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Abstract

We report a study of the spatially varying thickness of dried films of polymer

solutions resulting from a nonuniform evaporation flux. The controlled heterogeneity

of the evaporation flux is imposed by placing a solid mask above the evaporating film

spread on a solid substrate. At the end of drying, a depression has formed under the

mask, together with overthicknesses extending from the edge of the mask and over

distances that may be larger than its size. By considering the flows induced in a

vertically homogeneous film, we obtain analytical solutions for the thickness profiles

during drying using a linear approximation in the limits of either gravity or capillarity-

driven flows.We demonstrate that gravity can play a role in the deformations of the

films, even if their initial thicknesses are one order of magnitude smaller than the

capillary length. In addition, we examine two possible reference states for the linear

approximation, i.e. far from the mask in the film of decreasing thickness and increasing
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viscosity, or under the mask where no evaporation occurs. We further compare these

results with experimental ones obtained by drying thin films of polymer solutions under

a mask. Both the extent and amplitude of the thickness heterogeneities of the dry film

are quantitatively predicted by the linear analysis for a reference state under the mask.

Our results therefore provide new insight on the patterns resulting from evaporation

masks and can be generalised to minimize thickness heterogeneities in any situation in

which the evaporation flux is nonuniform.

Introduction

Drying a complex fluid on a solid substrate generally results in a spatially nonuniform dry

deposit. This effect was explained more than twenty years ago in the case of drops of

suspensions and is known as the ”coffee-stain effect”.1 The accumulation of solid particles

at the contact lines of sessile drops was shown to result from a nonuniform evaporation flux:

because the latter diverges at the contact line, the liquid flows from the center of the drop to

its edge. Therefore, solute is advected and accumulates at the contact line, which is pinned,

resulting in a ring-like dry deposit when the solvent is fully evaporated. This picture is

valid provided the solute diffuses slowly enough, i.e. in the limit of large Péclet numbers,

Pe = tdiff/tad where tdiff and tad are characteristic times of respectively the horizontal

diffusion and advection processes. This condition can be met with solid particles as solute

but also with polymer coils.2 As was shown later, divergence of the evaporation flux is

not required for accumulation at the contact line,3,4 nevertheless nonuniform evaporation

fluxes are generally at the origin of heterogeneous dry deposits. The stains formed by the

evaporation of sessile drops have been extensively studied in the past decades with complex

fluids of diverse natures.5,6 In particular, effects counteracting solute accumulation have been

examined, and Marangoni flows resulting from concentration gradients of surfactant species

have been shown to efficiently suppress coffee-stain effects.7–9

Similar phenomena are at stake when films of complex fluids dry on solid substrates.10
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Figure 1: Schematic representation of the different steps when a thin film of complex fluid
dries in presence of an evaporation mask. (a) The initially flat film is submitted to solvent
evaporation at the same rate everywhere but under the mask, where it is zero. (b) The excess
of liquid under the mask relaxes under the action of capillarity and gravity. (c) Solute is
advected by the flow. (d) The final dry film exhibits a depression under the mask associated
with a rim.

The latter situation is particularly relevant for coating applications for which control of the

uniformity of the dry film is usually required. In this geometry, drying fronts have been

observed to propagate either vertically, or laterally, i.e. from the edges to the centre of the

film as a result of a larger evaporation flux at the edges.11–14 Special attention has been paid

to lateral fronts in films of colloidal suspensions; two fronts have been observed: a compaction

front separating the suspension from a gelled phase and an additional front separating the

gelled phase from the dry solid. Once drying is completed, thickness gradients extend from

the edges over distances that may reach a few centimeters.13,14 During drying, the surface

of the film is deformed by the propagation of the front, and this deformation is opposed by

both capillary and hydrostatic pressures. The length at which the flow caused by evaporation

is balanced by the one resulting from capillarity was found to play a key role in the final

morphology of the films.14 In the case of thin liquid films, numerical resolution of the thin film

equation has been performed to account for thickness heterogeneities and the results were in

qualitative agreement with experiments.13 More recently, numerical simulations reproduced
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the front propagation observed in experiments14 but failed to predict the shape of the dried

film.15

Along a different line, Routh and Russel introduced the idea that controlled hetero-

geneities of the evaporation flux of a film could allow the patterning of its dried surface.13

Actually, evaporation masks, i.e. solids placed above evaporating films and locally hindering

evaporation, have been shown to effectively tune the shape of the dry deposit. A so-called

evaporative lithography has been developed16,17 ; depressions are observed just below evap-

oration masks, whereas solute accumulates in the region of non zero evaporation near the

masks. A qualitative explanation of the pattern resulting from an evaporation mask has

been given in the literature,18 which we report here and illustrate in figure 1. As pictured

in (a), what is considered is the drying of a liquid film containing a solute. The film is

thin enough to remain homogeneous in the vertical direction. Solvent evaporates at a uni-

form rate everywhere but under an evaporation mask that hinders evaporation. More liquid

therefore remains under the mask than away from it and the resulting bump further relaxes

because of gravity and capillarity, while the solvent keeps evaporating, as depicted in figure

1 (b). An outward flow is generated, that carries solute away from the masked region to

the nearby unmasked zone where it accumulates, as schemed in figure 1 (c). At the end of

drying, a depression is hence formed below the mask, which is associated with bumps close

to the edges of the mask as depicted in figure 1 (d).

A quantitative description of the thickness heterogeneities requires to model the flow

and solute transport. Routh and Russel performed a numerical resolution of the lubrication

equation to describe the height profile of a film resulting from an evaporation mask.13 They

assumed that the gravity related term was negligible and that the viscosity had a constant

value. Other numerical resolutions or simulations have been since performed,17 in which

the influence of additional complex effects such as Marangoni flows19 or gas blowing20 were

examined. However, in the simpler case of a single evaporation mask, the role of gravity

remains elusive and the dependence of the features of the formed pattern on the different
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parameters has not been quantitatively established. In the present work, we predict the

extent and amplitude of thickness heterogeneities resulting from an evaporation mask with

an analysis based on linearised equations. This simplification allows us to account for the

increasing viscosity of the liquid film as solvent evaporates, and, in addition, to compare the

effects of capillarity and gravity. We further compare our theoretical findings to experimental

data obtained with polymer solutions in which Marangoni flows are negligible. We first detail

the experimental systems and procedures. The theoretical analysis is further presented and,

finally, predictions are compared to experimental findings in a last section.

Experimental section

In this section we describe the preparation of the polymer solutions, the experimental set-up

that was used to study the effect of evaporation flux heterogeneities and measurements of

the evaporation rate.

Solutions

Polystyrene solutions in toluene were prepared by adding polystyrene of molar mass M =

1.92 × 105 g.mol−1 (Sigma-Aldrich) to high-purity toluene (> 99.5%, VWR). The solutions

were stirred at room temperature until complete dissolution before use. Solutions of volume

fractions in polystyrene ϕ ranging from 0.04 to 0.25 were used. At room temperature,

polystyrene solutions undergo a glass transition when the solvent content decreases. The

volume fraction in polymer, ϕg, at which the solutions become glassy was obtained from

Fox’s law21 and is ϕg = 0.86.

Viscosity measurements were conducted and confirmed that the initial solutions are in the

entangled semi-dilute regime. In this regime, since toluene is a good solvent for polystyrene,

the viscosity increases with volume fraction according to η ≃ ηrefϕ
ν with ν = 3.922 and

ηref = 230 Pa.s inferred from viscosity measurements. The latter relation does not account
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for the very strong viscosity increase in the vicinity of glass transition as solvent evaporates;

nonetheless, thickness heterogeneities form before glass transition occurs, and the power-law

relation satisfactorily describes viscosity variations during polymer advection. The surface

tensions γ of polystyrene solutions in toluene were measured using a tensiometer (Teclis)

in a rising bubble configuration. In agreement with data in the literature,23 we have found

that γ slightly increases with volume fraction, ϕ. In the investigated range, the increase is

linear: (γ(ϕ)− γ0)/γ0 = Γϕ, where γ0 is the surface tension of toluene and Γ = 0.06. Since

the increase is very small, in the following we consider that surface tension remains constant

during drying γ = γ0 = 27.9 mN.m−1. We also neglect Marangoni effects in the theoretical

analysis, which is later justified in details.

Drying with an evaporation mask

Polymer solutions were spread on clean glass plates (dimensions 100mm× 100mm). Wire-

wound rods of different sizes (BYK) were used to obtain liquid films of different initial

thicknesses. The resulting thickness depends on the viscosity of the solution but also on the

exact volume of solute, which slightly varied from one experiment to another. Therefore,

thicknesses of the dried deposits were systematically measured in a region non affected by

the evaporation mask, and the initial thicknesses were inferred from both their values and

the remaining solvent content at the time of thickness measurements (see the section on

the evaporation velocity). Initial thicknesses of the liquid films ranging from 47 µm to

160 µm were obtained with solutions of viscosity ranging from 9 mPa.s to 128 mPa.s. Once

the film spread, the glass plate was placed on a dual-axis rotation stage, the horizontality of

which was set with an accuracy of 0.05◦ with a digital inclinometer. The experimental set-up,

schemed in figure 2, was installed below a laboratory hood for safety reasons. During drying,

the samples were kept in an enclosure covered by a net (commercial mosquito net, mesh size

1.2 mm), ensuring reproducible evaporation conditions. In these conditions, drying is limited

by diffusion of solvent in the atmosphere, over a distance close to the one between the surface
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of the film and the net, which is 2 cm. A parallelepidic mask, of width 2r = 4.5 mm along

the x-axis defined in figure 2 and of length 100 mm in the direction perpendicular to the

plane of the figure, was approached to the surface down to 0.5 mm above the glass plate.

The latter distance was chosen because it is much smaller than the vapor diffusion layer,

therefore the atmosphere between the mask and the film is expected to be quickly saturated

with vapor of solvent. A rotation stage was used to ensure that the lower surface of the mask

was parallel to the glass plate.

Figure 2: Scheme of the experimental set-up.The glass plate on which the liquid film is
spread is placed on a horizontal substrate, within an enclosure covered with a net to reduce
air convection.The parallelepipedic evaporation mask is placed at a vertical distance of 0.5mm
above the glass surface

Topology measurements and data analysis

Once the film dried, the topography of the sample was measured using a 3D optical surface

profiler (Zygo New View 9000). Polymer coating was removed along a line on each sample, in

order to obtain a reference value for height measurements. Height profiles were averaged over

30mm along the transverse direction, perpendicular to the plane of figure 2. An example of
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average height profile hf (x) is shown in figure 3. The masked area, of width 2r, is represented

in grey. The profile is flat away from the mask, showing in particular that edge effects are

negligible in the probed region. A depression is observed below the mask, that has a surface

area A and is associated with overthicknesses on each side of the mask. We arbitrarily

define the width of the thickness heterogeneities resulting from the evaporation mask as the

distance between the edge of the mask and the remotest point for which the overthickness

with respect to the flat part is 20% of its maximum (see figure 3). Owing to the asymmetry

of the experimental profiles, the value of w is averaged on both sides of the mask. Actually,

we have found that, unexpectedly, height profiles of the dry deposits were never perfectly

symmetric, as a result of both initial heterogeneities of film thickness and residual air flows

during drying. Thickness heterogeneities may appear as the glass plate with the spread film

is moved to be placed on the stage; in addition, full control of air convection is difficult.

Figure 3: Height profile of a polystyrene layer obtained by drying a thin film of polystyrene
in toluene solution of initial volume fraction ϕ0 = 0.06 under an evaporation mask of width
2r = 4.5 mm. A is the surface of the depression caused by the evaporation mask and w the
width of the thickness heterogeneities. The origin of the x-axis is chosen at the right edge
of the mask, consistently with the notation of figure 5.

Criteria were defined to select only reliable measurements of A and w. First, we checked

that the profile was flat far from the mask: we computed the standard deviation of the

height in this region and arbitrarily compared it to the third of its average value, i.e. h̄f/3.

Second, we ensured that the surface of the depression A was roughly equal to the surface
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of the bumps. This is the case if the integral of hf − h̄f close to the mask is smaller than

a threshold value chosen to be wh̄f . About 70% of the measured profiles met these criteria

and the other 30% were discarded.

Evaporation velocity

The evaporation velocity was measured by monitoring the mass variation of a drying liquid

film in the same conditions as described above, but without a mask and having replaced

the rotation stage by a scale. The mass variations with time of a solution of initial volume

fraction ϕ0 = 0.039 are shown in figure 4a. As observed in similar systems and evaporating

conditions,24 during a first stage, the mass decreases at an almost constant rate. The evapo-

ration rate decreases down to very small values in a second stage. We define the evaporation

velocity ė = −dh/dt where h(t) is the film thickness at time t. Since evaporation is lim-

ited by diffusion of vapour in the atmosphere, the evaporation velocity is therefore given by

ė = Dvcsat/(ρλ) where Dv, csat and ρ are respectively the diffusion coefficient of vapour in

the atmosphere, the concentration in toluene at saturation in the atmosphere and the density

of toluene. λ is the length of the diffusion layer above which toluene concentration vanishes

because of air advection. From the slope of the red-dotted line in figure 4, the value of the

evaporation velocity in the first stage is ė = 3 × 10−7 m.s−1. With csat = 0.14 kg.m−3,25

Dv = 8 × 10−6 m2.s−1,26 and ρ = 870 kg.m−3, we obtain λ = 0.3 cm. This value is smaller

than the value of the vertical distance between the film surface and the mosquito net in the

experimental set-up, which indicates that convective effects may be at stake under the net.

Nevertheless, the value of the evaporation velocity was found to be reproducible. As evapo-

ration proceeds, the activity and thus the saturation concentration decreases with decreasing

toluene content in the film. This decrease is described by a Flory-Huggins sorption isotherm

with a Flory parameter of 0.4.27 We have checked that the decrease of the evaporation ve-

locity in the second stage could be entirely attributed to the decrease of solvent activity; in

particular, it does not result from the formation of a concentrated skin, as reported during
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the evaporation of thick films of polymer solutions.28

Additional information is reported in figure 4b in which the mean polymer volume fraction

deduced from the mass curve is shown as a function of the dimensionless time T = tė∞/h0,

where ė∞ is the evaporation rate, the index ∞ indicating that the value is the one far from

the mask, and h0 the initial thickness of the film. It is compared to the volume fraction

computed by assuming a constant evaporation velocity. In the considered experiment, the

two curves sumperimpose for normalised times up to T ≃ 0.6, far from glass transition, and

at that time the viscosity of the polymer solution is about twenty times its initial value. We

emphasise that the maximum value of T , which corresponds to the time at which ϕ = 1, is

smaller than unity since polymer does not evaporate. More precisely the maximum value of T

- in the approximation where the evaporation rate is constant - is given by
(
1− ϕ0

ϕend

)
where

ϕend is the volume fraction at which the experiment is ended, i.e. at which the thickness

measurements are performed. Film thicknesses were always measured between 30 minutes

and 3 hours after the beginning of drying. The value of ϕend can be extrapolated from the

data of figure 4, in which the volume fraction is observed to increase linearly with time in the

stage following the evaporation at a constant rate. We have found that the polymer volume

fraction ϕend ranged from 0.72 to 1 at the times the thicknesses were measured. The latter

values were used first to compute the initial film thickness - and its uncertainty - from the

measured one, and second to determine the final time T , which average value was found to

be 0.9.

Results and Discussion

Theoretical analysis

The evaporation mask creates a step of evaporation flux, which generates steps of both film

thickness and polymer concentration, and the resulting flows are responsible for the final

shape of the dry film. In the present section, we develop an analytical approach based on
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Figure 4: (a) Measured mass (pink line, left axis) and polymer volume fraction, averaged
over the whole surfacea area and deduced from the mass curve (blue line, right axis) of
a thin film of polystyrene in toluene solution as a function of time. The initial volume
fraction is ϕ0 = 0.09. The pink dotted line corresponds to a constant evaporation rate of
ė∞ = 3×10−7m.s−1 and crosses the horizontal axis at a dimensionless time T = tė∞/h0 = 1.
The blue dotted line indicates the glass transition volume fraction ϕg. The blue dashed line
shows the slow linear increase of volume fraction at larger times. (b) (left axis) Volume
fraction as a function of the dimensionless time T , measured (full blue line, same data as
(a)) and computed by assuming a constant evaporation velocity (dotted line). (right axis)
Viscosity variations with T of the polymer solution inferred from the measured volume
fraction and using η = ηrefϕ

ν (green line).

linearised flow equations that account for the viscosity increase during drying. Our aim is to

predict the variations of the extent and amplitude of the final thickness heterogeneities with

the controlled parameters, namely the initial film thickness and viscosity, and the evaporation

velocity.

Hypotheses

As schemed in figure 5, we consider a 2D liquid film of initial thickness h0 and initial volume

fraction in solute ϕ0. The film is assumed to be infinite along the horizontal x-axis. For the

sake of simplicity, only one edge of the evaporation mask is considered. The film thickness is

denoted h(x, t). The hypotheses of the model are the following: (i) The evaporation velocity

ė is zero below the mask (for x < 0) and has a constant value ė∞ everywhere else (for x > 0).

It writes ė(x) = ė∞Θ(x), where Θ is the Heaviside function

(ii) The Péclet number in the vertical direction, given by Pev = ė∞h0/D, where D is
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the mutual diffusion coefficient, is assumed to be very small. As a result, the solute volume

fraction in the vertical direction remains homogeneous.

(iii) The Péclet number in the horizontal direction, given by Peh = ux x⋆/D where ux is

the horizontal velocity in the liquid layer and x∗ the lateral length scale, is assumed to be

very large; diffusion along the x-axis is therefore negligible.

(iv) Marangoni flows are negligible. The surface tension is in particular considered to be

constant and equal to the one of pure solvent, γ0. Consequently, the boundary condition for

the flow at the free surface of the film is a zero-stress condition.

(v) The liquid viscosity is space-independent but time-dependent, and denoted η(t).

Viscosity increases with time because the concentration in solute increases in the evaporating

film.

The relevance of these assumptions with respect to the experimental conditions will be

discussed at the beginning of the last section that compares experimental and theoretical

data.

Equation for film thickness

We now establish the equation describing the variations of the film thickness h(x, t) and

further linearize it, by writing thickness variations as perturbations to a reference state.

The reference state can either be chosen far from the mask, where the film evaporates at a

constant rate, or under the mask where no evaporation occurs. We will see in the following

that the same formalism can be used whatever the reference state. In a first stage, we

consider the reference that is away from the mask, hence the reference thickness and volume

fraction are respectively h∞(t) = h0 − ė∞t = h0(1− T ) and ϕ∞ = ϕ0

(
1

1−T

)
, where T is the

dimensionless time introduced above.

Since the film thickness is much smaller than its horizontal dimensions, the flow is de-

scribed by the Navier-Stokes equation in the lubrication approximation. The latter equation

is further integrated with the relevant boundary conditions, i.e. vanishing velocity at the
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glass/liquid interface and zero-stress at the air/liquid interface, yielding13

∂h

∂t
− 1

3η(t)

∂

∂x

(
h3 ∂p

∂x

)
= −ė(x) (1)

where p(x, t) is the pressure in the liquid film. The pressure at a given height in the film is

the sum of the hydrostatic pressure and the Laplace pressure. Therefore, its gradient can

be written simply as ∂xp(x, t) = ρg∂xh− ∂x (γ∂xxh) where the first term of the r.h.s. is the

hydrostatic pressure gradient and the second term corresponds to capillary pressure.

We further linearize equation 1 by writing that h(x, t) = h∞(t)+h0δ(x, t) where h∞(t) is

the reference thickness and the dimensionsless perturbation |δ(x, t)| is assumed to be smaller

than 1− T .

Figure 5: Schematical representation of the problem. The thickness variations resulting from
the presence of the evaporation mask are considered as perturbations to a reference state
(here, the evaporating film far from the mask).

Three velocities can be defined in the considered system, namely:

(i) the evaporation velocity ė∞ which is of the order of 3.10−7m.s−1

(ii) The capillary velocity Vc(t) =
γ0
η0
. In the considered problem, Vc ≃ 1m.s−1

(iii) the gravitational velocity Vg =
ρgh2

0

η0
. This velocity is the run-off velocity of a liquid

film of thickness h0 on a vertical wall under the action of gravity. Its value is 4 mm.s−1 for

a thickness of 100 µm. Equation 1 is linearised and expressed using the above velocities,

yielding
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∂δ

∂t
− Sd

(
Vgh0

∂2δ

∂x2
− Vch

3
0

∂4δ

∂x4

)
=

ė∞
h0

(1−Θ(x)) (2)

where we have introduced the dimensionless slowing down factor Sd that accounts for the

time variations of both liquid viscosity and film thickness far from the mask, and is given by

Sd =
h∞

3(t)

3h3
0

η0
η(t)

(3)

We emphasise that the viscosity is assumed to be homogeneous and equal to the one of the

drying film far from the mask. Both the increase of viscosity and the thinning of the film

are responsible for the slowing down of the flow. In contrast, if the reference state is chosen

under the mask where no evaporation occurs, the height remains constant as well as the

viscosity, corresponding to a constant slowing down factor Sd. Using the power law variation

of viscosity η = η0 (ϕ/ϕ0)
ν together with relation ϕ = ϕ0h0/h∞ to express η(T ), the slowing

down factor defined in equation 3 can be written as

Sd =
(1− T )α

3
(4)

where the exponent is α = 3 + ν for a reference state chosen far from the mask. For a

reference state under the mask, equation 3 becomes simply Sd = 1/3, which corresponds to

an exponent α = 0. The use of exponent α therefore makes equation 4 general, whatever

the reference state that is chosen. Finally, we introduce a dimensionless effective time τ that

takes into account the slowing down process

τ(T ) =

∫ T

0

Sd(T
′)dT ′ (5)

The effective time corresponds to the time that would elapse in a film of constant viscosity

and thickness with an equivalent flow. If Sd decreases with time, τ varies sublinearly with

time, reflecting the slowing down of the flow in the film induced both the viscosity increase
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and the thinning of the film. After integration, equation 5 becomes

τ(T ) =
1

3 (1 + α)

(
1− (1− T )1+α)

(6)

Now that we have determined the time scale of the problem, we turn to the length

scales. The vertical length scale is given by the initial thickness and we use h0δ as vertical

perturbation. Choice of the lateral length scale depends on the effect driving the flow. If

the flow is governed by capillarity, making equation 2 dimensionless in x, as shown below,

gives the lateral length scale of the perturbation

x⋆
c = h0

(
Vc

ė∞

)1/4

(7)

The same length x∗
c has been introduced in previous works on the non uniform drying of thin

films of colloidal suspensions.13,14 Actually, it has been identified as the length at which the

flow caused by evaporation is balanced by the flow resulting from capillarity. Introducing

the dimensionless variable ξc = x/x∗
c , equation 2 becomes in the limit of dominant capillarity

∂δ

∂τ
+

∂4δ

∂ξ4c
+O(H) =

1−Θ(ξc)

Sd(τ)
(8)

where

H =
Vg

V
1/2
c ė

1/2
∞

(9)

In contrast, when gravity dominates, the perturbation extends over a length scale

x∗
g = h0

(
Vg

ė∞

)1/2

(10)

Using the dimensionless variable ξg = x/x∗
g, equation 2 becomes

∂δ

∂τ
− ∂2δ

∂ξ2g
+O(1/H2) =

1−Θ(ξg)

Sd(τ)
(11)
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The crossover between capillarity and gravity dominated regimes is given by H = 1 which

corresponds to Vg =
√
Vcė∞. H is proportionnal to h0 and can be expressed as H = h0/h

CO,

where hCO is the crossover thickness between capillary and gravity dominated regime given

by

hCO =
(η0γ0ė∞)1/4

(ρg)1/2
(12)

If h0 ≫ hCO, then H ≫ 1 and gravity effects are much larger than capillary ones.

The height of the liquid under the mask then relaxes under the action of gravity with a

characteristic lateral length scale given by x⋆
g. In contrast, if h0 ≪ hCO, flows are induced

by capillarity and the width of the resulting thickness heterogeneities are related to x⋆
c . The

crossover between the two regimes - for H = 1- corresponds not only to equal characteristic

lengths for capillarity and gravity, but also to their equality with the capillary length, x⋆
g =

x⋆
c = lc =

√
γ0/ρg. The qualitative variations of the horizontal length scale as a function

of the film initial thickness are shown in figure 6. The length scale varies with thickness as

a power law, with an exponent that depends on the governing effect: it is proportional to

h0 for governing capillarity and to h2
0 for governing gravity. The horizontal axis can also

be represented as a runoff velocity axis since Vg varies with h2
0. A critical velocity V c

g is

associated with the critical height that delimits the two regimes. The same two length scales

that are determined by the latter analysis can also be found from the initial non-linearised

equations, as shown in the Supporting Information. Although crude, the approximation

we use nonetheless provides the same variation laws of the characteristic lengths as the

non approximated equations.These variation laws can be expressed under the general form

x∗ ∝ lc(h0/h
CO)n with respectively n = 1 for prevailing capillarity and n = 2 for leading

gravity.

Table 1 gathers the different characteristic velocities and lengths and their expected

numerical values. We emphasise the critical height hCO is one order of magnitude smaller

than the capillary length. Therefore, gravity can drive the relaxation of liquid films subjected
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Figure 6: Characteristic lateral length scales given by equations 7 and 10 of the perturbation
versus run-off gravity velocity, or thickness of the initial coating.

to nonuniform evaporation, even when their thicknesses are much smaller than the capillary

length. Consistently, the non negligible role of gravity has been evidenced in the kinetics of

drying fronts in films of colloidal suspensions.14

Table 1: Table of the various velocities and lengths

Name Symbol Expression Typical Value

Initial thickness h0 100 µm
Surface tension γ0 3.10−2 N.m−1

Viscosity η0 2.10−2 Pa.s

Capillary length lc (γ0ρg )
1/2 1.8 mm

Drying velocity ė∞ −dh∞
dt 3.10−7 m.s−1

Capillary velocity Vc
γ0
η0

1 m.s−1

Gravity run-off velocity Vg
ρgh2

0
η0

4.10−3 m.s−1

Cross-over thickness hCO lc

(
ė∞
vc

)1/4
40 µm

Capillary lateral extent x⋆c h0

(
vc
ė∞

)1/4
5 mm

Gravity lateral extent x⋆g h0

(
vg
ė∞

)1/2
1 cm

Analytical solutions

We first focus on the case of governing gravity. Equation 11 is analogous to a diffusion

equation with a source term. The solution to a diffusion equation with a forcing term that

is the product of a spatial Heaviside function by a Dirac function (step applied at t = 0) is

an error function erf. Therefore, in the considered limit, the solution to equation 11 is the
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convolution of the error function and Sd with the boundary conditions δ(ξg = +∞) = 0 and

δ(ξg = −∞) = ė∞t, if the reference situation is the one outside the mask. Changing the

time variable to the dimensionless time T = ė∞/h0t and using the derivative of equation 5

to get dτ/dT = Sd, one obtains

δ(ξg, T ) =
1

2

∫ T

0

(
1− erf

(
ξg

2
√
τ(T )− τ(T ′)

))
dT ′ (13)

In contrast, when capillarity prevails, i.e. H ≪ 1, the solution to equation 8 can be

deduced from the analytical solution derived by Salez et al for the height relaxation of a

nonevaporating thin film following an initial step-like height at time t = 0.29 The action of

capillarity only was considered in the latter problem, and the corresponding equation has

the same left hand side as equation 8. The solution is a function χ that can be expressed

with (1,3)-generalized hypergeometric functions given in the Suporting Information as the

solution to the capillary case. The solution to equation 8 can thus be expressed as an integral

of the χ solution, using δ(ξc = +∞) = 0 and δ(ξg = −∞) = ė∞t as a boundary condition,

yielding

δ(ξc, T ) =
1

2

∫ T

0

(
1− χ

(
ξc

(τ(T )− τ(T ′))1/4

))
dT ′ (14)

Resulting thickness profiles of the film are shown at different times in the supporting

information. In the next section, we focus on the polymer thickness inferred from the results

of the present section.

Polymer thickness

The film thickness h(x, t) is obtained from equation 13 when gravity is at stake and equation

14 when it is capillarity. Up to this point we have considered a time dependent but space

independent polymer volume fraction ϕ but, since the polymer is advected by the flow, its

volume fraction is a function of both time and position. We show that it can be determined
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through conservation equations. We now consider the polymer volume per surface unit in

the film, σ(x, t) = h(x, t)ϕ(x, t) which corresponds to the polymer thickness at position x if

solvent was removed at time t without displacing the polymer. At long times, for vanishing

solvent content, it tends towards the thickness of the dried layer. A simple relation can be

found between σ and δ by writing the conservation equations of both solvent and polymer. Its

full derivation is detailed in the Supporting Information and the qualitative argument is the

following: The polymer is advected by the flow and, in the frame of the linear approximation,

its concentration under the mask remains constant. As a result, the default or excess of liquid

respectively under and outside the mask corresponds to the default of thickness with respect

to h0 for x < 0 and the excess for x > 0 with respect to h0 − ė∞t outside the mask. The

corresponding relation between σ and δ is

σ(x, t) = σ0

[
1 + δ − (1−Θ(x))

ė∞
h0

t

]
(15)

where σ0 = h0ϕ0 is the initial value of σ.

The profiles of σ are shown at different times in figure 7 and as a function of the normalised

coordinates, respectively x/x⋆
c and x/x⋆

g in the capillarity and gravity driven regimes. The

profiles have similar shapes in both regimes: as expected, they exhibit a depression under

the mask and an overthickness close to its edge in the evaporating film. Further away from

the edge, non monotonic variations occur for dominant capillarity, whereas the profiles are

flat when gravity prevails. In the capillarity-driven regime, the profiles are similar to the

ones obtained in the same regime by the numerical resolution of Routh and Russel13 for a

constant viscosity.

The amplitudes of σ are similar in both regimes, but the lateral extents differ in the

normalised representation of figure 7. Dominant capillarity results in wider thickness hetero-

geneities with respect to the relevant length scale. The length scales x⋆
c and x⋆

g themselves

differ, and in particular vary differently with the initial film thickness. In order to compare

the analytical results to the experimental ones, we have defined the same lateral extents w
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Figure 7: Normalised polymer height in the capillarity-driven regime as a function of ξc
(a) and in the gravity-driven regime as a function of ξg (b) at different normalised times:
T = 0.1(orange), T = 0.3 (green), T = 0.5(red), T = 0.7 (purple) and T = 0.91 (brown).
The polymer height was computed using equation 15 and respectively equations14 and 13
and with a reference state under the mask, i.e. α = 0.

of the profiles as in the experiments, which correspond to an overthickness of 0.2 times its

maximum value, i.e. σ(w) − σ0 = 0.2 (σmax − σ0). The extents, normalised by the relevant

length scale x∗, are shown as a function of the dimensionless time T in figure 8. They both

vary with time in a non monotonic fashion for a reference stage far from the mask corre-

sponding to α = 3+ ν. In contrast, the extents for the reference state taken under the mask

(α = 0), grow monotonically in both gravity and capillarity-driven regimes.

Figure 8: Lateral extent of the thickness heterogeneity normalized by the characteristic
length scale x⋆ of the corresponding regime as a function of the normalised time T in the
capillarity (red lines) and gravity-driven (blue lines) limits. The curves correspond to differ-
ent reference states for linearization: under the mask α = 0 (full lines) and away from the
mask α = ν + 3 (dotted lines)

The surface area A characterising the amplitude of thickness heterogeneities can be ob-
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tained by integration of σ over x > 0 (or equivalently for x < 0, the profiles being symmetric),

yielding the general expression

A = 2β(α, T )x∗h0ϕ0 (16)

The prefactor β is a numerical factor that depends only on α and on T . Its expression for

prevailing gravity is

βg =

∫ T

0

(√
τ(T )− τ(T ′)

)
dT ′

√
π

(17)

For prevailing capillarity the spatial integration of equation 14, is detailed in the Supporting

Information. It yields the following expression for the prefactor

βc ≃ 0.39

∫ T

0

(τ(T )− τ(T ′))
1/4

dT ′ (18)

We emphasise that the dependency of the prefactors on α results from the dependency of the

dimensionsless time τ(T ) on the chosen reference state, as established in equation 6. The

variations of β with T are shown in figure 9 for both regimes and both reference states. As

expected, the prefactors, and thus the surfaces of the formed depression grow with time and

are not only larger but also keep increasing later for a reference state chosen under the mask

.

The expression of the surface of the depression can be put under a more generalised form

by using the cross over thickness given by equation 12 and, in the following, we will use the

expression

A = ϕ0l
2
c

(
h0

hCO

)n+1

β(T, α)

(
ė∞
Vc

)1/4

(19)

where the exponent n is 2 in the gravity-driven regime and 1 when capillarity prevails,

and the prefactor β is given either by equation 17 or 18.

In summary, we have used a linear approximation in order to solve the flow equations

in regimes driven by either gravity or capillarity. The obtained analytical expressions of the
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Figure 9: Prefactor of the surface area of the formed depression (as defined in equation 16)
as a function of the normalised time T in the capillarity (red lines) and gravity-driven (blue
lines) regimes, given respectively by equations 18 and 17. Solution for both reference states
(under the mask (full lines) and far from it (dotted lines)) are shown.

height of the film allow computation of the polymer thickness at each instant. We have found

that the pattern resulting from the advection of solute during drying varies with time. The

lateral extent and the amplitude of the formed pattern as defined in figure 3) vary with the

different parameters following w ∝ lc(h0/h
CO)n and A ∝ ϕ0l

2
c(h0/h

CO)n+1(ė∞/Vc)
1/4 with

respectively n = 1 for prevailing the capillarity and n = 2 for leading gravity. The choice

of the reference state selects the values of the time varying prefactors for both extent and

amplitude. In the next section, these predictions are compared to experimental results but

we first discuss the relevance of the hypotheses made in the preceding analysis, with respect

to the experimental conditions.

Comparison to experimental results

Justification of the neglected effects

The first assumption made in the model presented above is that the evaporation velocity does

not vary with time. In the example shown, corresponding to a volume fraction ϕ0 = 0.09, the

curves superimpose up to a normalised time T = 0.6. At later times, the evaporation velocity

is smaller in the experiment since the activity of toluene decreases. However, the decrease in

evaporation rate is limited to about 20% between T = 0.6 and T = 1. Since the extent and
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amplitude of the thickness heterogeneities vary at most with ė
1/2
∞ , the error resulting from

the overestimation of the evaporation rate is therefore small. In contrast, the error made

on the polymer volume fraction and thus on the liquid viscosity is significant, as shown in

figure 4b. However, we will see below that the experimental data is well accounted for with

a reference state under the mask, where the viscosity does not vary. Hence, the assumption

of a constant evaporation velocity is fully relevant for the description of experimental data.

Note that the analytical results used in the next section will all be presented using T = 0.9

that corresponds roughly to the maximum value of T of our experiments.

The second and third assumptions concern the vertical and horizontal Péclet numbers:

diffusion is assumed to be large enough for the film to remain homogeneous in the ver-

tical direction whereas lateral diffusion is neglected. The Péclet number in the vertical

direction is Pev = ė∞h0/D where D is the mutual diffusion coefficient. Since thickness het-

erogeneities form before glass transition, D remains close to D = 10−10 m2.s−1, as measured

in polystyrene solutions in toluene of similar molar mass.21 As a result, Pev remains smaller

than unity, and the solution can be considered as homogeneous in the vertical direction. The

horizontal Péclet number is Peh = ux x⋆/D where ux is the horizontal velocity. For prevail-

ing gravity, an estimate of the horizontal velocity is obtained from the thin-film equation,

yielding ux ≃ Vgh0/x
⋆. The resulting Péclet number is larger than 103 and lateral diffusion

can safely be neglected.

In a fourth assumption, we have neglected any Marangoni effect. Both thermal and so-

lutal Marangoni flows can arise during drying and may modify the effect of an evaporation

mask.30 Since no evaporation occurs under the mask, the temperature of the surface under

the mask is larger than in the regions where evaporation takes place. A flow directed to-

ward the coldest regions, away from the mask, is therefore expected. Similarly, since the

surface tension of polystyrene solutions increases with increasing polymer content a solutal

Marangoni flow is created in the same direction. We emphasise these two effects are of second

order in δ and thus non-linear; estimates of their magnitudes are therefore difficult to provide.
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Nevertheless thermal and solutal Marangoni numbers can be defined by Ma = ∂xγ/(h∂xP ).

When gravity drives the flows and for h = 100 µm and x⋆ = 1 cm, the denominator is of the

order of h2
0ρg/x

⋆ ≃ 10−2 Pa. The temperature difference is at most a few K - as measured

with an IR camera - and the derivative of surface tension with respect to temperature is

∂θγ ≃ 10−4 Pa,24 yielding ∂xγ ≃ 10−2 and Ma ≃ 1. The solutal Marangoni effect is larger:

Despite the small variations of surface tension with solute concentration of the chosen so-

lution, ∂xγ is of the order of γ0Γ/x
⋆ ≃ 1 Pa, where Γ is the maximum relative variation

of surface tension between the beginning and the end of the drying. The corresponding

Marangoni number is Ma ≃ 10. We have performed additional numerical resolution of the

gravity-driven flow equations to measure the effect of Marangoni numbers larger than unity

on the width of the thickness heterogeneities w. We have found that it remained negligible

for a Marangoni number of 10. Consistently, we show in the following that the experimental

data agree with the predicted ones without accounting for Marangoni effects. The latter

would however need to be considered in the case of aqueous polymer solutions, the surface

tensions of which generally strongly depend on concentration.

Finally, the spatial variations of viscosity are neglected, which is obviously a strong

approximation under the mask, where there is no evaporation and thus no viscosity increase.

However this assumption is required to solve the problem analytically. As a result, we expect

the theoretical predictions to underestimate the dimensions of the formed patterns when the

reference state is chosen far from the mask and, in contrast, to overestimate them when the

reference state is under the mask. Using the same formalism, we are able to provide an upper

and lower bound for the amplitude and lateral extent of the formed pattern. We compare

the experimental results to this prediction in the next section.

Width and amplitude of thickness heterogeneities

Experiments were performed at different initial polymer volume fractions, yielding films

with different viscosities and initial thicknesses, which are therefore the experimental param-

eters. We first report the experimental extent of thickness heterogeneities, which is shown in
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figure 10 together with theoretical data. The raw data is displayed in the inset. Widths rang-

ing from a few millimetres to a few centimetres were measured on the sample, whereas initial

thicknesses are in the range of hundreds of microns, i.e. about a hundred times smaller. The

width of the region affected by the nonuniform evaporation can therefore be larger than the

size of the evaporation heterogeneity, here set by the 4.5 mm-wide mask. The main figure

shows the normalised data, respectively by the capillary length on the y-axis and by the

critical thickness given by equation 12 on the x-axis. The adopted representation allows to

compare experimental data obtained with different initial volume fractions with theoretical

data corresponding to the different regimes. The theoretical curves are given for the two

reference states, corresponding respectively to a reference state from the mask, where the

flow is strongly slowed down, and under the mask where the flow does not slow down. We

have checked that, for both references states, the mask is wide enough to neglect mutual

influence between both sides. As expected, the results obtained with the first reference state

underestimate the experimental data. In contrast, we observe that they are quantitatively

described when no slowing down is accounted for and, in addition, that they lie in the range

of prevailing gravity.

A similar agreement is found for the amplitudes of the depression of the dry deposit.

Figure 11 shows the measured surface area A as a function of the ratio of the initial thickness

and the crossover thickness. In the main figure, the surface is normalised by square of the

capillary length, the initial volume fraction and (ė∞/Vc)
1/4. As observed for the extent w,

the agreement between experimental and theoretical findings is very good, in the frame of

the linear approximation with a reference state under the mask. The data are therefore well

described with the simplest approach, which considers that the viscosity keeps its initial

value. Furthermore, the simplified step-like vapor concentration we have used well accounts

for the real vapor concentration above the film.

In summary, in our experimental conditions, we have shown that gravity always prevails

and that the linear approximation made with a reference state under the mask allows an
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Figure 10: Lateral extent w of the thickness heterogeneities normalised by the capillary
length lc as a function of the normalized initial thickness h0/h

CO, with hCO given by equation
12. The theoretical predictions are shown for prevailing capillarity (red lines) and gravity
(blue lines), that were respectively computed for a reference state under the mask (full lines)
and far from the mask (dotted lines). They correspond to a drying time T = 0.9 The
experimental data were obtained with different values of initial polymer volume fraction ϕ0:
0.06 (orange circles), 0.09 (black triangles) and 0.17 (green squares). Inset: raw data. The
horizontal error bars result from the uncertainty on the initial thickness.

excellent prediction of the features of the dried film.

The agreement between experimental and theoretical data in particular validates the

variation laws we have obtained for the extent and amplitude according to the different

parameters. We emphasise the features of the formed pattern exhibit a strong dependence

on the initial film thickness, which is therefore the key parameter to control the pattern

resulting from a region where evaporation is blocked. Interestingly, when the evaporation

mask is replaced by a nozzle in which a carrier gas is blown, the width and amplitude of the

thickness heterogeneities have been reported to first increase with film thickness and then

reach a plateau,20 in the same thickness range as the one investigated here. It demonstrates

that controlling the nonuniformity of evaporation fluxes offers a way to tune the deformations

of the final dry layer but also to change the key parameters that control the deformation.
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Figure 11: Surface area of the normalised depression A as a function of the thickness ratio
h0/h

CO. Inset: raw data. Same symbols and horizontal error bars as in figure 10. The
vertical error bars correspond to the experimental uncertainty on the thickness of the flat
part of the film.

Conclusions

We have presented a quantitative comparison of the thickness heterogeneities of films of

polymer solutions resulting from a controlled heterogeneous evaporation flux. We have con-

sidered the lateral flows in a thin film induced by the presence of an evaporation mask and

driven either by capillarity or gravity, and we have shown that, in each regime, the thickness

of the film during drying could be analytically expressed by solving linearised thin film equa-

tions. We have thus evidenced the leading role of gravity in films whose thicknesses are down

to one order of magnitude smaller than the capillary length. We have further determined

the scaling laws verified by the dimensions of the pattern formed by polymer accumulation

during drying. The agreement with experiments performed with polystyrene solutions in

toluene is very good, demonstrating the relevance of our approach. We have found that the

extents of thickness heterogeneities strongly depend on the initial film thickness, whereas

they only weakly vary with the physical properties of the solution and the evaporation rate.

These results are of particular interest for liquid coating applications that require spatial

uniformity of the dried layer. More generally, they shed new light on the accumulation

effects associated with drying of complex fluids.
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