Development of a Multiobjective Scheduler for Semiconductor Manufacturing
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Scheduling of semiconductor wafer fabrication system is identified as a complex problem, involving multiple and conflicting objectives (meeting due dates and minimizing waiting time for instance) to satisfy. In this study, we propose an effective approach based an artificial neural network technique embedded in a multiobjective optimization loop for multi-decision scheduling problems in a semiconductor wafer fabrication environment.

Introduction

Scheduling of semiconductor wafer fabrication system is identified as a difficult task, mainly because of the typical features of the process scheme, such as complex product flows (the so-called wafer fab is indeed a multipurpose plant), high uncertainties in operations, rapidly changing products and technologies (Ellis et al., 2004). It is thus a significant challenge to develop effective scheduling methods in wafer fabrication. Discrete-event simulation (DES) is one of the most widely used methods to study, analyze, design, and improve manufacturing systems. The combined used of a DES and an optimization procedure based on a genetic algorithm was an efficient solution to short-term job-shop scheduling problems and was adopted in our previous works (Charles et al., 2003). In spite of its acknowledged benefits, this kind of approach often reaches its limits in the industrial practice because of the highly combinatorial nature of the problem. In addition, the main emphasis of much of the work on scheduling has been on the development of predictive methodologies with a single objective. Actually, production managers have to cope with various objectives, which contributes to scheduling complexity: meeting due dates is an important goal in low-volume and high variety production circumstances within competitive market environments; another major objective in scheduling of semiconductor wafer fabrication is reducing waiting time for work-in-process (WIP) inventory to improve responsiveness to customers: in addition, the shorter the period that wafers are exposed to contaminants while waiting for process, the smaller the yield loss. Increasing the throughput is also an important stake, since the investment in fabrication equipment is capital intensive. In this study, we propose an approach based on an artificial neural network (ANN) technique coupled with a multiobjective genetic algorithm (MUGA) for multi-decision scheduling problems in semiconductor wafer fabrication. The paper is organized as follows. Section 2 is devoted to the general modelling framework. Then, the principles of the multiobjective optimization procedure are presented with some typical results. Then, we draw the conclusions on this work. O. Baez Senties, C. Azzaro-Pantel, L. Pibouleau, S. Domenech Laboratoire de Génie Chimique, UMR 5503, ENSIACET INPT. 5, rue Paulin Talabot -BP 1301 -31106 Toulouse, Cedex 01 -France

General framework and plant modelling

The main emphasis of much of the work on scheduling has been on static systems with a single objective. As noted above, wafer fabrication is complex, dynamic and highly stochastic. Satisfying the multiple objectives might be more important than only optimally meeting a single objective. In this study, we propose an effective approach based on an artificial neural network technique for multiobjective and multi-decision scheduling problems in semiconductor wafer fabrication. Figure 1 shows the role of the proposed methodology, which will be presented in more detail what follows. 

Discrete-event simulation

To model the wafer fab in a high degree of detail, Discrete Event Simulation (DES) techniques were previously implemented, leading to the development of MELISSA software (see (Charles et al., 2003) for more detail). Typical events taken into account and managed in the simulation core have been widely presented in (Bérard et al., 1999) and will not be recalled here. It was largely used and validated in previous works and reflects the behaviour of the plant. The different runs performed with MELISSA allow identifying the more sensitive variables on some performance criteria, such as makespan, cycle time, respect of due dates, limitation of WIP etc... The example which serves here to illustrate the methodology is presented in Figure 2 and imitates the fabrication plant of a typical semiconductor manufacturing process. sequence, to reproduce the so-called re-entrant flow. Some units are in parallel, which confers more flexibility to the process. We consider the production of 5 different families of products with their associated recipe identified by a number (1,2,3,4,5). A batch is constituted by 50 wafers and 3 levels of productions are to be considered according to market demand, i.e. 16, 24 and 32 batches. A horizon time of 10000 min was chosen as a reference.

Decision variables

The definition of each decision variable is proposed in Table 1, where an example is developed. Each wafer batch is identified by a number corresponding to its family. A campaign is constituted by the release of several products belonging to various family sequences into the wafer fab. 3 discrete values (2,3,4) ex : 2 This variable sets the number of batches within a campaign [1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4] campaign 1 [1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4] campaign 2 Time Between Batches (TBB) (identical from a batch to the following one, whenever the campaign) 3 discrete values (120, 750, 1250) min ex : ex : [1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4] campaign 1 TBB = 120 min Time between Campaigns (TBC) 5 discrete values (500,1500,1900,2400,2800) [1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4] campaign 1

Separated by TBC = 500 min from [1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4] campaign 2

Performance criteria

There are multiple criteria that can be used in evaluating the system performance and system status of the semiconductor fabricator. The criteria are mainly based on completion times, due-dates, inventory level, or machine utilization. Two criteria were selected here, involving the computations of delay/advance of the due date (C 1 ) called ADV/DEL and of the average waiting time (AWT) of all products (n) at each processing unit (C 2 ) (WT i refers to the waiting time of product i).
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Multiobjective optimization

The neural networks have then been embedded in a multiobjective genetic algorithm (MOGA) to optimize the decision variables and to deal with the set of compromise solutions for the studied criteria, thus giving the optimal Pareto zone solutions.

Lately, there has been a large development of different types of multiobjective genetic algorithms, which are reflected in the literature. The big advantage of genetic algorithms

It must be emphasized that the expression selected for criterion C 1 will penalize more the delays than the advances of products. These expressions will then been used at the optimization step with the objectives of Min (C 1 ) and Min (C 2 ).

ANN modelling

We then resort to an artificial neural network technique (Dreyfus et al., 2004) to model the semiconductor plant, since its efficiency has been successfully demonstrated in semiconductor processing by many researchers (Min and Yih, 2003) (Sun and Choung, 1999). The training phase was carried out by a classical backpropagation algorithm. For this purpose, the MATLAB software package dedicated to neural network modelling was used. The neurons of the input layer correspond to the wafer manufacture process parameters (decision variables). The output neurons correspond to the wafer manufacture performance parameters to be evaluated (criteria). The same network structure was adopted for each criterion. The network also includes one hidden layer, which helps the network in learning the non-linear mapping between the input and output layers. The training was carried out systematically with varying the number of hidden neurons (a number of 30 was finally selected). All these models were based on the multilayer perceptron architecture (Cheng and Billings, 1992). Tan-sigmoid transfer function was used as an activation function for hidden and output layers. The values of the test data were normalized within the range from -1 to 1. The root mean square error (RMSE) was chosen as a criterion for supervised training. The error is computed as the difference between the target and network output values. The total combination set of decision variables was generated to build the neural network, i.e. 5400 (training and test data, 2:1) at the preliminary stage of the study. Typical results obtained with MELISSA and ANN computations can be shown in Figure 3 and exhibit a good agreement between the two sets of values, thus showing the efficiency of ANN to model the batch plant.

over other methods, particularly over other stochastic procedures such as Simulated Annealing, is that a GA manipulates a population of individuals.

It is therefore tempting to develop a strategy in which the population captures the whole Pareto front in one single optimization run. Following the guidelines proposed by (Dietz et al., 2005a, b), this approach was adopted in this work. The same encoding procedure was used since only integer variables are involved in the problem formulation (more detail concerning crossover and mutation can be found in (Dietz et al., 2005a, b). He can thus validate his decision by using the discrete-event simulator to determine precisely all the scheduling parameters. A major interest is that the approach may find wide applications in practice since the data base may be updated with the feedback from the real process, thus improving continuously the model accuracy in time, as seen in Figure 1.

Conclusion

Semiconductor wafer fabrication involves an important number of decision problems. The objective of this paper was to propose an optimization strategy in order to assign appropriate decision variables. More precisely, a scheduler for selection of decision 
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Table 1

 1 Decision variables

	Decision variable	Number and type of parameter
	Maximum number of recipes	5
	Maximum number of recipes treated simultaneously (NC)	ex . 4 among the 5 available recipes
		24 combinations, ex : 1,2,3,4
	Identification of family sequence (FS)	Batches are always released with this sequence
		order into production
	Total of batches (NP)	3 discrete values (16, 24, 32) ex : 16
	Number of campaigns (NC)	

variables in order to obtain desired performance measures at the end of a certain production interval was developed. In the proposed methodology, a three-level strategy based on the combined use of a simulation technique, a neural network and a multiobjective genetic algorithm is suggested. The results indicate that this methodology is an effective method considering the complexity of semiconductor wafer fabrication systems, as a time-saving way to achieve a prompt response in a dynamically changing environment. The computational time for reaching the Pareto's solutions is about 2000 seconds, that is much faster than the process real-time (about 6 days). If the DES model is used instead of the ANN the time is multiplied by 100, and the computational time is in the same order of magnitude than the real time.