝑋𝒮 is sampled to get a position at the surface of
the solid surrounding the fluid (as for the stationary path)
and the solid temperature is retained, at this location at time
𝑡 −𝑇𝑏,𝑐𝑜𝑛𝑣 .

Conduction. It is handled exactly the same way as convection, as
detailed below. Up to now we used a first order approximation in
space for diffusion when estimating the temperature of a solid-solid
or a solid-fluid interface (re-injection inside the solid at distance
𝛿 when conduction is selected) and when adapting the walk-on-𝛿-
spheres algorithm in the vicinity of the boundary. We use the same
level of spatial approximation to write the following approximate
version of transient diffusion equation (see Eq. 8). As detailed in
App. A.2, this is done by using a finite difference to transform the
Laplace operator in an arbitrarily chosen Cartesian coordinate sys-
tem and then averaging over all the possible orientations of the
coordinate system:

𝜕𝜃𝑆

𝜕𝑡
= 𝛼

(
− 6
𝛿2

𝜃𝑆 +
6
𝛿2

𝜃∗𝑆

)
, (32)

where 𝜃∗
𝑆
( ®𝑥, 𝑡) is the same average temperature over the 𝛿-sphere as

for the stationary case. It can be translated as an expectation using

1 Monte Carlo at 𝑡obs = +∞

change
sources

change
𝑡𝑜𝑏𝑠

probe 𝜃ext 𝜃heat 𝜃 (𝑡𝐼 ) 𝜃′ext 𝜃′heat

Fig. 3. A stationary Monte Carlo estimation of a probe (triangle) tempera-
ture (left) is a weighted sum of the sources, here the known exterior (dot)
and heater (cross) temperatures. The propagator enables to evaluate the
samples under different source temperatures (top) shown by different colors,
without performing a new simulation. The observation time can also be
changed (bottom) for an extra-memory cost, then the initial temperature
also becomes a source (squares).

the isotropic random direction ®Ω:

𝜃∗𝑆 ( ®𝑥, 𝑡) = E
[
𝜃𝑆 ( ®𝑥 + 𝛿 ®Ω, 𝑡)

]
. (33)

The formal solution of Equation 32 is

𝜃𝑆 ( ®𝑥, 𝑡) = exp
(
− 𝑡 − 𝑡𝐼
𝜏𝑐𝑜𝑛𝑑

)
𝜃𝑆 ( ®𝑥, 𝑡𝐼 )+∫ 𝑡−𝑡𝐼

0

1
𝜏𝑐𝑜𝑛𝑑

exp
(
− 𝑡𝑏

𝜏𝑐𝑜𝑛𝑑

)
𝜃∗𝑆 ( ®𝑥, 𝑡 − 𝑡𝑏 )𝑑𝑡𝑏

(34)

which is consistent with the solution of Eq. 8 as detailed in supple-
mentary material (Sec. 2). As for Eq. 29, we directly write

𝜃𝑆 ( ®𝑥, 𝑡) = E
[
H𝐼 ,𝑐𝑜𝑛𝑑𝜃𝑆 ( ®𝑥, 𝑡𝐼 ) + (1 −H𝐼 ,𝑐𝑜𝑛𝑑 )𝜃𝑆 ( ®𝑥 + 𝛿 ®Ω, 𝑡 −𝑇𝑏,𝑐𝑜𝑛𝑑 )

]
,

(35)
and the corresponding sampling algorithm is exactly the same as
for transient convection.

4.4 Storing and displaying path information
For each camera pixel, the above described algorithm is used to
sample 𝑛 paths starting from the camera at the observation time.
The path traverses the system backward in time, switching from one
heat transfer mode to the other, until either the initial time is reached
(initial condition) or it crosses a location where the temperature is
known (imposed temperature). These are the two only ways for a
path to find its end, which means that the Monte Carlo weight is
always the value of the temperature at the end of the path. As for
standard rendering, generating the image does not require to store
the complete history of the path in addition to the Monte Carlo
weights. But in the context of thermal simulation, there are several
practical use-cases where storing the entire path space can have a
very strong impact. For instance, in the context of energy transition,
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engineers and citizens can use infrared cameras to understand the
influences of a fluctuating environment, get insight about their heat
control choices, or about the insulation properties of building. From
this perspective, statistically analyzing the heat transfer paths gives
more information than a simple average of the associated weight (i.e.
the radiative flux at the pixel surface). Displaying the paths within
any scientific viewer has already a strong practical significance by
itself. The same statement is made to draw an analysis from the
visualization of light paths [Kopylov and Dmitriev 2000], we stick
here to simple visualizations although more advanced methods exist
(e.g. [Zirr et al. 2015]).

We illustrate this point in Section 5, together with two other
useful practices that emerge as straightforward consequences of
the present algorithmic proposal due to the linearity of the physical
model. First, storing only the end of the path allows to very rapidly
replay the rendering for new initial conditions or new imposed tem-
peratures (see Figure 3). This idea is similar to relighting [Mul 2016]
where sources can be modified after the simulation. Note that the
term path-replay comes from the work of Vicini et al. [2021]. Sec-
ond, storing all surface encounters allows to change the observation
time. Indeed, when replaying the rendering at any date between
the initial condition and the observation time for which the paths
were constructed, the initial condition will be found somewhere be-
tween two known surface encounters. Specifically, it will be located
inside an identified uniform solid sub-part or an identified fluid
cell. Using this information, the Monte Carlo weight can be directly
recomputed with a known initial temperature value. In practice,
this means that a single Monte Carlo run computes all the required
information to generate a sequence of infrared images showing the
temporal response evolving over time, for a fixed camera location
and a fixed geometry (see Figure 1 and supplementary video).

5 RESULTS
In this section, we show the usefulness of coupling several physics
and manipulating the propagator on some concrete applications,
mainly related to building construction and rehabilitation. The the-
oretical tools enable to analyze infrared renderings in the thermal
context. Here, we show some results on infrared images, but it is
much more general: a flux, an electric consumption, etc. could also
be computed the same way.

Implementation details. We developed our prototype implemen-
tation using Stardis [Sta 2018] for Monte Carlo simulations and
evaluations, restricting ourselves to the didactic model (i.e. having
uniform conditions). This assumption is further discussed in supple-
mentary material (Sec. 4). We implemented the path-replay of an
infrared image and the time propagator, the later being restricted to
a uniform initial temperature. The surfacic phase function 𝑝𝑟 is com-
posed of a specular part and a Lambertian part, sampled accordingly
to the specular fraction parameter 𝑠 (the probability that reflection is
specular otherwise diffuse). We set the reinjection distance 𝛿 about
1/20 of the object’s characteristic size. For all the presented infrared
images, we provide in table 1 either their simulation or evaluation
times, performed on an Intel Xeon Silver 4208 machine with 32
CPUs. As our implementation is not optimized, these timings might

Table 1. Scene configurations and associated computation times, for either
full Monte Carlo simulation (s) or replay (r). For teaser, replay times are
only two orders of magnitude smaller than MC times. This is because the
replay code anticipates for further internal sources (see supplemental). For
farm simulations, the replay code has been simplified for engineering needs
and the replay to Monte Carlo ratio is of the order of 5 · 10−7 (Fig. 6 replay
times estimated on average over a large number of run replications).

Scene triangles size spp time
Fig. 1 – propag. 13k 1024x1024 256 s: 59m
Fig. 1 (a) 13k 1024x1024 256 r: 6s
Fig. 1 (c) – top 13k 1024x1024 256 r: 4s
Fig. 1 (c) – top 13k 1024x1024 256 s: 27m
Fig. 1 (c) – bot. 13k 1024x1024 256 r: 5s
Fig. 1 (c) – bot. 13k 1024x1024 256 s: 53m
Fig. 4 (a) 9,97k 1024x768 1024 s: 10h20m
Fig. 4 (b) 89,6k 1024x768 1024 s: 9h44m
Fig. 4 (c) 806k 1024x768 1024 s: 9h33m
Fig. 4 (d) 9,6M 1024x768 1024 s: 9h14m
Fig. 5 int. 380 1024x1024 3000 s: 25h02m
Fig. 5 ext. 380 1024x1024 3000 s: 13h58m
Fig. 6 int. 380 - 10000 s: 15s
Fig. 6 int. 380 - 10000 r: 8 · 10−6s
Fig. 6 ext. 380 - 10000 s: 2m04s
Fig. 6 ext. 380 - 10000 r: 8 · 10−6s

be further reduced, (e.g., using vectorization). In any case, the pur-
pose of our prototype implementation is to demonstrate that the
didactic model already enables interesting results and analysis of
the coupled heat transfer.

Validation. As there is no other code against which to validate
the infrared images, the Stardis code is validated on temperature
field computation and all the references are available at the web-
page https://www.meso-star.com/projects/stardis/validation.html.
These validations are made against analytical models on simple ge-
ometries and cross-comparisons with commercial finite difference
codes (ANSYS Fluent [Flu 2017] and Comsol [Com 2020]) on more
complex geometries. Note that the open access Syrthes [Syr 2021]
code embeds Stardis, which allows systematic comparisons on the
exact same CAD material. These validations are provided for cases
that remain tractable by deterministic approaches (requiring the
discretization of the whole volume) but cannot be made for complex
geometries such as cities where solving on mesh is impractical.

The propagator implementation is validated against the classical
Monte Carlo simulation, both on a temperature computation (see
Fig. 7) and infrared renderings (see Fig. 1 – right).

5.1 Infrared imaging using coupled-paths : the case of the
Heat exchanger

We first illustrate how we use coupled-paths to generate an infrared
image, here of a heat exchanger (in Fig. 1) made of a Kelvin cells foam
(𝑘 = 237 W m−1 K−1, 𝜌 = 2700kg m−3, 𝑐 = 890 J K−1 kg−1) with
emissivity 𝜖𝑒 = 0.9 and specular fraction 𝑠𝑒 = 0.5 for the reflective
part, placed on a floor with emissivity 𝜖𝑓 = 0.8 and a specular
fraction 𝑠𝑓 = 0.8. The whole is plunged within a uniform radiative
background maintained at 680K. For the sake of clarity, we only
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consider coupled conductive and radiative paths in this illustration.
At initial time, the temperature of the system is set at 𝜃𝐼 = 700K
everywhere, the left and right walls of the exchanger are set at 850K
and 750K respectively, and keep being imposed. The temperature of
the floor remains imposed at 𝜃𝐼 = 700K. Left panel in Fig. 1 shows
the infrared rendering at infinite time (𝑡𝑜𝑏𝑠 = +∞), i.e. the stationary
state: imposed temperatures at the walls propagate towards the core
of the exchanger, as expected, but not very deeply (for the given
set of parameters) because the central part is conversely cooled by
radiative exchange with background and floor.

Middle panel illustrates how this rendering has been built using
coupling between conductive and radiative paths. Starting from
pixels of the virtual camera, some radiative paths propagate back
to the structure up to an intersection point. There, they can switch
to conduction within the material or be reflected. Then, they chain
conductive paths through the material (blue subpaths) and radiative
paths between internal faces (red subpaths), until they either meet
a left/right wall or the floor where the temperature is known (e.g.
blue dot on the left wall), or exit to radiative background. Using
such paths, each pixel value can be estimated in a single procedure
integrating the fully coupled thermal transfer, without having to
compute the temperature field prior the rendering.

Visualizing paths helps to interpret the results. For instance, the
probability that a path ends at the known temperature of a wall is
higher for paths that first intersect the structure near either wall.
Hence such paths will convey more often the wall information (850K
or 750K) than the background radiative value (680K) or floor (700K).
Conversely, paths that meet the structure near the core will more
often end by radiative exits to background or floor, and meet a wall
only rarely so that the exchanger core remains darker. This contrast
between core and walls will depend on the probability exiting to
background or floor before meeting either wall, a probability which
is driven by the material properties (e.g. the higher the conductivity,
the lower this probability) and the foam density (the higher the
density, the lower this probability). We also note that the floor
having a high specular part, paths that hit it as first intersection
from the camera can bounce back to the structure and then retrieve
its reflected image, albeit attenuated because the floor emissivity is
high so that its own imposed temperature prevails : the floor here
acts as an attenuated infrared mirror.
As mentioned in Section 4, storing information about the paths

that have been realized in this first rendering can be reused to
hugely accelerate rendering when other conditions apply (see the
supplementary video). We illustrate this point with the right panel
of Fig. 1, where this information is used to render transient states
at 𝑡𝑜𝑏𝑠 = 30s and 𝑡𝑜𝑏𝑠 = 150s. Contrasting with stationary state,
paths can now meet the initial condition back in time (in addition to
ending at walls, floor or background), so that some of the paths that
would have ended at the wall at stationary state nowmeet the initial
condition before reaching the wall. As a consequence, they retrieve
𝜃𝐼 = 700K instead of the higher wall temperature, resulting overall
into a lower temperature. Similarly, some of the paths exiting to
background from within the core at stationary state (retrieving then
680K) now meet the initial condition before exiting, and retrieve
700K, resulting overall into a higher temperature. Of course, the
probability of meeting the initial condition before intersecting a

wall / floor or exiting to background vanishes as time grows and
the full history to the stationary state can be rebuilt interactively
(see the supplementary video) with no need to sample again the full
path space for each snapshot.

5.2 Scalability
In Figure 4we reproduce an image that was displayed in Villefranque
et al. [2022] to illustrate the ability to synthesize urban infrared
images. It includes heat transfer within the buildings at each scale,
as well as transfer between buildings (via the ground or via radiative
exchanges), a feature typically required for the modeling of urban
heat islands. In our scene, the environment is cold and each room
within each building is heated with an air conditioning system. As a
typical output, this image highlights the thermal bridges associated
to concrete slabs and balconies, as well as a strong heat loss due to
an insufficient thermal insulation of the roof.

Figure 4 shows that our objective of a full geometric scalability is
reached: computation times are independent of the number of build-
ing in the scene. With the choices we made in Section 4, data-access
acceleration is exactly the same as for todays standard rendering
and we can indeed expect that computation times are insensitive to
the number of geometric primitives. But in this scene, interactions
are even more complicated, as the buildings are interacting with
each other. Despite this, the computation times are the same when
imaging 1, 9, 81, or 961 buildings. Under the hood, it means that the
average computation time required to construct the paths is nearly
the same if the building is surrounded by a known environment
(the path stops when it exits the building), or if path can reach the
neighbor buildings and continue their way inside these buildings.
Note that inside a building, a path can have a wide range of inter-
actions, e.g., cross the walls by conduction, interact with internal
air by convection inside the rooms, or jump from one wall loca-
tion to another by radiation. We believe that the stable simulation
times are due to the fact that cities are dominantly extended in
two dimensions. Making the scene more complex does not change
significantly the average time a heat transfer path travels through
the housing before it exits by convection toward the external sur-
rounding air or by radiation toward the upper atmosphere, both
here assumed at known temperatures. Computation times would on
the contrary increase when the geometry becomes more complex
if this increases the length that paths must travel before exit, i.e.
before encountering a known temperature or an initial condition
(e.g. an extended three-dimensional structure at stationary regime
with known temperatures only at the outside). So computation times
may change when changing the geometry because of heat transfer
features changing the structure of the paths (as it is the case for
multiple reflection and multiple scattering in standard rendering),
but not because more triangles were used to accurately describe the
scene.

5.3 Application: a thermal insulation study
We now use a case study of thermal insulation to illustrate how
the Monte Carlo resolution of the coupled heat-transfer model may
be used. We provide a deeper description in supplementary mate-
rial (Sec. 1).
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Fig. 4. Computation times insensitive to geometric complexity. Images of buildings in a cold environment with air-conditioning in each room. Although
buildings thermally interact with each other via the ground or because of infrared exchanges between external walls, computation time is the same for 1, 9, 81
and 961 buildings (small differences are only due to the number of building pixels).

Analysis of an infrared image. How do we read an infrared image
to thermally understand a building and optimize its design (esp. to
minimize energy loss)? We take as an example a simplified building
inspired from a typical farm from central France made of a room for
living topped by an empty hayloft, and we question the difference
of its thermal behavior when insulation is put inside versus outside.
A wall-mounted heater is turned on in the room and we take, at the
stationary state, a nightly infrared picture of thewhole building from
outside (Fig. 5, upper panel). At first sight, we obviously diagnose
the thermal bridge at the ground level in both cases (which calls
for primary action to prevent this). To go further, interpreting the
shallow temperature difference in external surfaces temperature at
hayloft and room levels is less intuitive. To this end, we can take
a closer look at the paths themselves, starting here from a probe
point located on the inside of the room (Fig. 5, lower panels. Note
that the 3D paths are projected on the plane).

To illustrate how reading paths can help, we first focus on three
of them, each one starting in convective mode from the probe point
(gray paths starting from the gray sphere in Fig. 5, middle panel).
With internal insulation (left), we see one of them ending at the
outside soil temperature, a second one ending at the heater, and
the third one ending at the external air temperature near the roof.
Changing the configuration to external insulation (right), these
three paths start the same but undergo very different histories: one
reaches external air by conduction through the gable, and the two
other ones end at the heater by convection. Most importantly, we
visually note that paths now chain conduction inside the walls more
often. Confirming these "statistics with the eyes" with 60 paths
(Fig. 5, lower panel), we understand that a larger fraction of paths
can reach the hayloft, thereby transporting heat upside, such heat
being then lost for the living room. Reading paths then shows that
the inside walls are forefront: when unconstrained under external
insulation, they act as thermal bridges towards the empty hayloft
and homogenize temperature over the whole building.

Varying conditions. As a consequence of the computational cost,
storing as much information as we can about the paths statistics can
be of a huge interest since they are unaffected by time or boundaries
conditions (such as different heating commands, alternative weather
conditions, or even for integrating day/night alternation over days,
...). Computing the propagator only once for each insulation choice
and camera settings is information enough to explore sensitivity

Internal insulation External insulation
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Fig. 5. (top) Infrared renderings of a farm being insulated by (left) the
interior or (right) the exterior. The boundary conditions are the heater at
300K inside the lower room, the ground at 286K at 3mdepth, the surrounding
air temperature at 280K and the incident radiance temperature at 280K
for downward directions (coming from the upper atmosphere assuming a
foggy environment i.e. equal to the air temperature). (below) Example paths:
starting with convection from a probe inside the lower room, 3 paths in first
picture, 60 in second picture. For each path, radiative subpaths are in red,
conductive subpaths in blue and convective subpaths in gray. Conductive
subpaths are successions of straight lines between 𝛿-sphere centers (see
Sec. 4.2). As internal air is perfectly mixed, there is no explicit heat migration
within the fluid and convective subpaths are only sketched as straight lines
from the surface location where convection is started to the surface location
where it ends.

to boundary conditions. In supplementary material (Sec. 1), we
show a typical engineering study which compares the responses
of the internally/externally-insulated buildings when changing the
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Fig. 6. Temporal evolution (in s) of the lower room temperature (in K) of a
farm being insulated by inside (blue) or outside (orange). The heater being
set to 290K (circle) or 300K (triangle), the temperature is similar for both
insulations at stationary states. However, it increases much faster when
the insulation is inside, resulting in a better thermal comfort. One single
Monte Carlo simulation is performed at the steady state with 10000 samples.
The stored information then allows to very rapidly replay the temperature
estimation (see Fig. 1), now in transient regime at any time.
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Fig. 7. Validation of the propagator implementation (triangles) against a
Monte Carlo simulation (circles) on the computation of the lower-room
probe temperature and its uncertainty (as in Fig. 6), which are similar in
both cases.

altitude and the weather condition from a foggy atmosphere to a
clear sky. After one Monte Carlo run has been made, predicting
temperature under either of these conditions is instantaneous. Such
predictions can be made using only four propagator values (four
scalars to be multiplied by their associated boundary temperature
values). They represent the four imposed temperatures in our scene:
the yearly average temperature at 3 meters deep into the ground
(related to the altitude), the heater temperature, the outside air
temperature (related to the altitude) and the radiance temperature
in directions coming from the upper atmosphere (related to weather
condition).

Transient states of thermal comfort. In the same spirit as for the
heat exchanger, the propagator can also be used to replay the whole
dynamics of heating the room. As an illustration, we computed the
two propagators (internal / external insulations) for the temperature
of the room at stationary state. From these, we can estimate this
temperature any sooner in time (Fig. 6). Here again, with only one
single Monte Carlo run for each insulation mode, we capture the
information required for any transient dynamic. In our example,
with the same heating temperature, the external insulation leads to
a lower stationary temperature of about 2 K, but more strikingly,
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Fig. 8. Typical of a Monte Carlo resolution, the computation time (blue) of
our coupled method is linear wrt the number of samples 𝑁 and the normal-
ized variance (i.e. ¯𝑣𝑎𝑟 = 𝑣𝑎𝑟/(𝑚𝑒𝑎𝑛 − 280) in red) wrt 1/

√
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a farm insulated by the interior, two probes are set (left) inside the lower
room (triangle) and at the external wall (circle). When the probe is outside
the farm, the relative variance is far bigger because the source of heat is
hard to reach (due to the insulation) and the computation time is shorter
because most paths stop directly in the known radiative environment.

the time needed to reach it can be up to one month, while the
internal insulation brings thermal comfort within one hour after
the heating is turned on. The retarding effect of exterior insulation
depends of course on the properties of the insulation materials and
the walls and can be adjusted, for instance to phase the retarded
effect of solar sources with the house occupation times. The walls
of the considered farm are made of very thick and dense rocks
that explain the extremely long duration of transient regimes, but
modern buildings have walls that are thermally less capacitive.

5.4 Computation time, variance and memory
We have shown above the immediate applicability of our simple
physical model of heat-transfer. Here, we give an overview of the
performance characteristics of our method, typical of Monte Carlo
approaches. In Fig. 8, the computation time and variance are pro-
vided as functions of the number of samples, when computing the
temperature of the lower room of the farm. As mentioned in Sec-
tion 5.2, the computation time depends on the underlying physical
phenomena, especially the ability of the paths to quickly reach
the source. In our case, conductive paths are longer to compute
than radiative and convective ones, because of the number of walk
steps required to reach the boundary. Also, adverse probabilities at
interfaces (in Eq. 23) can trap trajectories within a geometry and
negatively impact the computation time as described in the next
Section 5.5.
As for classical rendering, point sources are difficult to reach,

resulting in a higher variance. Indeed, we compare in Figure 8 the
variance estimates when the probe is put inside vs outside the farm.
The variance for the outside probe is larger because less than 2.5% of
the paths actually reach the heater due to the wall insulation which
prevents access to the hot source (more details in the supplementary
material (Sec. 1).

As the construction of the paths is time-consuming, their replay
with different boundary or initial conditions as well as observa-
tion time is of high interest. This storage is linear wrt the image
resolution and the number of samples per pixel to be generic: for
spatio-temporal replays and error bar recomputation. A path-replay
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Fig. 9. Path entrapment due to high conductivity ratios. Sampling heat
transfer paths in electronics is a well representative example of how compu-
tation times may be dominated by entrapment. Electric connections conduct
heat efficiently and tend to be quasi-isothermal. In path sampling terms,
this is translated by very long paths inside the connectors because each
time the path reaches the boundary of a connector the probability is high
that it is reinjected inside the connector. Here the connectors are spheres
with only a very small contact area with other solids of similar conductivity
levels. In the displayed example, one single conductive path (in blue, from
entry point in red to exit point in white) very longly visits the sphere before
it finds an exit.

to change any uniform boundary condition in a scene only requires
to store the source identifier for each sample. When these condi-
tions are non uniform, the spatio-temporal impact of the path on the
source is needed. To replay the simulation for a previous observation
time, we need to additionally store the lifetime of each path if we
assume a homogeneous initial temperature. Our prototype currently
stores 116 bytes per path, reusing a Stardis existing structure which
was originally neither designed to replay images nor observation
times. This implementation, which could be optimized, is already
practical. However, considering heterogeneous initial temperatures
would drastically change the storage cost because time passage
between medium would have to be saved.

5.5 A limit case with path-entrapment
Wenowdetail a practical limitationwe have identified, namely a case
with path-entrapment. In the example presented in Fig. 9, a highly
conductive solid which is embedded inside another less conductive
solid, when a conductive path reaches the highly conductive solid,
it tends to stay inside it. When a path reaches the interface, the
probability that it is re-injected inside the very conductive part
is high. So it revisits this part over and over until it finally exits.
But at this exit, it is injected in the other solid, still in the close
vicinity of the interface and has therefore a strong probability to be
trapped again, etc, see Figure 9. Of course, this is indeed physically
meaningful: a highly conductive solid is quasi-isothermal and this
is here translated by the fact that wherever the path starts, it visits
the whole solid several times and looses the information about its
initial position. The expectation of the Monte Carlo weight is the
same whatever the starting location, i.e. the temperature is the same.
Although trivial, this feature leads to computation times that can be
disastrous. Of coursewe can think of changing themodel, stipulating
the solid is isothermal from the start, as we did for perfectly mixed
fluid cells, but this is not an easy task and we should rather retain
that, at present stage, even such a very simple limit is enough to
damage our proposal.

6 PERSPECTIVES
We have shown how heat transfer rendering can be addressed by
using one single path statistics to make the infrared image of an
object with no need to compute its temperature. For this, we have
developed the theoretical framework to couple the three modes of
heat transfer, starting from a model suitable for a large number of
scenes, still with some constraints. The latter are our starting points
for drawing perspectives:

Constraints:

(1) Solids are opaque and fluid are transparent
(2) Fluid cells are perfectly mixed
(3) Properties are uniform and constant in each sub-volume
(4) All parameters fields are prescribed
(5) Linearization assumptions have been made (e.g. radiative ex-

change coefficient ℎ𝑅 assumed independent of temperature)
What should we do to extend the application range to more ad-

vanced heat transfer or to other physics? With our framework, a
key observation is that the problem is expressed as a set of kinetic
equations. Solutions of such PDEs are left with two kinds of parame-
ters: sources and (kinetic) coefficients, as detailed in Sec. 6.1. Hence,
the coupling can pass either by a source or by a kinetic coefficient
(see Figure 10).

By posing the constraints of Sec. 3.4, the coupling can pass only by
the sources. Moreover, in our radiative transfer model, the sources
were linear functions of solid temperature and, for the conduction
and convection model, the convective, conductive and radiative
fluxes appeared linearly in the boundary conditions. Then, we have
essentially designed our algorithms based on the well-known double
randomization technique: when a Monte Carlo algorithm exists for
one phenomenon, and when the corresponding Monte Carlo weight
is a linear function of the solution of a Monte Carlo algorithm for
another phenomenon, then we can branch the two algorithms to
form a new Monte Carlo algorithm for the coupled problem, with
paths switching from one phenomenon to the other.

Hence, our question becomes more specifically: what should we
do to extend the application range, still keeping the benefits of
double randomization, whether the coupling is via a source or via
a kinetic coefficient? For coupling via more complex sources, the
answer is straightforward: the proposal of Sec. 4 is a self-consistent
framework that leads to the chaining of sub-paths and paves the way
to easily incorporating additional phenomena to our heat transfer
problem or addressing fully distinct physics (Sec. 6.2). By contrast,
coupling by kinetic coefficient will call for additional algorithmic
design, starting from existing preliminary work (Sec. 6.3).

6.1 Set of coupled kinetic equations
With the simplified model exposed in Sec. 3.4, an essential point is
that, in the present paper, we illustrated the linear coupling of linear
kinetics models.
In a kinetic model, the addressed quantity 𝜂 is transported at a

given velocity ®𝑐 (by a spatio-temporal transport operator T [𝜂] =
𝜕𝜂
𝜕𝑡 + ®𝑐 · ∇𝜂, typically like in transient rendering) and reacts with
an external material that pulls it back to a known kinetic source 𝜂∗
with a characteristic time 1/𝜅, where 𝜅 is named here the kinetic
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(a) Coupling via the sources (b) Coupling via the coefficient (c) Non linear coupling

Fig. 10. Illustrations of the different cases considered in Sec. 6.
In Sect. 6.1 The problem is expressed as a set of coupled kinetic equations, and we define 𝜂∗ as the source and 𝜅 as the kinetic coefficient. Coupling can
pass by the sources or by the kinetic coefficient.
(a) Sect. 6.2 Coupling via the sources. A path is sampled as if estimating 𝜂 alone (e.g. a radiative path, in red). At the end of the path the Monte Carlo
weight should be 𝜂∗ (e.g. the temperature at the absorption location). But 𝜂∗ is only known as the solution of another physics (e.g. conduction). A new path (in
blue) is then sampled as if estimating this other physics. At the end of this second path the Monte Carlo weight should be the local value of the source for this
other physics. Again this source may be only known as the solution of another physics, etc. This is the chaining of sub-paths proposed in Sec. 4.
In Sect. 6.3 Situation 1: uncoupled prescribed heterogeneous 𝜅-fields are considered, e.g. volume radiation in a heterogeneous cloud, to introduce
null-collisions techniques. Here, locations of null-collision are represented by empty dots along the path. In a standard null-collision algorithm, collision
locations are exponentially sampled using an upper bound �̂� of the kinetic coefficient and the acceptance probability is 𝜅/�̂� .
(b) Sect. 6.3 Situation 2: coupling with an independent physics via the kinetic coefficient.When 𝜅 is only known as the solution of another physics,
at each collision along the main path (red dots), the collision type cannot be decided before launching a new path (in black), as if estimating 𝜅 itself. This new
path produces a Monte Carlo weight 𝑤𝜅 . The main path is then continued with this gathered information: the collision is accepted with probability 𝑤𝜅/�̂� . As
𝑤𝜅 is random, this acceptance probability is random.
(c) Sect. 6.3 Situation 3: nonlinear coupling via the kinetic coefficient. The path launched for 𝜅 may itself deal with unknown kinetic coefficients and
therefore require the further launching of new paths before it is continued, etc, leading to branching paths (three recursive branching levels are displayed, in
red, black and brown). When 𝜅 depends itself upon the first level quantity (e.g. ℎ𝑅 depends on the temperature), branching paths open the way to tackle non
linear kinetics. In the particular case of one single nonlinear kinetic equation (e.g. the original Boltzmann equation), all paths would address the same quantity
(and would be represented with the same color here).

coefficient:
T [𝜂] = −𝜅𝜂 + 𝜅𝜂∗ . (36)

Diffusive or advecto-diffusive models are not of the kinetic type, but
using the walk-on-𝛿-sphere approximation, each step is modeled
using a kinetic equation (see Eq. 32 where T [𝜂] ≡ 𝜕𝜃𝑆

𝜕𝑡 is only
temporal, as for transport in a uniform field, spatialization being
recovered because 𝜂∗ ≡ 𝜃∗

𝑆
is an integral over the sphere). Note

that when using a convective exchange coefficient to simplify the
convective model, this model also gets a kinetic form. So, in practice,
we were dealing with the coupling of kinetic equations.

One major feature of kinetic equations is that their solutions are
always accessible as sums of sources (in the sense of Green theory,
i.e. comprising boundary fluxes and initial conditions) multiplied by
their propagators, each propagator involving negative exponentials
of the integral of the kinetic coefficient over time or space. Formally,
the solution of each kinetic equation, considered independently,
writes

𝜂 (𝑡) =
∑
L

{
exp

(
−

∫
𝜅 (𝑡)𝑑𝑡

)}
𝜂∗ . (37)

The coupling passes via a source when 𝜂∗ depends on the solution
of another kinetic equation (Sec. 6.2). The coupling passes via a
kinetic coefficient when 𝜅 (𝑡) depends on the solution of another
kinetic equation (Sec. 6.3). In some cases, both can be present.

6.2 Coupling via the sources
Linearly coupling via the sources is already sufficient to alleviate
some of the constraints listed above. We explain in supplementary
material (Sec. 4) how the algorithm of Section 4 can actually be

extended to recover most of the full initial heat transfer model of
Section 3. For instance, had we considered volume radiation, we
would still have been dealing with kinetic equations because the
Radiative Transfer Equation is kinetic by nature. This alleviates
constraint (1), provided that we still leave aside the nonlinearity of
radiation (otherwise, see below). True advection add neither specific
difficulty as far as coupling is concerned if we still assume that
the velocity field is prescribed and independent of temperature
(otherwise, see below). This alleviates constraint (2).

Coupling via the sources can also be used to incorporate addi-
tional physics: as sketched in Fig. 10(a), it suffices that one of the
sources be a linear function of this additional physics to justify that
when the first path ends at this source, it is chained with a sub-path
for the new physics. Let us take the example of a three-dimensional
electric flow inside a solid, and that heats the solid because of the
local resistance to the electric flow (Joule effect). Assuming that
we have a Monte Carlo algorithm for this flow and its associated
power density, can we couple it to a Monte Carlo heat transfer algo-
rithm such as those we illustrated in Section 4? The answer is yes
because this additional coupling with electrical dissipation is via a
volume source in the physics of solid heat-conduction: along the
walk-on-sphere algorithm, when the volume source is needed, an
electric sub-path would be initiated to fetch the missing information.
All such enrichments of the phenomenology are straightforward
provided that the coupling is linear and passes via the sources and
from this point of view, the proposal of Sec. 4, although depicted
through a practical example, may be considered as a closed formal
framework.
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6.3 Coupling via the kinetic coefficient
As an introduction to the additional algorithmic work required for
tackling coupling via the kinetic coefficient, let us consider first
Eq. 37 with regards to the third constraint (3).

If we consider subvolume properties as uniform and constant by
parts, then 𝜅 is uniform along a subpath within a subvolume. In
this case, the reexpression of Eq. 37 to eliminate the time integral
is immediate. This is how we constructed Eq. 29 and 32. If now the
field of 𝜅 is continuously heterogeneous and time dependent, the
Monte Carlo algorithm solving 𝜂 must account for the fact that,
in Equation 37, 𝜅 is varying along the path when addressing the
integral

∫
𝜅 (𝑡)𝑑𝑡 over the propagation path.

We can here face three situations:

(1) the heterogeneous field and its time dependence are pre-
scribed (uncoupled situation)

(2) the field has to be estimated from a model which does not
depend upon the heat transfer (constraint (4), coupling with
an independent physics),

(3) the field has to be estimated from a model in which the so-
lution itself depends upon the heat transfer (constraint (5),
nonlinear coupling)

In order to tackle heterogeneous time-dependent kinetic coeffi-
cient, practical solutions are already available based on the concept
of null-collisions. This concept is indeed originally introduced as
a way to stick rigorously to the Monte Carlo framework when
progressing through a heterogeneous field. To take an example in
radiative transfer, let us consider a volume with a heterogeneous
distribution of colliders (𝜅 field) so that the exponential of the in-
tegral can not be known analytically. Let us consider null colliders
in addition to the true colliders. When a photon encounters a null
collider, it continues its path as if no collision had occurred so that
the transfer of radiation is unchanged.

6.3.1 Situation 1: uncoupled prescribed heterogeneous 𝜅-fields. In
standard practice, if the field is prescribed, the amount of null col-
liders can be adjusted locally so that, in total (true colliders plus
null colliders), the new apparent coefficient field becomes homoge-
neous over the subvolume, and the difficult question of integrating
along the path within the exponential just vanishes. When the field
of collisions is known, Monte Carlo practice is then: set an upper
bound value from the known field, and at each collision location,
deciding whether the collision is true or null is made using only the
knowledge of the local value of the true extinction coefficient versus
the upper bound value. That would allow to alleviate constraint (3).
Null collisions are sketched in Fig. 10(a), inspired of multiple scat-
tering in clouds for instance, by plotting collisions as dots along
the path, some of them leading to the path being continued as if no
collision had occurred.

6.3.2 Situation 2: coupling with an independent physics. In this case,
𝜅 depends on the solution of another physics, which can be solved
on its own.
Even if L is linear in Equation 37, the dependence is inside the

exponential. For discussion, let us assume that in Eq. 36 transport
is only in time (∇𝜂 is null and T [𝜂] = 𝜕𝜂

𝜕𝑡 ). But now the kinetic

coefficient is itself modeled as the solution of a second kinetic equa-
tion. For this second equation, all we posit is that a Monte Carlo
algorithm is available that estimates 𝜅 (𝑡) as the expectation of a
weight𝑊𝜅,𝑡 :

𝜕𝜂

𝜕𝑡
= −𝜅𝜂 + 𝜅𝜂∗

𝜅 (𝑡) = E(𝑊𝜅,𝑡 )
(38)

Using the same derivation as for Equations 29 and 34, the formal
solution of this coupled model would have the form of Equation 37,
the expectation of𝑊𝜅 appearing in place of 𝜅 inside the temporal
integral and inside the exponential.

Yet, as this integral is inside the exponential, and the exponential
is itself inside an expectation over the random sampling of the
path, the problem does not write anymore as the expectation of an
expectation: double randomization does not apply directly.
Basically, what plays the role of the true extinction coefficient

𝜅 becomes unknown: it is the solution of a second kinetic equa-
tion to be solved together with the first one. This question has
been investigated in [Galtier et al. 2016] and [Terrée et al. 2022]
and although the presentations were very much domain-specific, a
common formalism can be extracted form these works.
They both start with a standard null-collision algorithm. Let us

assume that there exists a known upper bound �̂�𝜅 to𝑊𝜅,𝑡 , meaning
that for each realization 𝑤𝜅,𝑡 of𝑊𝜅,𝑡 at any time, 𝑤𝜅,𝑡 < �̂�𝜅 . This
upper bound is therefore also an upper bound for 𝜅 (𝑡). We can use
it to define the null-collision amount:

𝜕𝜂

𝜕𝑡
= −�̂�𝜅𝜂 + �̂�𝜅

(
𝜅

�̂�𝜅
𝜂∗ +

(
1 − 𝜅

�̂�𝜅

)
𝜂

)
(39)

At this stage, all we have is more extinction (the kinetic coefficient
is replaced with its upper bound) and the surplus in extinction is
compensated by the fact that the new source (inside the parenthesis)
is the sum of the old source and the sought value of 𝜂 (a recursion),
weighted by the true-collision probability 𝜅

�̂�𝜅
and its complementary

null-collision probability.
After this first-step of introducing null-collisions, [Galtier et al.

2016] and [Terrée et al. 2022] propose that 𝜅 may be replaced by
its expectation inside the new source and that true-collision and
null-collision probabilities can be made random themselves. An
additional sampling is then required to decide these probabilities.
Once the probabilities have been sampled, they are used to sample
the Bernoulli random variable:
𝜅

�̂�𝜅
𝜂∗ (𝑡) +

(
1 − 𝜅

�̂�𝜅

)
𝜂 (𝑡) =

E(𝑊𝜅,𝑡 )
�̂�𝜅

𝜂∗ (𝑡) +
(
1 −

E(𝑊𝜅,𝑡 )
�̂�𝜅

)
𝜂 (𝑡)

= E

[
𝑊𝜅,𝑡

�̂�𝜅
𝜂∗ (𝑡) +

(
1 −

𝑊𝜅,𝑡

�̂�𝜅

)
𝜂 (𝑡)

]
= E

[
H𝑡𝑟𝑢𝑒 (P) 𝜂∗ (𝑡) + H𝑛𝑢𝑙𝑙 (P) 𝜂 (𝑡)

]
(40)

with P =
𝑊𝜅,𝑡

�̂�𝜅
andH𝑛𝑢𝑙𝑙 (P) = 1 −H𝑡𝑟𝑢𝑒 (P). The testH𝑡𝑟𝑢𝑒 (P)

is a Bernoulli random variable of probability P and the fact that
this probability is itself a random variable simply means that the
Bernoulli test is made after P is realized. In summary, true-collision
and null-collision probabilities are random: before deciding the
collision type, a path is sampled corresponding to the physics of 𝜅,
as if estimating 𝜅 alone, the resulting Monte Carlo weight is used
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in place of 𝜅 to compute the collision-type probabilities and this
random probability is used to continue the algorithm exactly the
same way it would do in a standard null-collision algorithm.
Null collisions offer us a practical way to set up a single path

statistics for physics that are coupled via a kinetic coefficient: the
path is sampled through a field where the local values of the ki-
netic coefficient are unknown, and, at each collision, a 𝜅-subpath
is launched to fetch the missing information. This alleviates con-
straint (4). Figure 10(b) illustrate this first level of path-branching
with a main path (for 𝜂) and secondary paths (for𝜅) launched at each
collision location. In [Galtier et al. 2016], 𝜅 was a gaseous absorp-
tion cross-section and 𝜅-subpaths were randomly visiting molecular
spectroscopic databases to gather information about millions of
absorption lines.
As a limit to this approach, we need to assume that there exists

an upper bound to the Monte Carlo weight. This is not always
possible. For instance, when there is a volume source inside a solid,
the Monte Carlo weight will not only carry the temperature at the
end of the path but will also include a contribution of the volume
sources accumulated along all the visited location. Since here the
visiting time does not have an upper bound, nor does the Monte
Carlo weight.

6.3.3 Situation 3: nonlinear kinetics. In [Terrée et al. 2022], the
addressed question is fluid mechanics in rarefied gases, 𝜂 is the
distribution function (the equivalence of radiance for molecules
instead of photons), 𝜅 is the molecular collision cross-section and
the approach is essentially the same.
But, from the present point of view, this contribution opens a

new perspective: in short, molecules collide with molecules and 𝜅
is 𝜂 itself. This has two implications:

• the kinetic model for 𝜂 is nonlinear (the original Boltzmann
equation);
• when a 𝜅-subpath is launched because of missing information
about the local value of 𝜅 , as 𝜅 is 𝜂, the new path is practically
an 𝜂-path that may itself require the launching of a 𝜅-subpath,
etc.

A nonlinear kinetic model is therefore translated into a branching-
path statistics. Such statistics remain widely unknown [Dimov and
Gurov 2000; Rasulov et al. 2019; Rioux-Lavoie et al. 2022], but there
are already cases with effective application potentials where they
can be deployed successfully.

In the present context, such branching paths techniques open av-
enues to alleviate constraint (5), so as to consider the effect of wider
temperature ranges upon radiative transfer, i.e. to take into account
situations where the approximation considering ℎ𝑅 as independent
of the temperature does not hold. Such branching paths are sketched
in Fig. 10: along the main path (for 𝜂), sub-paths are launched at
each collision location (for 𝜅), and these sub-paths themselves initi-
ate sub-paths for unknown kinetic coefficients, etc. Three recursive
branching levels are represented. The particular case of one single
nonlinear kinetic equation is when each launched sub-path is of the
same type as the primary path.

7 FUTURE WORKS
In the introduction and related works, we highlighted that there
were, up to our knowledge, only few reported attempts to address
the coupling of several physics in a single path space Monte Carlo
algorithm. Figure 4 illustrates very well the expected benefits of our
coupling proposal, and specifically the better scalability of Monte
Carlo methods over deterministic approaches to solve complex prob-
lems.

Beyond the range of cases that can be readily handled on the basis
of the work presented above, we have identified two limitations that
would deserve future work: the risk of path-entrapment and the
existence of an upper bound when using null-collision. In addition,
we believe that several improvements should also be tackled as
fundamental research topics.
Brownian motion is among the leading requirements. Pragmat-

ically, we used a walk-on-𝛿-sphere algorithm to model diffusion,
in association with heterogeneous advection and heterogeneous
sources. By construction, walk-on-𝛿-sphere loses general guaranties
about convergence, while walk-on-sphere ensures a logarithmic
convergence under homogeneous hypothesis (thanks to the tan-
gent sphere approach). Keeping such convergence guaranties in
heterogeneous situations is a wide research question in the walk-
on-sphere literature, but also in an active literature about walks on
other shapes than spheres [Deaconu and Lejay 2006].

A very similar comment holds for branching path statistics. If the
reported practical successes are convincing, there is still a lack of a
general framework, and we believe that making a connection with
the active literature opened by the work of Dimov [2008] should
help for nonlinear coupling and more specifically nonlinear kinetics.

In our proposal, we did not consider importance sampling nor next
event estimation but we pointed-out convergence difficulties associ-
ated with images of a well isolated house, where paths starting from
an outside camera and reaching the heating system were scarce. If
similar questions are already well studied in the rendering commu-
nity, they remain open questions for thick diffusive media, typically
for radiative transfer in systems with huge optical thicknesses. The
difficulty has been well identified in the nuclear shielding litera-
ture since the early ages of Monte Carlo simulations [Hammersley
2013], but it remains open. Several links should be explored in this
still-active literature.
Sensitivity modeling is another promising topic evoked in Sec-

tion 4. We computed propagators for replay, and propagators are
sensitivities to the sources. We also insisted on the information car-
ried by the paths themselves: even simply plotting them is already
useful as far as analysis is concerned. Obviously, this is true for other
parameters than sources (conductivities, capacities, geometry, etc).
Following the spirit of differential light transport, we believe that
this path information could be translated into the computation of
sensitivities to these other parameters. This would be highly useful
in practical engineering terms, e.g., for inverse problem solving.

Along this paper, all concepts were introduced and discussed from
the heat-transfer perspective. This is how the question was intro-
duced in Villefranque et al. [2022], thinking of the energy transition
and climate-change communities. But even in these communities,
the research questions for which computer graphics Monte Carlo
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simulations could be useful widely extend heat transfer. Fluid me-
chanics, electrical engineering, biology modeling are only few of the
phenomena addressed by a broad scientific community that has the
same flexibility and scalability requirements as those addressed by
computer graphics. We hope that the coupling of Monte Carlo path
sampling algorithms will pave the way for new fruitful connections.
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A BASICS OF HEAT TRANSFER

A.1 Conduction and convection models for solid and fluid
volumes

We detail how Equations 8 and 12 are derived from the basic laws
of thermodynamics. For continuous matter with a uniform mass
density, the first principle of thermodynamics (the law of energy
conservation) relates the internal energy density 𝑢 ≡ 𝑢 ( ®𝑥, 𝑡) to the
energy flux density vector ®𝑗 ≡ ®𝑗 ( ®𝑥, 𝑡) as

𝜕𝑢

𝜕𝑡
+ ®∇ · ®𝑗 = 0 (41)

with
𝜕𝑢

𝜕𝑡
= 𝜌𝑐

𝜕𝜃

𝜕𝑡
(42)

where 𝜌 is the mass density and 𝑐 the specific heat capacity. For an
opaque solid, ®𝑗 reduces to the conduction of heat (no advection, no
radiation) and is given by Fourier’s law:

®𝑗 = −𝑘 ®∇𝜃 (43)

where 𝑘 is the thermal conductivity. Eq. 8 is obtained by replacing
Eq. 42-43 into Eq. 41.
We now consider a cavity inside a solid. The cavity is filled with a
fluid. At any location ®𝑥 inside the cavity, the fluid temperature is
𝜃𝐹 ≡ 𝜃𝐹 ( ®𝑥, 𝑡). At any location ®𝑦 at the surface of the solid interface,
the solid temperature is 𝜃𝑆 ≡ (®𝑦, 𝑡). Newton’s law is used to replace
the detailed description of the boundary layer of the fluid along the
surface: 𝜃𝐹 ( ®𝑦, 𝑡) is assumed to be the temperature of the fluid outside
the boundary layer ; therefore, 𝜃𝐹 ( ®𝑦, 𝑡) ≠ 𝜃𝑆 ( ®𝑦, 𝑡) (the boundary
layer is replaced by a temperature discontinuity) ; then, the flux
density at ®𝑦 is :

𝜑 ( ®𝑦, 𝑡) = ℎ( ®𝑦) (𝜃𝐹 ( ®𝑦, 𝑡) − 𝜃𝑆 ( ®𝑦, 𝑡)). (44)

Choosing the value of the proportionality coefficient ℎ requires
either experimental or numerical fluid mechanics (characterizing
the boundary layer). We further assume that outside the boundary
layer, the cavity is perfectly uniform and mixed which means that
𝜃𝐹 is independent of ®𝑦. We assume a constant pressure. The first
principle for an open system is then the same as Eq. 41 with enthalpy
instead of internal energy is

𝑑𝐻

𝑑𝑡
=

∫
𝒮

𝜑 ( ®𝑦)𝑑 ®𝑦 (45)
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where 𝒮 is the fluid boundary surface. As for Eq. 42, the enthalpy
relates to the isobaric specific heat capacity 𝑐𝑝 :

𝑑𝐻

𝑑𝑡
=

∫
V

𝜌𝑐𝑝
𝜕𝜃𝐹

𝜕𝑡
𝑑 ®𝑥 = V𝜌𝑐𝑝

𝑑𝜃𝐹

𝑑𝑡
(46)

whereV denotes the fluid volume. Eq. 12 is obtained by replacing
Eq. 44 and 46 into Eq. 45.

A.2 Finite difference on the Laplace operator
We detail the derivation of Eq. 32 from Eq. 9. Each term of the
Laplace operator Δ𝜃𝑆 := 𝜕2𝜃𝑆

𝜕𝑥2 + 𝜕2𝜃𝑆
𝜕𝑦2 + 𝜕2𝜃𝑆

𝜕𝑧2 is approximated by two
finite differences as in any cartesian coordinate system, e.g.

𝑑𝜃2

𝑑𝑥2 =
𝑑

𝑑𝑥

(
𝑑𝜃

𝑑𝑥

)
≃ 1

𝛿

(
𝑑𝜃

𝑑𝑥

����
𝑥+ 𝛿2
− 𝑑𝜃

𝑑𝑥

����
𝑥− 𝛿

2

)
≃ 1

𝛿

(
𝜃 (𝑥 + 𝛿) − 𝜃 (𝑥)

𝛿
− 𝜃 (𝑥) − 𝜃 (𝑥 − 𝛿)

𝛿

)
=
𝜃 (𝑥 + 𝛿) − 2𝜃 (𝑥) + 𝜃 (𝑥 − 𝛿)

𝛿2 .

Summing these terms, Δ𝜃𝑆 = 1
𝛿2 (−6𝜃𝑆 +6𝜃𝑆 ) where the source term

is defined as:
𝜃𝑆 := 1

6 [𝜃 (𝑥 + 𝛿,𝑦, 𝑧) + 𝜃 (𝑥 − 𝛿,𝑦, 𝑧)
+𝜃 (𝑥,𝑦 + 𝛿, 𝑧) + 𝜃 (𝑥,𝑦 − 𝛿, 𝑧)
+𝜃 (𝑥,𝑦, 𝑧 + 𝛿) + 𝜃 (𝑥,𝑦, 𝑧 − 𝛿)] .

As the Laplace operator is independent of the coordinate system, we
can apply any rotation and then average the source on the 𝛿-sphere
which we denote 𝜃∗

𝑆
.

B ALGORITHMS
We provide the pseudo-codes for the method presented in Sec. 4.
The sub-paths construction for each physical mode are given in
separate algorithms, respectively Algo. 1 for convection, 2 for radia-
tive transfer and 3 for conduction. The selection of a physical mode
occurs at boundaries, as shown in Algo. 4.

Algorithm 1: Convective sub-path
Input: A time 𝑡
Output: A temperature 𝜃

𝜏𝑐𝑜𝑛𝑣 ← 𝜌𝑐V
ℎ𝒮

;
𝜏𝑏,𝑐𝑜𝑛𝑣 ← exponential sampling with a mean 𝜏𝑐𝑜𝑛𝑣 ;
𝑡 ← 𝑡 − 𝜏𝑏,𝑐𝑜𝑛𝑣 ; /* Time rewind */

if 𝑡 ≤ 𝑡𝐼 then
return 𝜃𝐹 (𝑡𝐼 ) ; /* Initial temperature */

else
®𝑥𝒮 ← sampling of ®𝑋𝒮 proportionally to ℎ;
return 𝜃𝐵 ( ®𝑥𝒮) ; /* Algo. 4 */

end

Algorithm 2: Radiative sub-path
Input: A position ®𝑥 and a direction ®𝜔
Output: A temperature 𝜃
Loop

𝑠 ← Trace a ray from ®𝑥 along ®𝜔 ;
if 𝑠 = ∞ then

return 𝜃𝑅,𝑎𝑚𝑏𝑖𝑒𝑛𝑡 ;
else
®𝑥 ← ®𝑥 + 𝑠 ®𝜔 ;
𝑟 ← uniform sampling in [0, 1);
if 𝑟 < 𝜖 ( ®𝑥) then

return 𝜃𝐵 ( ®𝑥) ; /* Algo. 4 */

else
®𝜔 ← Sample a direction wrt 𝑝𝑟 at ®𝑥 ;

end
end

EndLoop

Algorithm 3: Conductive sub-path
Input: A position ®𝑥 and a time 𝑡
Output: A temperature 𝜃
Loop
®𝜔 ← isotropic sampling of a direction;
𝑠+ ← Trace a ray from ®𝑥 along +®𝜔 ;
𝑠− ← Trace a ray from ®𝑥 along −®𝜔 ;
𝛿 ←𝑚𝑖𝑛(𝑚𝑖𝑛(𝛿, 𝑠+),𝑚𝑖𝑛(𝛿, 𝑠−));

𝜏𝑐𝑜𝑛𝑑 ←
𝜌𝑐𝛿2

6𝑘 ;
𝜏𝑏,𝑐𝑜𝑛𝑑 ← exponential sampling with a mean 𝜏𝑐𝑜𝑛𝑑 ;
𝑡 ← 𝑡 − 𝜏𝑏,𝑐𝑜𝑛𝑑 ; /* Time rewind */

if 𝑡 ≤ 𝑡𝐼 then
return 𝜃𝑆 (𝑡𝐼 ) ; /* Initial temperature */

else
®𝑥 ← ®𝑥 + 𝛿 ®𝜔 ;
if ®𝑥 is on boundary then

return 𝜃𝐵 ( ®𝑥) ; /* Algo. 4 */

end
end

EndLoop
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Algorithm 4: Chaining selection at boundaries
Input: A position ®𝑥
Output: A temperature 𝜃
if ®𝑥 is on a solid-solid interface then

𝑃𝑐𝑜𝑛𝑑,1 ←
𝑘1
𝛿1

𝑘1
𝛿1
+ 𝑘2
𝛿2

;

𝑟 ← uniform sampling in [0, 1);
if r < 𝑃𝑐𝑜𝑛𝑑,1 then

return 𝜃𝑆 ( ®𝑥 − 𝛿1®𝑛) ; /* Algo. 3 */

else
return 𝜃𝑆 ( ®𝑥 + 𝛿2®𝑛) ; /* Algo. 3 */

end
else if ®𝑥 is on a solid-fluid interface then

𝑃𝑐𝑜𝑛𝑣 ← ℎ ( ®𝑥)
𝑘
𝛿
+ℎ ( ®𝑥)+ℎ𝑅

;

𝑃𝑟𝑎𝑑 ← ℎ𝑅
𝑘
𝛿
+ℎ ( ®𝑥)+ℎ𝑅

;

𝑃𝑐𝑜𝑛𝑑 ← 1 − 𝑃𝑐𝑜𝑛𝑣 − 𝑃𝑟𝑎𝑑 ;
𝑟 ← uniform sampling in [0, 1);
if 𝑟 < 𝑃𝑐𝑜𝑛𝑣 then

return 𝜃𝐹 ; /* Algo. 1 */

else if 𝑟 < 𝑃𝑐𝑜𝑛𝑣 + 𝑃𝑐𝑜𝑛𝑑 then
return 𝜃𝑆 ( ®𝑥 − 𝛿 ®𝑛) ; /* Algo. 3 */

else if 𝑟 < 𝑃𝑐𝑜𝑛𝑣 + 𝑃𝑐𝑜𝑛𝑑 + 𝑃𝑟𝑎𝑑 then
®𝜔 ← cosine weighted sampling around ®𝑛;
return 𝜃𝑅 ( ®𝑥, ®𝜔) ; /* Algo. 2 */

end
end
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