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1. INTRODUCTION
There are several challenges attached with segmenting brain
vasculature from angiographic images, including small ves-
sels, uneven contrast, sparse structures, and unique anatomy.
Precise and connected segmentations are necessary for ana-
lyzing cerebral vasculature and guiding the treatment of cere-
bral aneurysms. The main challenge is to cover all vessels
branching from the main feeding artery in each image.

2. METHODS
2.1. Dataset & pre-processing
The dataset contained 35 rotational angiographies from sub-
jects with intracranial aneurysms captured in Tours, France
using a GE INNOVA 3D machine. The images have a resolu-
tion of 0.227x0.227x0.227mm3 and include the cranium bone
without subtraction. Radiopaque contrast dye highlights rele-
vant vessel structures. Two experts in neurovascular anatomy
and X-ray imaging delineated cerebral arteries branching
from the Internal Carotid Artery (ICA). Images are re-scaled
to [−1, 1], padded/cropped to (512, 512, 510), and reoriented
to the canonical (RAS+) voxel orientation.

2.2. Model architecture
The segmentation model uses a modified 2D U-Net [1] with
group normalization instead of batch-norm, ”Leaky ReLu” in-
stead of ”ReLu”, and up-sampling instead of up-convolutions.
The model has 16 filters at the first convolution block output
and performs three downsampling steps using average pool-
ing. It takes 10 channels as input.

2.3. Training procedure
The dataset was divided into 22, 6, and 7 subjects for training,
validation, and testing, respectively. The model was trained
for 800 epochs using a batch size of 32, an Adam optimizer,
and an initial learning rate of 0.001. The loss used is an aver-
age of the Dice loss and the binary cross Entropy (BCE). The
training procedure is outlined under Algorithm 1. We have
trained the model by sliding it along the inferior-superior di-
rection (IS) and extracting a stack of Nchannels = 10 slices
of the image.

2.4. Inference
Images are processed through the model in all Ndirs = 6
anatomical directions: anterior-posterior, posterior-anterior,
left-right, right-left, superior-inferior, and inferior-superior.

Algorithm 1 Training during 1 epoch, on IS direction
X ← padN (Batchimage) ▷ (B, 1, 512, 512, 510 + 2N)
Y ← padN (Batchmask)
C ← (DiceLoss() +BCE())/2
for i = [N : 510 +N [ do

x← reshape(X[..., i : i+N ]) ▷ (B,N, 512, 512)
ygth ← reshape(Y [..., i : i+N ])
ypred ← model(x)
L← C(ygth, ypred)/510 ▷ gradient accumulation
Backpropagate L

end for
Step the optimizer

All model outputs are summed and normalized by a factor
Nchannels × Ndirs. After visual inspection, we decided on
a threshold of 0.3 to consider a voxel as correctly detected.
Meaning it was detected at least through scrolling in one di-
rection. The largest connected component (CC) is retained,
resulting in output segmentations with only one CC.

3. RESULTS

Dice Jaccard MI ClDice AvgHausD
0.94± 0.01 0.88± 0.01 0.02± 0.00 0.91± 0.02 0.82± 0.21

Recall Precision VER AVER CCgth

0.94± 0.01 0.93± 0.02 −0.01± 0.03 0.04± 0.02 1.71± 0.36

Table 1. Performance of the proposed method.

Table 1 summarizes results for our test dataset. Results are
reported as mean ± standard error of the mean.

4. CONCLUSIONS

A scrolling 2D U-Net is able to perform remarkably well in
3D segmentation tasks, with minor postprocessing cleanup.

5. REFERENCES

[1] Olaf Ronneberger, Philipp Fischer, and Thomas Brox,
“U-Net: Convolutional Networks for Biomedical Im-
age Segmentation,” arXiv:1505.04597 [cs], May 2015,
arXiv: 1505.04597.


