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Abstract

Advanced Krylov subspace methods are investigated for the solution of large sparse linear systems aris-

ing from stiff adjoint-based aerodynamic shape optimization problems. A special attention is paid to

the flexible inner-outer GMRES strategy combined with most relevant preconditioning and deflation

techniques. The choice of this specific class of Krylov solvers for challenging problems is based on its out-

standing convergence properties. Typically in our implementation the efficiency of the preconditioner is

enhanced with a domain decomposition method with overlapping. However, maintaining the performance

of the preconditioner may be challenging since scalability and efficiency of a preconditioning technique

are properties often antagonistic to each other. In this paper we demonstrate how flexible inner-outer

Krylov methods are able to overcome this critical issue. A numerical study is performed considering

either a Finite Volume (FV), or a high-order Discontinuous Galerkin (DG) discretization which affect

the arithmetic intensity and memory-bandwith of the algebraic operations. We consider test cases of

transonic turbulent flows with RANS modelling over the two-dimensional supercritical OAT15A airfoil

and the three-dimensional ONERA M6 wing. Benefits in terms of robustness and convergence compared

to standard GMRES solvers are obtained. Strong scalability analysis shows satisfactory results. Based

on these representative problems a discussion of the recommended numerical practices is proposed.

Keywords: Krylov solver, GMRES, adjoint problem, deflation, variable preconditioning

1. Introduction

One of the most important environmental challenge that aircraft manufacturers seek to overcome is

the limitation of the carbon footprint in the atmosphere. Many technological improvements have been

achieved to reduce harmful emissions. One of them concerns the improvement of the efficiency of the
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airfoil that is typically quantified by the lift to drag ratio. More specifically, one seeks to minimize an5

aerodynamic function with respect to a set of design variables that controls the shape of the airfoil.

Gradient-based methods are the most suitable optimization algorithms to address such problems. The

efficient computation of the sensitivities is consequently an essential step to obtain a relevant design. In

aerodynamic design the adjoint formulation allows the computation of derivatives of several functions

with respect to many design parameters at an affordable cost. However, high-fidelity analyses are now10

routinely applied even at the preliminary design stage and it becomes increasingly challenging to solve

the resulting algebraic systems with regard to the size and the condition number of such problems. At

this stage, it is obvious that the accuracy of the gradient computation depends on the accuracy of the

solution of the linear system.

In spite of the rise of supercomputers and their high performance computing, solving linear systems15

is still a substantive issue in several scientific fields like computational fluid dynamics (CFD). Indeed,

predicting the best design requires models of compressible turbulent flows in order to capture complex

physical phenomena. From an algebraic point of view, this leads to large, sparse and ill-conditioned

systems. Matrices are real, non symmetric, not positive definite, with a block-wise structure and a

symmetric pattern. A robust way to solve this kind of systems relies on Krylov subspace methods, an20

iterative procedure which computes an approximation of the solution in a projection subspace called

Krylov subspace. For non-symmetric problems, we focus on the Generalized Minimal Residual (GMRES)

algorithm [1]. However, due to the prohibitive memory cost of the GMRES, the restarted version denoted

as GMRES(m) is practically used, with m the maximum number of basis vectors allowed during a

cycle. Once m iterations are carried out, the vectors are discarded and a new set of vectors is generated25

from scratch. The counterpart is the loose of the super-linearity property of the GMRES and therefore

a convergence slowdown may be observed compared to the full GMRES without restart. Numerical

ingredients as preconditioning techniques and spectral deflation have been therefore introduced to offset

the restart effect. Generally speaking, preconditioners attempt to improve the spectral properties of

the operator of the system by clustering as much as possible the eigenspectrum of the initial system.30

Benzi [2] surveyed different preconditioning techniques for the iterative solution of large linear systems.

For instance, he mentioned the incomplete factorization preconditioner and its block variant denoted

by ILU and BILU respectively. The ILU algorithm seems to be attractive thanks to its robustness

and as a result is used as a preconditioner in most cases. But some limitations exist about stability and

scalability. Stability is in fact affected by many parameters like the condition number, and the structure of35

the coefficient matrix. For our case, instability issues are avoided since the preconditioning operators have

good algebraic properties. The BILU algorithm will be employed throughout this paper. Another class
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of well-known iterative preconditioners is the Lower-Upper Symmetric Successive Over Relaxation (LU-

SSOR) preconditioner combining the LU factorization with an SSOR relaxation [3]. However, convergence

of iterative techniques may be hampered by the lack of diagonal dominance of the associated operator.40

A seminal contribution to efficiency of preconditioned GMRES was the extension to variable pre-

conditioning [4]. This gives GMRES a great flexibility to use advanced iterative solvers essentially as

preconditioners which may themselves in turn consist in Krylov subspace methods. When it comes to use

GMRES as a preconditioner, the method is called Flexible inner-outer GMRES or nested GMRES. How-

ever, it could be even difficult for the nested GMRES methods to address some extreme ill-conditioned45

systems. A solution consists in using the spectral deflation strategy. It aims at accelerating the con-

vergence when preconditioned FGMRES fails to converge. This stagnation is essentially caused by the

presence of eigenvalues in the neighborhood of zero. The idea is to find a way to remove their harmful

effect from the eigenspectrum of the preconditioned system. Morgan [5] proposed to deflate the harmonic

Ritz vectors from the next Krylov subspace since they are a good approximation of eigenvectors associ-50

ated with the smallest eigenvalues. The harmonic Ritz vectors are formulated as a linear combination

of Krylov vectors whose coefficients are solutions of a generalized eigenvalue problem [6]. It leads to a

new algorithm denoted as GMRES-DR(m,k) (GMRES with Deflating Restarting) with k the number

of selected harmonic Ritz vectors per cycle. Giraud et al. [7] proposed to generalize this algorithm to

a flexible formulation, FGMRES-DR(m,k), where the preconditioner changes at each Arnoldi iteration.55

They found effective to deflate eigenvalues that are located at a distance away from specific clusters. In

the field of aerodynamic shape optimization, few research has been conducted regarding the inner-outer

GMRES method. In a previous work, Pinel and Montagnac [8] investigated the nested GMRES method

as well as its block variant for the solution of a discrete adjoint problem. The latter problem results from

the linearization of the discretized Navier-Stokes equations combined with the two-equation turbulence60

model of Wilcox. We point out that the eddy viscosity is kept constant during the linearization. They

have proved that the block nested GMRES overcomes the scalar version with a factor of 3 in terms of CPU

time. In addition to that, the same performance is reached with lower memory footprint for the block

nested GMRES. Chen et al. [9] recently tested both GMRES-DR and GCRO-DR (Generalized Conjugate

Residual with inner Orthogonalization and Deflated Restarting)[10] solvers by proposing an extension65

in terms of dynamic deflated restarting. The results demonstrate the effectiveness of this strategy on

adjoint systems in terms of memory cost and CPU time.

This paper aims at investigating the flexible inner-outer GMRES solver capabilities to solve adjoint

systems for turbulent flow by fully linearizing the turbulence model. Actually, only a handful of authors

have examined this option due to the following reason [11, 12, 13, 14] (see the review [15] and references70
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therein). Linearizing the turbulence model leads generally to very ill-conditioned adjoint systems de-

manding the development of advanced linear solvers combined with others numerical artifices. However,

considering the turbulence model during the linearization is crucial when it comes to solve a high-fidelity

optimization problem. So, instead of making physical simplifications, a special focus on nested GMRES

solvers associated with spectral deflation and preconditioning techniques has been achieved. In contrast75

to [8], a special attention to the block incomplete LU factorization (BILU) is conferred since it is proved

to be more robust than the standard block Lower-Upper Symmetric Gauss-Seidel (LU-SGS) relaxation

algorithm. LU-SGS is a particular case of LU-SSOR with a unity relaxation factor. The reader should re-

fer to [16] for further detail about LU-SGS as an iterative solver for the implicit phase of Backward-Euler

Newton steady solvers. Numerical experiments have shown that convergence is strongly affected depend-80

ing on the choice of the preconditioner. We also point out that we recently implemented the GCRO-DR

and a comparative study with GMRES-DR has shown that performances are strictly equivalent. For

these reasons, the current work has been focused only on the nested GMRES solver. Considering two

different discretization methods, such as FV and DG formulations, contributes to draw a better overview

of the benefits of such a solver. Not only it affects conditioning of adjoint systems but also the arithmetic85

intensity and the memory-bandwidth pressure of basic linear algebra operations.

This paper is organized as follows. In section 2, we briefly present the adjoint problem for a sensitivity

analysis. In section 3, we describe the minimal residual norm Krylov subspace methods in conjunction

with deflation strategies and flexible preconditioning. Section 4 and 5 are devoted to numerical experi-

ments where the robustness of flexible inner-outer Krylov solvers is demonstrated through representative90

test-cases for both FV 1 and DG 2 schemes. Strong scalability capability of such solvers is also assessed.

To finis with, some numerical considerations are discussed in section 6.

2. Discrete adjoint method for sensitivity analysis

2.1. Steady-state problem

Let D be a bounded domain in R3. We denote by W ∈ RN the vector of conservative variables. The95

differential form of the governing equations for a viscous fluid governed by the RANS model is formulated

as

dW

dt
+∇.F = Q, (1)

1FV simulations were performed with the ONERA elsA software [17]
2DG simulations were performed with the ONERA Aghora software [18]
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where F embeds the convective and diffusive fluxes and Q is a source term. We want to obtain the field

of conservative variables W related to a steady-state equilibrium on domain D. The system of equations

is formulated in its discrete residual form as:100

R(W,X) = 0, (2)

where X ∈ RN is the vector of fluid grid coordinates.

2.2. Sensitivity analysis via the adjoint approach

Consider an aerodynamic shape optimization problem of the form J ∗ = min
α

J (W(α),X(α)) under

the constraints R(W(α),X(α)) = 0, where α is the vector of design variables controlling the shape of

the body. A gradient-based method is required to efficiently minimize J . In aerodynamics, the adjoint105

technique is the method of choice to compute the sensitivities [19, 15]. The adjoint linear system is

written as:

[
∂R

∂W

]T
λ = −∂J T

∂W
(3)

where the superscript T stands for the transpose operator. In the remainder of this paper, the transpose

of the exact flux Jacobian matrix will be denoted A =
[
∂R
∂W

]T
.

3. Minimal residual Krylov subspace methods combined with spectral deflation110

In this section we focus on a particular minimal residual norm Krylov subspace method for the solution

of linear systems with a non-symmetric real coefficient matrix of type

Ax = b, A ∈ RN×N ; b, x ∈ RN (4)

A right-preconditioned system is considered so that system (4) becomes

AM(t) = b, (5)

x = M(t) (6)

with t ∈ RN and M : RN → RN the preconditioning operator which may be a nonlinear function.

3.1. Flexible GMRES algorithm with right preconditioning115

Saad has proposed a minimal residual norm subspace method based on the standard GMRES approach

[1] that allows a variable nonlinear preconditioning function Mj : RN → RN at each iteration j, [4].
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Starting from an initial guess x0, the flexible Arnoldi relation is written as:

AZm = Vm+1H̄m, (7)

where the matrices Vm+1 ∈ RN×(m+1), Zm ∈ RN×m and H̄m ∈ R(m+1)×m stand for the orthonormal basis

of the Krylov space, the solution space and the upper Hessenberg matrix respectively. The approximate120

solution is written as xm = x0 + Zmym where ym minimizes ||r0 − AZmy||2 over x0 + span{Zm}, with

Zm = MVm = [M1(v1), ...,Mm(vm)] and both Zm and Vm need to be stored. We point out that the

operator M represents the action of the nonlinear operators Mj on the set of basis vectors vj .

The restarted FGMRES(m,mi) algorithm is presented in Algorithm 1. We denote by mi the size of

the Krylov subspace associated to the GMRES solver devoted to the inner linear system. We point out125

that the stopping criterion is essentially based on the true relative residual defined by ||b−Ax||
||b|| (see [20]

for several definitions of stopping criteria and some practical considerations for the implementation of

the key points of the algorithm). Still from an implementation point of view, the relative least-squares

residual is currently used as a cheap approximation of this quantity at each Arnoldi iteration.

Algorithm 1 FGMRES(m,mi)

1: Choose an initial guess x0 and a convergence threshold ϵ

2: Compute r0 = b−Ax0, β = ||r0|| and v1 = r0/β ;

3: c = [β, 0...0]T ∈ Rm+1

4: for j = 1, ...,m do

5: zj = Mj(vj)

6: w = Azj

7: for i = 1, ...j do

8: hi,j = vTi w

9: w = w − hi,jvi

10: end for

11: hj+1,j = ||w|| and vj+1 = w/hj+1,j

12: Solve the least-squares problem miny||c− H̄jy|| for y∗

13: Exit if ||c− H̄my∗||/||b|| ≤ ϵ

14: end for

15: Compute xm = x0 + Zmy∗ where Zm = [z1, ..., zm]

16: Set x0 = xm and go to 2

The relative true residual is only computed at the end of each cycle and is used to construct the first130
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vector of the next Krylov subspace basis. In the case of large and ill-conditioned linear systems, least-

squares and true residuals may differ due to loss of orthogonality during the construction of the Krylov

basis. A standard way to tackle such a phenomenon is to ask for a second iteration of the Modified Gram-

Schmidt algorithm (loop from line 7 to 10) in order to reinforce the orthogonality of the Krylov basis. In

this paper, the nested GMRES strategy is adopted for the numerical experiments. Two preconditioning135

strategies are considered for the inner GMRES. The first one consists in a block version of a standard

LU-SGS iterative solver. LU-SGS is applied to a first order diagonally dominant upwind approximation

of the flux Jacobian matrix inspired by [3]. This operator is based on a first order spatial discretization

of the convective and of the viscous fluxes using a simplifying thin layer assumption [16]. This strategy

leads to a very compact stencil for the preconditioning matrix which will be denoted by JAPP
O1 in the140

sequel of the paper. The second one is a Block Incomplete LU (BILU(k)) factorization applied to either

an approximate or exact flux Jacobian matrix. For the so-called first-order exact Jacobian matrix JEX
O1

a first-order spatial Roe scheme is used for the discretization of the mean-flow convective fluxes and a

5-point corrected centered discretization scheme is used for the diffusive fluxes. More specifically, the

spatial gradients at the cell interfaces are modified to avoid high frequency oscillations (see [21] or [22]).145

The BILU(k) preconditioner will be applied either to the first-order approximate Jacobian matrix JAPP
O1 ,

or to the first-order exact Jacobian matrix JEX
O1 . JEX

O1 is different from JAPP
O1 when it comes to memory

footprint. More specifically, JEX
O1 has a 9-point stencil in 2D whereas a 5-point stencil is associated with

JAPP
O1 . In 3D, we have a 7-point stencil for JAPP

O1 and a stencil of 19 points for JEX
O1 . Consequently, a

better robustness is achieved but at the price of about twice the storage for JEX
O1 compared to JAPP

O1 . For150

the high-order DG formulation, an exact third-order Jacobian matrix JEX
O3 is built. Only the BILU(0)

preconditioner is considered in the latter case. The size of the matrix reads NeltNeqNp where Nelt, Neq,

and Np represent the numbers of mesh elements, of equations, and of degrees of freedom per equation

respectively. We have Np = 1 for the FV computations and either Np = 6 in 2D, or Np = 10 in 3D for

the DG computations. Ignoring boundary conditions, the number of nonzero entries in the matrix can be155

estimated through NNZ = (1 + 2sd)Nelt(NeqNp)
2 where 1 + 2sd is the number of points in the stencil

and d the space dimension. For the DG computations, we always have s = 1, but Np > 1 which usually

results in larger NNZ values compared to FV even when Nelt is lower. Both matrices are sparse and

contain dense blocks of size NeqNp which will have a strong impact on the performances of the linear

solvers as shown in the numerical experiments.160

We point out that the relevant numerical ingredients that characterize the GMRES algorithm are

the matrix product (step 5 in Algorithm 1), the preconditioning step (step 4) and the scalar product

(step 7). These algebraic operations are global in conjunction with a domain decomposition method.
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More specifically, the globalization of the preconditioner (step 4) is achieved with a Restricted Additive

Schwarz method [23]. In addition, the product by the operator A (step 5) is exact. We thus get a global165

and parallel FGMRES(m,mi).

3.2. Domain decomposition-based preconditioners

We now describe two stationary block preconditioners that are used in this work and that have been

enhanced with overlapping techniques. The first one is a combination of a Restrictive Additive Schwarz

(RAS) domain decomposition method and of a LU-SGS relaxation strategy. It will be applied only to170

the FV problem. The second one a is a BILU(0) factorization over and extended partition of the fluid

domain by some level of overlapping and will be applied to the DG problem.

3.2.1. Overlap Restrictive Additive Schwarz LU-SGS preconditioner

The LU-SSGS solver is used as a stationary preconditioner for the structured multi-block FV adjoint

solution. It consists in an iterative technique combining a LU (Lower-Upper) factorization with a relax-175

ation method [24]. In practice, we set the LU-SSOR relaxation parameter ω to 1, and the method is then

referred to as LU-SGS. In the context of preconditioning, we are interested in the approximate solution

of the linear system Mx = v. In the factorization step, the implicit operator M is decomposed into a

lower triangular matrix L, a diagonal matrix D and an upper triangular matrix U : M = L+D + U .

The solution of the system is then approximated by relaxation [16, 3], performing forward and back-180

ward successive sweeps. Each relaxation cycle involves two stages:

(U +D)xp+ 1
2 = v − Lxp (8)

(L+D)xp+1 = v − Uxp+ 1
2 (9)

where p ∈ N is index of the current cycle, starting with x0 = 0. For one cycle of relaxation we can explicit

the corresponding preconditioning operator as MSGS = (U + D)D−1(L + D). It is worth mentioning

that in the preconditioning context, typically 2 to 4 cycles (of 2 sweeps) are enough to provide a useful

approximate solution. Besides, as we deal with block-structured problems, a block LU-SGS algorithm185

has been implemented, i.e., D is block-diagonal. As already mentioned, the matrix JAPP
O1 is diagonally

dominant by construction. However, when the turbulence model is linearized our numerical experiments

have shown that it is beneficial to add a diagonal of the form I/∆τ where ∆τ is consistent with a standard

local pseudo-time step typically introduced in the implicit stage of a nonlinear inexact Newton steady

solver. The local pseudo-time step is computed from a prescribed target Courant-Friedrichs-Lewy (CFL)190

number and from the steady-state flow field. This requires a trial and error strategy to choose the right
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CFL number but, as we will see, an appropriate CFL can dramatically accelerate the convergence of the

adjoint solver.

In a parallel multi-domain coupling context, the part of the right-hand side of (8, 9) associated with

overlapping cells is updated before each stage in order to account for the information from connected195

blocks. For the current stage, depending on the ordering of the blocks, the right-hand side is built from

the solution at the previous stage or from the blocks whose solution is already up-to-date. As we deal

with first order flux Jacobian matrices, the size of the overlap is one. In the remainder of this paper the

notation LUSGS(N,CFL) refers to N stages of sweep, that is, N is an even number.

3.2.2. Improved overlap BILU(0) preconditioner200

For the unstructured DG adjoint solution, the BILU(0) preconditioner used in the inner GMRES

solver is combined with the RAS method. Such a strategy aims to enhance the convergence of the inner

system when the number of partitions increase and therefore the overall convergence of the outer system.

Interactions between neighboring partitions are taken into account in order to enlarge the slice of the

global implicit matrix that is carried out per partition. As the DG formulation requires a compact205

stencil of size one, we only need to exchange blocks from our direct neighbors by MPI. The BILU(0)

algorithm is then applied on this slice to construct an enlarged local preconditioning matrix. To apply

the preconditioning step on a global vector, a restriction operator is first used to obtain the vector

corresponding to the enlarged slice of the current partition thanks to an extra MPI communication. At

the end, no prolongation operator is played and we only retain entries of the vector associated with the210

original slice of the current partition. The matrix-vector product with the global implicit matrix is still

performed in parallel in an exact way.

3.3. Deflation approach

The main drawback of the restarted GMRES(m) is the loss of spectral information contained into the

current Krylov subspace during the restarting procedure. Let us recall the definition of a Ritz pair [6]215

as it plays an important role in the strategy of deflated restarting. The standard Rayleigh-Ritz problem

specifies an orthogonality condition on the spectral residual:

(Ay − λy) ⊥ Km(A, r0) ∀y ∈ Km(A, r0) (10)

Using y = Vmg and the standard Arnoldi relation AVm = Vm+1H̄m in (10), we have

Hmg = λg (11)
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Thus, the spectral residual norm in (10) of the Ritz pair {λ, y = Vmg} satisfies:

∥A(Vmg)− λ(Vmg)∥ = ∥A(Vmg)− VmHmg∥ = ∥Vm+1H̄mg − VmHmg∥ = |hm+1,m||eTmg| (12)

From a small value of |hm+1,m||eTmg|, the Arnoldi method takes as an approximate eigenvalue-eigenvector220

pair of the operator A the Ritz pair [25, 26]. Indeed, neglecting the last row of the rectangular upper

Hessenberg matrix H̄m leads to:

Hm = V T
mAVm (13)

Therefore, the spectrum of Hm naturally approximates a part of the spectrum of AM. The idea of

deflation techniques is to keep relevant spectral information from Hm in the search space of the next

cycle to expect a better convergence of the Krylov iterative methods. In [7], Giraud et al. take into225

account both smallest and largest eigenvalues to maximize the deflation effect. In contrast, Morgan [5]

only deflates the smallest ones. This last strategy will be adopted for our numerical experiments.

Actually, Ritz values of the operator A give a good approximation of its exterior eigenvalues. Un-

fortunately, interior eigenvalues are of greater interest because they are generally responsible for the

convergence stagnation. The harmonic Ritz values of A are defined as the Ritz values of A−1 with230

respect to the subspace AKm(A, r0). The resulting orthogonality condition can be expressed as:

(A−1y − θy) ⊥ AKm(A, r0) ∀y ∈ AKm(A, r0) (14)

The orthogonality condition for harmonic Ritz values leads to the generalized eigenvalue problem:

θH̄T
mH̄mg = HT

mg, (15)

After some algebraic manipulations, (15) can be reformulated as a standard eigenvalue problem:

(Hm + h2
m+1,mH−T

m emeTm)g = θ−1g. (16)

where θ−1 is the harmonic Ritz value and the corresponding harmonic Ritz vector is y = AVmg. As

harmonic Ritz values of A are Ritz values of A−1, exterior eigenvalues θ of A−1 are now supposed to be235

well approximated. Therefore, theirs inverses θ−1 are expected to be good approximations of eigenvalues

of A in the neighborhood of zero.

Obviously, in exact arithmetic solutions to (15) and (16) are identical. But it is not the case in

finite precision since the operator H̄T
mH̄m is usually ill-conditioned in the fully linearized turbulence case.

Therefore, the accurate estimation of the eigenvectors could be strongly altered and lead to stagnation240

of the relative true residual of the GMRES process. In contrast, we get better results at the conditioning

level with the standard eigenvalues problem overcoming the stagnation of the relative true residual.
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As mentionned by Giraud et al. [7], the flexible Arnoldi relation obtained at each restart within the

FGMRES with deflated restarting (FGMRES-DR) framework given by

AZk = Vk+1H̄k, (17)

holds with Zk = ZmPk, Vk+1 = Vm+1Pk+1 and H̄k = Pk+1H̄mPk where Pk ∈ Rm×k corresponds to the245

orthonormal matrix whose columns are spanned by the eigenvectors of (16).

Also, the right-hand side of the least-squares problem is computed at each restart as c = V T
m+1rm

which requires 2N(m+1) operations. Rollins and Fichtner [27] have proposed an efficient way to compute

c so that we can save some inner products. Indeed, they demonstrate that the residual rm is a linear

combination of the columns of the deflation subspace Vk+1. Consequently, we have c = V T
k+1rm with250

2N(k + 1) operations. Also, they improved the construction of Pk and in particular the last column of

this matrix which is usually chosen as the vector c − H̄mym. More specifically, they demonstrated that

the vector c− H̄mym is colinear to the vector [−βfT 1]T with f = H−T
m em. The explicit relation is given

below:

c− H̄mym =

(
−βf

1

)(
ω − βfT v

1 + β2fT f

)
, (18)

where v and ω are respectively the first m rows of c and the last element of c.255

In exact arithmetic, using the vector [βfT 1]T or the vector c − H̄mym as the last column of Pk

is equivalent due to the colinearity property. However, in finite precision arithmetic, the former vector

is numerically preferable. More precisely, the use of the vector f both to compute the eigenvectors of

Hm + β2feTm and to construct the last column of matrix Pk enables to reduce the rounding errors in

the Arnoldi relation after a restart (see [27]). Consequently, maintaining the Arnoldi relation to a high260

accuracy leads to a better convergence of the GMRES solver. All these numerical considerations have

been illustrated in the next section.

4. Numerical experiments

To evaluate this GMRES solver capabilities, two dedicated test cases have been defined. The first test

case was conducted on an adjoint system of equations based on the turbulent transonic RANS flow over265

a two-dimensional ONERA OAT15A airfoil. The Mach number is 0.734, the Reynolds number based on

the chord and freestream conditions is 6.5 × 106 and the angle of attack is 1.15°. The second test case is

based on an adjoint system of equations for the three-dimensional turbulent transonic RANS flow over

the ONERA M6 wing at Mach number M = 0.84, at Reynolds number, based on the mean chord and
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freestream conditions, of 1.17 × 107 and with an angle of attack of 3.06°. In both computations the Spalart270

Allmaras one equation turbulence model has been selected. We focus on the solution of the adjoint system

with the fully linearized turbulence model. For the FV solver, the numerical scheme is a second order

upwind Roe spatial discretization associated with a MUSCL reconstruction and a van Albada limiter.

For the preconditioning step JEX
O1 and JAPP

O1 are considered. For the DG solver, the numerical scheme

relies on the Roe flux for the convective term and on the Bassi and co-workers (BR2) [28] formulation275

for the diffusive term, and JEX
O3 is used as the preconditioner.

We emphasize that the FGMRES solvers have been implemented in different computing environments.

For instance, the FGMRES solver dedicated to the FV problem has been developed in a modular Python

framework. The characteristic algebraic operations (i.e scalar product, preconditioning step and matrix

product) have been directly used by wrapping, via the open source software tool SWIG, the corresponding280

routines from the kernel of the CFD solver elsA. This organization is very flexible as it allows a rapid

prototyping of promising numerical strategies in a Python environment while still achieving a good level

of performance. In contrast, the FGMRES solver dedicated to the DG problem has been implemented

in a Fortran environment with a different data structure. Therefore, no comparison can be drawn from

a high-performance computing point of view.285

4.1. ONERA OAT15A airfoil test case

The ONERA OAT15A airfoil has a thick trailing edge such that the initial structured mesh is made

of two blocks. The structured mesh for the FV calculation is composed of 158 208 quadrilaterals and the

unstructured mesh for the DG one of 64 416 quadrilaterals.

Figure 1a and Figure 1b depict the mesh partitioning obtained on 16 cores for the scalability study.290

For the unstructured case, a general matrix-based algorithm [29] is implemented to construct lines

by grouping strongly-connected degrees of freedom. The definition of these lines relies on a directional

stiffness measure extracted from a stiffness matrix that represents the strength of couplings between the

unknowns. Then, a multilevel k-way graph partitioning algorithm from the METIS library [30] is applied

based on a strategy taking into account weights on both the vertices and the edges of the graph. Finally,295

four weights have been defined and calibrated to distinguish mesh cells belonging to a strong connection

line but also mesh edges whose one of the parent cell is affected. The main interest is to preserve as much

as possible certain critical areas of the original domain from being arbitrarily partitioned. For example in

the case of a shock wave propagation or a turbulent boundary layer development. The resulting largest

load imbalance for the unstructured case finally is of the same order as that obtained for the structured300

case and is about 8 %.
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(a) (b)

(c) (d)

Figure 1: 2D transonic turbulent flow over the OAT15A airfoil: (a) and (b) illustrate the structured and unstructured

meshes partitioned into 16 subdomains. The corresponding steady-state density field is illustrated in (c) and (d) for the

FV and DG schemes respectively.

4.1.1. Adjoint sensitivity analysis

Recall that we want to solve the adjoint system (3) efficiently by using the inner-outer GMRES solver

with deflated restarting denoted by FGMRES-DR(m,mi,k). We adopt the relevant numerical parameters

in Table 1. The inner GMRES solver will not be restarted as only small sizes of the Krylov inner subspace305

will be considered.

All computations are performed with 16 cores on 16-blocks structured and unstructured grid thus

with one domain associated with each core. The underlying algebraic problem size is fixed to 1 million

for the FV scheme and 2 million for the DG scheme. The number of entries is about 35 million and 288

million for the FV scheme and the DG scheme respectively. Figure 2 displays the relative least-squares310
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m 60 Size of the outer Krylov space

k 20 Number of deflated vectors

tol outer 1.e-9 Relative convergence threshold

mi 20 Maximum size of the inner Krylov space

tol inner 0.5 Convergence threshold for the inner GMRES

Table 1: FGMRES-DR relevant numerical parameters

residual norm convergence histories of FGMRES-DR for both FV and DG schemes. In the FV case,

we notice a stagnation of FGMRES(60,20) for both LU-SGS and BILU(0) algorithms applied to the

first-order approximate Jacobian matrix JAPP
O1 . To overcome this stagnation it is natural to extend the

approximation space Km in order to capture as much as possible the eigenvalues of AM. Since we cannot

afford to extend the projection space due to memory limitation, the deflation strategy remains the best315

alternative to retrieve the residual convergence of a quasi-full FGMRES solver at low computational cost.

A deflation of 30% of m is sufficient and the resulting FGMRES-DR(60,20,20) solver, preconditioned by

LU-SGS(6) or BILU(0) now converges as can be seen in Figure 2a. However, when it comes to use the first

order exact Jacobian matrix JEX
O1 , FGMRES(60,20) already converges in a few iterations. In this case,

deflating does not lead to any improvements which illustrates how robust JEX
O1 is. The downside of this320

is that we need approximately twice the storage of JAPP
O1 . Figure 2b shows convergence histories of both

FGMRES(60,20,20) and FGMRES-DR(60,20,20) for the DG case. From a DG formulation, resulting

Jacobian matrices are often ill-conditioned, especially when the spatial order of the scheme becomes

high. A variant of the BILU(0) factorization applied to expanded domains (by some level of overlapping)

has been implemented in order to globalize as much as possible the preconditioning effect on the whole325

fluid domain. In both cases, the residuals converge in a few iterations and deflation is shown to slightly

improve the convergence rate. We have reported the performance details of the two solvers in Table 2

and Table 3 for both FV and DG problems.
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(a) FV case (b) DG case

Figure 2: Impact of deflation for various preconditioners. The relative residual norm convergence history is plotted with

respect to iterations. The impact of deflation is dramatically effective both on the LUSGS and BILU preconditioners applied

to the first-order approximate Jacobian matrix. We recall the numerical parameters of the FGMRES-DR solver as follows:

m = 60,mi = 20 and k = 20.

The number of nonzero entries (NNZ) of the preconditioner is reported in Table 2 and Table 3.

M = BILU(0) FGMRES(60,20) FGMRES-DR(60,20,20)

Jacobian matrix JEX
O1 JAPP

O1 JEX
O1 JAPP

O1

NNZ (million) 28 21 28 21

# its 74 - 74 546

# Mvps 1498 - 1321 11381

Table 2: Performance of FGMRES-DR for the FV method

M = BILU(0)+RAS FGMRES(60,20) FGMRES-DR(60,20,20)

Jacobian matrix JEX
O3 JEX

O3

NNZ (million) 288 288

# its 111 93

# Mvps 2500 1940

Table 3: Performance of FGMRES-DR for the DG method
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4.1.2. Scalability330

We have demonstrated in the previous section how competitive the deflated inner-outer GMRES is

when applied to stiff problems. As already mentioned, the inner GMRES is by construction a global

preconditioner and we are then interested in how its performances scale in a parallel environment. Here,

we pay a special attention to the strong scalability in the sense that the problem size is fixed while varying

the number of cores.335

For the FV scheme, we notice in Figure 3a that the efficiency reaches up to 75 % for the LU-SGS(6)

applied to JAPP
O1 while the speedup for the BILU(0) applied to JEX

O1 reaches up to 80 %. The same results

have been observed for the DG scheme with BILU(0) and RAS algorithms since an efficiency of 85 %

for FGMRES(60,20) as well as for the FGMRES-DR(60,20,20) is measured (Figure 3b). We point out

that the local nature of the BILU(0) preconditionner does not have a real impact on the robustness of340

the inner-outer GMRES methods unlike the standard GMRES [31]. Indeed, one of the main advantages

of the inner-outer GMRES is the global nature of the inner GMRES preconditionner since it solves the

same initial linear system (4).

For both structured and unstructured cases, the number of iterations to converge the adjoint problem

shows a variation up to 20% compared to the two-subdomain reference configuration.345

(a) FV scheme (b) DG scheme

Figure 3: Strong scalability analysis for FGMRES-DR(60,20,20) solvers on the OAT15A adjoint system.
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4.2. ONERA M6 wing test case

The second test case corresponds to the steady transonic turbulent flow around the ONERA M6 wing.

For the FV method, the structured mesh is composed of 60 blocks for a total of 3.6 million of cells. For

the DG case, the unstructured high-order mesh is composed of curved quadratic tetrahedra and wedges

for a total of 168 956 cells. Figure 4 depicts both the mesh and the steady state pressure field. For the350

FV scheme, the algebraic problem size is fixed to 21 million with a number of entries around 2 billion

against 10 million with a number of entries around 3.2 billion for the DG scheme.

(a) (b)

(c) (d)

Figure 4: 3D transonic turbulent flow over the ONERA M6 Wing: (a) and (b) represent respectively the wing geometry

for structured and unstructured meshes while the steady state pressure field is illustrated in (c) and (d) for both FV and

DG computations.
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4.2.1. Standard Krylov subspace methods

This section aims at demonstrating how the standard GMRES solver suffers from numerical limitations

when tackling stiff problems. It is crucial to point out this aspect since many authors frequently employ355

the standard GMRES in their numerical experiments. Hence, it is worthwhile to assess the behavior of

standard GMRES compared to its flexible counterpart for stiff problems. To perform a fair comparison,

the size of the respective Krylov subspaces are chosen in order to get the same memory footprint. Based

on a maximum size of 60 and 20 vectors for the outer and inner Krylov spaces respectively, the memory

footprint of FGMRES-DR amounts to the storage of 140 vector fields.360

The relative true residual norm is usually expected to be of the same order to that for the convergence

of the stationary problem. But in several specific contexts, higher accurate solutions are required so we

are looking for true residual norms as close as possible to machine epsilon.

For such requirements, the Modified Gram-Schmidt process (MGS) exhibits limitations because it is

known to perform poorly when input vectors are almost colinear. In this case a standard remedy is to365

apply a re-orthogonalization step thus doubling the cost of the Arnoldi procedure. For computational cost

reasons, the residual convergence history is assessed with the least-squares residual while the quality of the

convergence is given by the true residual which is only computed at the end of each cycle. Both residuals

are plotted in Figure 5. All operations with the GMRES-DR solver are performed in a double-precision

arithmetic. When a single step of MGS orthogonalization is applied, the least-squares residual reaches370

the required tolerance while the corresponding true residual stagnates at 10−6 for BILU(0) applied to

JEX
O1 in the FV method. For the DG case, true and least-squares residuals are quite similar up to 10−2.

At this level, the true residual stagnates while the least-squares residual decreases up to the prescribed

tolerance. This phenomenon comes essentially from the rounding errors during the orthogonalization

process since the size of the Krylov subspace is sufficiently large to give rise to numerical errors. The375

corresponding convergence histories for two steps of orthogonalization are given in Figure 5. For the FV

problem, we get a gain of two orders of magnitude with a final relative true residual at 10−8. For the

DG problem, the gain is even better with a converged relative true residual at 10−9. Another important

aspect that explains why the GMRES-DR solver does not converge at the lower tolerance in the FV

case comes from the quality of the preconditioner. We point out that the DG method uses essentially380

the third-order operator JEX
O3 as a preconditioner, which corresponds to the same order of accuracy as

the discretization scheme, while the FV method simply relies on approximate first order preconditioning

operators while a second order spatial discretization scheme is applied for the mean flow solution. In an

attempt to increase the quality of the preconditioner we used a BILU(1) factorization of on the first-order

exact Jacobian matrix JEX
O1 . As can be seen in Figure 5a, the corresponding gain is however marginal.385
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(a) FV case (b) DG case

Figure 5: True and least-squares residual norm convergence histories by applying two steps of Gram-Schmidt orthogonal-

ization procedure: least-sq. res. stands for least-squares residual while true res. stands for true residual. We recall the

numerical parameters of the GMRES-DR solver as follows: m = 140 and k = 42

4.2.2. Inner-Outer Krylov subspace methods

For the nested strategy, we perform the same comparison study keeping the same numerical param-

eters detailed in Table 1 of subsection 4.1.1. Unlike the two-dimensional OAT15A test case, the FGM-

RES(60,20) solver preconditioned either by LU-SGS(6) or BILU(0) applied to JAPP
O1 converges without

the deflation strategy. In Figure 6a, FGMRES(60,20) exhibits a good convergence with 150 iterations for390

BILU(0) against 377 for LU-SGS(6). However, the convergence is a little sensitive to the deflation effect

with a gain of 22 iterations for LU-SGS(6) and 15 iterations for BILU(0). Even though the precondi-

tioning matrix JAPP
O1 is less robust than JEX

O1 , it still remains interesting from a memory point of view

as we have explained for the 2D test case. Actually, it is more crucial to take into account the memory

factor when it comes to solve three-dimensional stiff problems. Indeed, we recall that JAPP
O1 has a stencil395

of 7-points in 3D while a stencil of 19-points is associated with JEX
O1 , that is, a ratio of 2.7 against 1.8 for

the two-dimensional case.
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(b) DG case

Figure 6: Impact of deflation for various preconditioners. The relative residual norm convergence history is plotted with

respect to iterations. The increase of the diagonal dominance of the LU-SGS preconditioner by addition of a scalar diagonal

I/∆τ seems very promising but the strategy remains less effective than the one based on BILU. The impact of deflation is

not very conclusive for the most efficient BILU preconditioner as only one restart is performed in this case. We recall the

numerical parameters of the FGMRES-DR solver as follows: m = 60,mi = 20 and k = 20.

(a) FV case
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(b) DG case

Figure 7: Impact of deflation for various preconditioners. The relative residual norm convergence history is plotted with

respect to Jacobian-vector products. The hierarchy of the preconditioners remains the same as the one in Figure 6.
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In order to better highlight the impact of deflation we have conducted additional numerical simulations

in the FV case by varying the size of the inner Krylov space with 6, 10, 15 and 20 vectors for the BILU

type preconditioners. Figure 8 shows that when at least two restarts are performed the deflation step400

is clearly of interest in terms of iterations. Interestingly, the benefit in terms of matrix-vector products

is not similar except for the lowest size of the inner Krylov space. This suggests that for this specific

computation the best compromise in terms of memory and efficiency is to choose an inner Krylov size of

15.

Figure 8: Impact of deflation for various sizes of the inner Krylov space for FV case. Adjoint relative residual norm con-

vergence history with respect to iterations (left) and Jacobian-vector products (right) for FGMRES(60,mi) and FGMRES-

DR(60,mi, 20) with mi = 6, 10, 15, 20.
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Figure 9: Impact of deflation for various sizes of the inner Krylov space for DG case. Adjoint relative residual norm con-

vergence history with respect to iterations (left) and Jacobian-vector products (right) for FGMRES(60,mi) and FGMRES-

DR(60,mi, 20) with mi = 6, 10, 15, 20.

4.2.3. Scalability405

We have shown how the inner-outer GMRES solvers exhibit a satisfactory scalability with regard to

the two-dimensional OAT15A airfoil. It would be advisable to retrieve the same scalability on the M6

wing configuration for both FV and DG formulations.

For the scalability analysis, we consider five configurations corresponding to the partition of the initial

domain into 2, 4, 8, 16 and 24 sub-domains to be performed on 24-core compute nodes.410

For the unstructured case, the line construction algorithm [29] previously used for the two-dimensional

OAT15A test-case has been applied. Finding a relevant set of weights for the METIS algorithm was more

difficult on this three-dimensional test-case. A good trade-off has finally been found with a largest load

imbalance about 5 %. The number of iterations to converge the adjoint problem is sensitive to the number

of cores with a variation up to 15 % compared to the two-subdomain reference configuration. As it could415

have a significant impact on such a challenging test-case, another strategy has been adopted and relies

on the CHACO software [32] for partitioning graphs. Spectral methods partition the graph using the

eigenvectors of a matrix constructed from the graph. We select the simplest spectral method which is a

weighted version of spectral bisection. This method uses the second lowest eigenvector of the Laplacian

matrix of the graph to divide it into two pieces [33]. This results invariably to a quite perfect partitioning420

in terms of number of cells with almost one cell per partition of difference. The number of iterations to

converge the adjoint problem shows now a variation up to 6 %.
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(a) FV case (b) DG case

Figure 10: Strong scalability analysis for FGMRES-DR(60,20,20) solvers on M6 wing adjoint system: both 1 node and 2

nodes have been plotted in the DG case.

Figure 10 depicts parallel behavior of the FGMRES-DR solver. In Figure 10b, for the DG case,

scalability analysis is performed on one node with one MPI process per core (solid line), and on two

nodes (dashed line), with a balanced distribution of the MPI processes per node. This exercise exhibits425

a memory-bandwidth limitation for this test-case : the parallel efficiency is about 55% on one node and

grows up to 85 % on two nodes. Dense linear algebra kernels (BLAS, LAPACK) are applied on blocks of

size 60×60, corresponding to the number of degrees of freedom per mesh element, of the implicit matrix.

But there are memory-bound operations with a low arithmetic intensity.

For the FV case, the same exercise has been performed with different scalability results. More specifi-430

cally, the parallel efficiency is about 80 % regarding the BILU(0) preconditioner and 70 % for the LU-SGS

one on one node. When it comes to use two nodes, the parallel efficiency grows up to 80 % for all pre-

conditioners. The matrix operations now work on blocks of smaller size 6×6 and are therefore less prone

to memory-bandwith limitations.

435

Since the preconditioner does depend on the number of sub-domains, we have reported in Table 4 the

variation of the number of iterations of the FGMRES-DR according to the number of the sub-domains.
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# its (M)

# sub-domains
2 4 8 16 24

# its (LUSGS(6,150)) 190 189 190 190 190

# its (LUSGS(6,inf)) 348 348 349 349 348

# its (BILU(0), JO1
APP ) 134 135 134 134 135

# its (BILU(0), JO1
EX) 99 98 99 99 98

Table 4: Impact of the number of sub-domains on the number of iterations for FGMRES-DR(60,20,20). As the inner

GMRES preconditionner is global by construction, we see no impact on the number of iterations as expected.

5. Some numerical considerations

In our numerical experiments we have considered low convergence thresholds because it is ac-

knowledged that adjoint solutions may exhibit oscillations or still be locally under-resolved for moderate440

relative residual decrease (typically 3 orders of magnitude). This strong convergence is only attainable

in practice if a number of precautions is taken in the implementation of the FGMRES-DR solver. First,

the orthogonality of the Krylov basis at the outcome of the Arnoldi process or after a deflation step must

be preserved as much as possible to ensure convergence in a reasonable number of iterations for stiff

problems. This point was studied in [27] where the authors advocate the use of a re-orthogonalization445

during the MGS process. Morgan [5] also proposed an economical strategy where only the last Krylov

vector of the deflated basis is re-orthogonalized with respect to other deflated basis vectors. The initial

physical equations should always be solved in their non dimensionalized form. For large ill-conditioned

linear systems, Saad [24] also recommends to apply a scaling to all the rows (or columns) e.g., so that

their 1-norms are all equal to 1; then to apply a scaling of the columns (or rows). This practice is strongly450

recommended before any ILU type factorization. Additionally, recognizing that the linearization of the

turbulence model dramatically deteriorates the condition number of the system matrix, Chisholm and

Zingg [34] advice to apply a specific scaling coefficient to this particular equation. Additional numer-

ical ingredients like the mixed-precision nested GMRES, i.e., single precision floating point arithmetic

for the inner GMRES, and the application of the BILU factorization to the RAS partition of the fluid455

domain have proven beneficial. Last but not least, the availability of different physical approximations

to build the candidate flux Jacobian matrix for the preconditioner is very interesting to keep a good

compromise between efficiency and memory footprint as it has a strong impact on the size of the stencil

of this operator. Finally, some memory saving improvements were proposed in [7] to perform inplace the

matrix-matrix product leading to the new deflated Krylov vector basis at the starting of the next cycle.460

In fact in a nested FGMRES-DR framework this is not required anymore because the temporary memory
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required by this product is already available for the storage of the inner Krylov subspace and is then

naturally re-used during the outer level deflation step. It is also worth mentioning that in practice the

inner GMRES solver is never restarted considering the small size of the inner Krylov subspace.

Another important aspect that should be highlighted is the numerical limitation of the Modified Gram-465

Schmidt process. Indeed, in terms of number of domains in the mesh partition, it requires asymptotically

more messages and synchronization points in parallel, and asymptotically more data traffic between levels

of the memory hierarchy.

6. Concluding remarks

Flexible GMRES solvers have been investigated for the solution of large sparse linear systems aris-470

ing from discrete stiff adjoint problems when the standard GMRES fails. A FV and a high-order DG

discretizations are considered to provide linear systems of different complexity from test-cases of opti-

mization problems of turbulent flows with RANS modelling. Condition number and dimensions of the

resulting matrices change but also performance of the underlying basic linear algebra operations. Varying

the discretization methods contributes to a better overview of the solver capabilities. Relevant numerical475

ingredients have been developed to improve robustness and efficiency of the inner-outer GMRES strategy

and concern preconditioning techniques and deflation strategy. Numerical experiments have been con-

ducted on turbulent transonic flows over the two-dimensional supercritical ONERA OAT15A airfoil and

over the three-dimensional ONERA M6 wing.

For the first ingredient, with the FV scheme, we have investigated the impact of using different480

approximations of the flux Jacobian matrix for the preconditioning step. The efficiency of the nested

GMRES has been observed when deflation technique with the first order approximate Jacobian matrix

is considered or by using the first order exact Jacobian matrix without deflation but at the price of twice

the memory cost. The use of an exact linearization of the DG scheme to build the preconditioner offers

very good performance of the linear solvers in terms of robustness and convergence.485

For the second ingredient, significant gains has been obtained on the convergence speed. Not only

eigen-information can be recovered at low cost using by-products of the Arnoldi iterative process, but

matrix-vector products involving the Jacobian matrix can be saved at the beginning of each new cycle

thanks to the recycling of eigenvectors into the new Krylov basis.

On top of that, a good parallel scalability of the FGMRES is achieved thanks to the inherent global490

effect of the inner GMRES. The interesting conclusion of this work is the capability of inner-outer GMRES

strategy to solve stiff problems and exhibit the superlinear convergence of the full GMRES, but with a

lower memory footprint. Strategies to select eigen-information and calibration rules for the numerical
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parameters driving the solution of inner and outer systems might be worth taking into consideration in

the future.495
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