

Sex- and maturity-dependent antennal detection of host plant volatiles in the cabbage root fly, Delia radicum

Kathleen Menacer, Maxime R. Hervé, Anne Marie Cortesero, Tom Aujames,

Sylvia Anton

▶ To cite this version:

Kathleen Menacer, Maxime R. Hervé, Anne Marie Cortesero, Tom Aujames, Sylvia Anton. Sex- and maturity-dependent antennal detection of host plant volatiles in the cabbage root fly, Delia radicum. Journal of Insect Physiology, 2023, 146, pp.104500. 10.1016/j.jinsphys.2023.104500 . hal-04090046

HAL Id: hal-04090046 https://hal.science/hal-04090046v1

Submitted on 15 May 2023 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

1 2	Sex- and maturity-dependent antennal detection of host plant volatiles in the cabbage root fly, <i>Delia radicum</i>
3	
4	Kathleen Menacer ¹ , Maxime R. Hervé ¹ , Anne Marie Cortesero ¹ , Tom Aujames ² and Sylvia Anton ²
5	
6	¹ IGEPP-UMR 1349, INRAE, Institut Agro, Univ Rennes, 35000 Rennes, France
7	² IGEPP-UMR 1349, INRAE, Institut Agro, Univ Rennes, 49045 Angers, France,
8	
9	
10	Corresponding author:
11	Kathleen Menacer
12	IGEPP-UMR 1349, INRAE, Institut Agro, Univ Rennes
13	Université Rennes, Campus de Beaulieu, Bâtiment 25 - 4e étage
14	35000 Rennes, France
15	e-mail : Kathleen.menacer@gmail.com
16	
17	Highlights
18 19 20 21 22	 Dose-dependent electoantennogram responses were obtained for all tested compounds Mature insect antennae respond more to several host-derived compounds Immature insect antennae respond more to a behaviourally attractive flower volatile Male and female antennae respond with different sensitivity to certain compounds

Male and female antennae respond with different sensitivity to certain compounds

24 Abstract

23

25 Adult insect behaviour in response to plant-emitted volatile compounds varies between the sexes and as 26 a function of maturity. These differences in behavioural responses can be due to modulation in the 27 peripheral or central nervous system. In the cabbage root fly, Delia radicum, behavioural effects of 28 certain host plant volatiles on mature female behaviour have been evaluated, and a large number of 29 compounds emitted by brassicaceous host plants have been identified. We recorded here dose-dependent 30 electroantennogram responses to all tested compounds and investigated if the antennal detection of 31 individual volatile compounds emitted by intact and damaged host plants differs between male and 32 female, as well as immature and mature flies. Our results showed dose-dependent responses in mature 33 and immature males and females. Mean response amplitudes varied significantly between sexes for three 34 compounds, and between maturity states for six compounds. For some additional compounds significant 35 differences occurred only for high stimulus doses (interaction between dose and sex and/or dose and maturity status). Multivariate analysis revealed a significant global effect of maturity on 36 37 electroantennogram response amplitudes and for one experimental session also a significant global

1 effect of the sex. Interestingly, allyl isothiocyanate, a compound stimulating oviposition behaviour, 2 elicited stronger responses in mature than in immature flies, whereas ethylacetophenone, an attractive 3 flower volatile, elicited stronger responses in immature than in mature flies, which correlates with the 4 behavioural role of these compounds. Several host-derived compounds elicited stronger responses in 5 females than in males and, at least at high doses, stronger responses in mature than in immature flies, 6 indicating differential antennal sensitivity to behaviourally active compounds. Six compounds did not 7 cause any significant differences in responses between the different groups of flies. Our results thus 8 confirm peripheral plasticity in plant volatile detection in the cabbage root fly and provide a basis for

- 9 future behavioural investigations on the function of individual plant compounds.
- 10

11 Keywords: cabbage root fly (*Delia radicum*), olfactory plasticity, host plant volatiles, antennal 12 sensitivity, electroantennogram

13

14 Introduction

15

16 Insect olfactory-guided behaviour is known to differ between males and females and to show strong 17 plasticity as a function of adult maturity (age), and mating state (Gadenne et al., 2016). This plasticity 18 helps insects to make optimal decisions when responding to sex pheromones, host-, food-, or oviposition 19 site odours. In several moth species, recently mated male moths do not respond to female-emitted sex 20 pheromones, because they would not be able to mate successfully (Gadenne et al., 2001). Blood-feeding 21 insects such as mosquitoes and hematophagous bugs also adapt their responses to host odours as a 22 function of age and mating state, thus avoiding taking unnecessary risks during the approach and attack 23 of a host animal ((Gadenne et al., 2016) and references therein).

24 More recently, differences in behavioural responses to plant volatiles as a function of sex, maturity and 25 mating state have been investigated in various phytophagous insects. In the fruit fly Bactrocera tyroni 26 (Froggatt) (Diptera: Tephritidae), mated females were more attracted to their host fruit volatiles than 27 unmated females (Devescovi et al., 2021). In the tomato fruit fly, Neoceratitis cyanescens (Bezzi) 28 (Diptera: Tephritidae), both mated and unmated females responded to ripe tomato fruits, whereas males 29 were rather attracted by odours from unripe fruits (Brevault and Quilici, 2010). In the cotton leafworm, 30 Spodoptera littoralis (Boisduval) (Lepidoptera, Noctuidae), females moth change their behavioural 31 preferences from flower odours to odours emitted by plants used for oviposition after mating (Saveer et 32 al., 2012). As a last example, in several species, male moths are only rarely attracted by host plant 33 volatiles, but host plant volatiles can synergize responses to the female-emitted sex pheromone 34 (Masante-Roca et al., 2007; Ochieng et al., 2002; Reddy and Guerrero, 2004; Varela et al., 2011; Yang 35 et al., 2004).

36 The physiological mechanisms underlying behavioural plasticity have been investigated in detail 37 specifically in male moths responding to sex pheromones. Here, depending on the species, either 38 changes in the peripheral or central olfactory system have been described ((Gadenne et al., 2016) and 39 references therein). In the noctuid moth Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae), male 40 responses to the sex pheromone increase with maturity, but not responses to plant volatiles (Greiner, 41 2002). However central, but not peripheral neuron responses to a flower volatile increased after mating 42 in A. ipsilon, possibly facilitating a switch from searching for a mate to feeding behaviour (Barrozo et 43 al., 2011). In some moth species, on the contrary, both peripheral and central nervous responses to host 44 plant volatiles have been found to vary between sexes and as a function of maturity and mating state, in 45 line with behavioural changes. For example in the grapevine moth Lobesia botrana (Denis and 46 Schiffermüller) (Lepidoptera: Tortricidae), antennal lobe neurons in unmated males and in mated females responded more often to selected plant compounds than in mated males and unmated females 47

1 (Masante-Roca et al., 2007). Antennal responses of Spodoptera littoralis females to plant odours, on the 2 3 other hand, were generally stronger in unmated females as compared to mated females (Martel et al., 2009). Interestingly, glomerular responses to a flower odour measured by calcium imaging activity 4 representing essentially receptor neuron responses in the same species decreased after mating, whereas 5 glomerular responses to host plant volatiles (cotton) increased after mating (Saveer et al., 2012). Finally, 6 differential expression of antennal olfactory genes has been shown in different insects, such as 7 Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), Ceratitis capitata (Wiedemann) (Diptera: 8 Tephritidae) and Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) after mating (Crava et al., 2019; 9 Siciliano et al., 2014; Jin et al., 2017).

10 Adults of the cabbage root fly, Delia radicum L. (Diptera: Anthomyiidae), feed from the nectar of a 11 large diversity of plant species, whereas females are specialists of Brassicaceae plants for oviposition 12 (Finch, 1989; Rännbäck, 2008). The cabbage root fly represents an interesting model to study sex 13 differences and physiological plasticity in olfaction, because adults need several days to reach maturity 14 and males and females might potentially respond differently to host-derived compounds, due to a 15 differential role of host plants between the sexes. In addition to visual cues, females have been shown 16 to use certain host plant-emitted odours, such as allyl isothiocyanate (AITC), to localize oviposition 17 sites in the field (Tuttle et al., 1988). Also *cis*-3-hexenvl acetate, a volatile emitted by damaged host 18 plants has been shown to be attractive for females (Kergunteuil et al., 2012). Other compounds such as 19 dimethyl disulfide (DMDS) strongly decrease oviposition (Ferry et al., 2009; Kergunteuil et al., 2012; 20 Lamy et al., 2017). Upon emergence and for the first few days of their life, unmated females and males 21 search first for food sources and seem not to respond to host plant odours (Hawkes, 1975; Nottingham, 22 1988). Females usually start oviposition after a maturation phase that lasts about five days after 23 emergence (Hawkes, 1975; Nottingham, 1988), but it is unknown whether this maturation, in addition 24 to mating, contributes to changes in plant odour responses. Much less is known about how D. radicum 25 males find their mating partners and if they use odour cues for orientation (Finch and Skinner, 1982). In 26 particular, no sex pheromone has been identified so far. Males show some behavioural responses to 27 AITC, but lower than females. This response could potentially help them to find a mating partner as this 28 compound is only emitted by brassicaceous plants (Finch and Skinner, 1982) and mating usually takes 29 place near the emergence site and therefore near the host plants (Coaker and Finch, 1971 in Nottingham, 30 1988). The main olfactory organ of D. radicum, the funiculus of the antenna, carries large numbers of 31 four types of olfactory sensilla: trichoid, basiconic, grooved and clavate (Ross and Anderson, 1991, 32 1987). Interestingly, female antennae carry about 40 % more sensilla than male antennae and lower 33 sensillum numbers in males were observed for all types, which correlates with behavioural differences 34 between sexes (Ross and Anderson, 1987).

35 As a basis for future behavioural and physiological studies, we examine here for the first time antennal 36 responses of D. radicum to a selection of host-derived compounds using electroantennographic 37 recordings. We reveal dose-dependent antennal responses for all tested compounds, showing that the 38 tested compounds are all detected by the cabbage root fly antenna. Our secondary aim was to identify 39 volatile organic compounds, previously identified from intact and damaged host plants, which might be 40 detected differentially between the sexes or as a function of maturity, in order to choose compounds to 41 investigate variation in behavioural responses in the future. To detect such potential differences, we 42 compared dose-response curves and mean response amplitudes between sexes, and between recently 43 hatched immature, and mature mated insects.

- 44
- 45 Materials and Methods
- 46
- 47 Experimental insects

1 Delia radicum originated from a laboratory rearing initially constituted from a field population collected 2 3 in the field in 2019 (Pleumeur-Gautier, Brittany, France). Flies were reared on rutabagas in a climate chamber at 20 ± 2 °C, 16L:8D, and 60 ± 10 % RH and fed with a milk powder: yeast: sugar (1:1:1) 4 mixture as described in Neveu Bernard-Griffiths (1998). For EAG experiments, pupae were transferred 5 to small cages, which were changed every two days to a new cage, controlling thus for age of emerged 6 insects. Males and females were kept together to obtain mated mature males and females, which were 7 fed ad libitum as under rearing conditions. Mature, assumedly mated insects were used at five to seven 8 days of age. In favourable condition such as these, mating is known to take place on the 4th day after 9 emergence (Coaker and Finch, 1971 in Nottingham, 1988). Immature, unmated insects were obtained 10 by transferring individual pupae into Eppendorf cups with a small amount of food and a moist piece of cotton. Emerging insects were checked every day and insects were used within 24 h after emergence. 11 12 Assuming that all immature insects were unmated, and all mature insects were mated, we use only the

12 Assuming that an initiature insects were unmated, and an inature insects were inated, we use only the 13 terms "immature" for immature unmated flies and "mature" for mature mated flies in the remaining text.

14

15 EAG recording

16 Whole insects were used for EAG recordings, with flies slipped into a plastic disposable pipette tip with 17 the head and antennae protruding, secured with dental wax. Glass pipettes filled with Beadle Ephrussi 18 Ringer were used as electrodes. The reference electrode was inserted into a small opening in the cuticle 19 of the eye and the recording electrode was placed tightly in the centre of the undamaged funiculus similarly to EAG recordings in other flies (e.g. Hieu et al., 2014). The electrodes were connected to an 20 amplifier (axoclamp 2B, Molecular Devices, San Jose, CA, USA), and an IDAC-4 device to digitize 21 22 signals (Syntech, Kirchzarten, Germany). EAG Pro software (Syntech, Kirchzarten, Germany) was used 23 to record the antennal responses.

24

25 *Stimulation procedure*

26 The antennae were superfused by a constant air-stream (0.3 m.s⁻¹, 17 mL.s⁻¹) through a glass tube. 27 Stimuli were applied onto a piece of filter paper inserted into a Pasteur Pipette and the pipette was 28 introduced into the glass tube through a hole in the sidewall. A stimulus controller (CS 55, Syntech, 29 Kirchzarten, Germany) was used to apply a 500 ms air pulse through the stimulation pipette. During the 30 stimulation, the airflow was switched from the continuous to the stimulus flow, which allowed the 31 mechanoreceptive component to be minimized. Inter-stimulus intervals lasted at least 1 s. For each 32 stimulus, increasing doses in decadic steps from 0.01 to 1000 µg were applied to obtain dose-response 33 curves and the solvent, mineral oil, was applied before and after each stimulus series. The mean response 34 to mineral oil before and after a stimulus dose series was subtracted from each amplitude value (= net 35 amplitude) to compensate for amplitude differences between insects and over time. Recordings from fly 36 antennae were, however, extremely stable over several hours, so that we did not need to further 37 normalize data as a function of time. For each stimulus, sex, and maturity state 10 individuals were 38 tested per session (see below).

39

40 Volatile organic compounds used for antennal stimulation

41 All compounds tested were previously identified in odour blends emitted by host plants of *D. radicum*

42 (Supplementary Table A). Fifteen compounds were retained, which were taken as representatives for a

43 variety of chemical classes having demonstrated effects on phytophagous insects in general and

44 specialists of Brassicaceae in particular: sulfur compounds (AITC, DMDS), green leaf volatiles (cis-3-

45 hexenyl acetate), defense hormones (methyl salicylate), aromatic compounds (ethylacetophenone),

46 sesquiterpenes (α -farnesene and β -caryophyllene) and monoterpenes (α -pinene, α -thujene, eucalyptol,

1 limonene, linalool, myrcene, ocimene and sabinene). Whereas differences in behavioural responses 2 between the sexes and between immature and mature flies have not been studied so far, some of these 3 compounds have been identified as having effects on mature D. radicum females. Indeed, AITC and 4 cis-3-hexenyl acetate have been shown to attract mature flies toward oviposition sites (Finch and 5 Skinner, 1982; Kergunteuil et al., 2012; Nottingham, 1988; Tuttle et al., 1988) and to stimulate 6 oviposition in field (Kergunteuil et al., 2012; Lamy et al., 2018) and laboratory conditions (Traynier, 7 1967, 1965). DMDS (Ferry et al., 2009; Kergunteuil et al., 2012; Lamy et al., 2017, 2018), eucalyptol 8 (Lamy et al., 2017) and limonene (Kergunteuil, 2013), when applied in dispensers close to the host 9 plants, were found to reduce oviposition. Moreover, ethylacetophenone is emitted by flowers of many 10 species including Lobularia maritima, a brassicaceous species whose flowers are particularly attractive 11 to D. radicum females (Kergunteuil et al., 2012; Rännbäck, 2008), and methyl salicylate is a herbivore-12 induced plant volatile emitted by damaged brassicaceous plants in particular (Pierre et al., 2011). All 13 other tested compounds are found in the volatile organic compounds (VOC) profiles of brassicaceous 14 plants, but have not been tested for their effect on behavioural responses of D. radicum adults yet 15 (Kergunteuil et al., 2015; Pierre et al., 2011; Tollsten and Bergstrom, 1988). Three of the fifteen 16 compounds (namely ethylacetophenone, α -thujene and sabinene) were not available at the beginning of 17 the experiments. Therefore, compounds were tested in two experimental sessions separated by a few 18 weeks, with different individuals used in each session. Nine compounds were tested in the first session 19 only, three compounds were tested in the second session only, and three compounds were tested in both 20 sessions to ensure consistency in the interpretation of the results of the two sessions (Table 1).

21

22 Data processing and statistical analyses

23 All analyses were performed using the R software version 4.1.3 (R Core Team 2022). EAG amplitude 24 responses were analyzed both univariately and multivariately. First, for each compound, the mean 25 amplitude response was analyzed using Wald tests applied to Linear Mixed Models in which the sex, 26 maturity status and dose (log-transformed), as well as all interactions between these variables, were 27 considered as independent variables and the individual was considered as a random factor (R packages 28 'car' (Fox and Weisberg, 2019), 'lme4' (Bates et al., 2015), 'RVAideMemoire' (Hervé, 2022). 29 Responses were log-transformed to ensure model fit and, since some negative responses were obtained, 30 normalized by computing $x + |\min(x)| + 0.01$ to avoid zeroes that would cause infinite logs. Pairwise 31 comparisons of Estimated Marginal Means (EMMeans) were computed with p-values adjusted using 32 the False Discovery Rate correction (Benjamini and Hochberg, 1995) (R package 'emmeans' (Lenth, 33 2022)). The multivariate approach consisted in two Redundancy Analyses (RDAs, R package 'vegan' 34 (Oksanen et al., 2022), i.e. one per session. Responses were the overall mean EAG amplitude per 35 individual and per compound (i.e. all doses confounded), which were normalized as above for 36 consistency with the univariate approach and autoscaled. Independent variables were the sex, the 37 maturity status and the interaction between these two factors. The effect of these factors was tested using 38 a permutation F test with 9 999 permutations (Legendre and Legendre, 2012). Pairwise comparisons 39 were performed also using permutation F-tests and p-values corrected with the False Discovery Rate 40 method.

- 41
- 42

43 **Results**

44 EAG response characteristics and dose-response curves vary between tested compounds

45 A significant dose effect was observed for all compounds showing that antennae of D. radicum

46 responded in a dose-dependent manner to the fifteen volatiles tested (Table 1, Fig. 1, Fig. 2) The EAG

47 amplitudes of responses varied between individual insects and reached maximum net amplitudes of up

to 10 mV, for the highest tested dose for certain compounds in some insects. Dose-response curves with different thresholds and slopes were found for different compounds (Fig. 1, Fig. 2). Generally, antennae responded already at the lowest tested dose to ocimene, β-caryophyllene and DMDS, but responses increased only slightly when increasing the tested doses (Fig. 3). For other compounds such as eucalyptol and α-pinene, responses only started at a dose of 100 µg and increased at a dose of 1 000 µg (Fig. 3). For still other compounds such as linalool and AITC, responses started at 1 or 10 µg and increased steeply at high doses (Fig. 3).

- 1 Fig. 1 Dose-response curves (mean ± SEM) of D. radicum EAG amplitudes in response to the 2 3 different VOCs tested in session 1. Colored lowercase letters indicate significant difference in doseresponse slopes. The inserts represent the mean amplitude $(\pm SE)$ (i.e., all doses confounded) in response to the different VOCs. Note that in the inserts, different uppercase letters indicate significant differences
- 4 5 between sexes whereas different lowercase letters indicate significant differences between maturity
- 6 7 statuses. Light pink = immature females, dark pink = mature females, light blue = immature males, dark
- blue = mature males. AITC: allyl isothiocyanate; DMDS: dimethyl disulfide

1 Fig. 2 Dose-response curves (mean ± SEM) of D. radicum EAG amplitudes in response to the 2 3 different VOCs tested in session 2. Colored lowercase letters indicate significant difference in doseresponse slopes. The inserts represent the mean amplitude $(\pm SE)$ (i.e., all doses confounded) in response 4 to the different VOCs. Note that in the inserts, different uppercase letters indicate significant differences 5 between sexes whereas different lowercase letters indicate significant differences between maturity 6 statuses. Light pink = immature females, dark pink = mature females, light blue = immature males, dark

7 blue = mature males. AITC: allyl isothiocyanate

9

10 Fig. 3 Examples for dose-dependent EAG responses to different plant compounds in mature Delia 11 *radicum* females. Examples for dose-response curves (mean amplitude \pm SE, n=10) for stimulation with 12 allyl isothiocyanate, ocimene and eucalyptol. Note the differences in thresholds and slopes as a function

13 of the applied stimuli.

14

15 EAG responses to a majority of compounds are sex- and maturity-dependent

16 Mean amplitudes of responses, as well as slopes of the dose-response curves, varied significantly 17 between sexes, maturity status or both for 10 of the 15 compounds tested (Table 1). These effects were 18 very similar between the two experimental sessions and are therefore described together.

19

20 A significant, independent effect of the sex was observed for two compounds (Table 1, Fig. 4a, Fig. 1). 21 In males larger responses were found for β -caryophyllene than in females, whereas female antennae 22 exhibited larger responses for ocimene than male antennae. An interaction of dose and sex was only 23 significant for two of the 15 compounds tested (Table 1). In males larger responses were found at high 24 stimulus doses for eucalyptol than in females (Fig. 1). In females, on the other hand, larger responses 25 were found at high stimulus doses for myrcene than in males (Fig. 2). A significant, sex-independent 26 effect of maturity was observed for four compounds (Table 1, Fig. 4a,d, Fig. 1, Fig. 2). Antennae of 27 immature flies exhibited larger responses to α -farnesene and ethylacetophenone, while larger responses 28 were found in mature flies for DMDS and β -caryophyllene. An interaction of dose and maturity was 29 significant for five compounds (Table 1). Responses at high doses of AITC, cis-3-hexenyl acetate, 30 limonene, myrcene and ocimene exhibited larger amplitudes in mature compared to immature flies (Fig. 31 1).

1 When focusing on the mean amplitude of response per compound, both the univariate and multivariate 2 approaches gave a consistent picture (Table 1, Fig. 4). In the first test session, a significant global effect 3 of the sex was observed (F = 2.57, p = 0.019, Fig. 4b). Male antennae respond more intensely to methyl 4 salicylate, β -caryophyllene and α -pinene (Fig. 4a,c). An independent, non-interacting (F = 0.72, p = 5 0.703), effect of the maturity status was observed (F = 2.86, p = 0.008, Fig. 4b). Antennae of immature 6 individuals of both sexes responded more strongly to α -farnesene, limonene, and myrcene, in contrast 7 to mature individuals who responded more strongly to AITC and DMDS (Fig. 4a,c). In the second 8 session, only a significant effect of the maturity status was observed (F = 4.48, p = 0.004, Fig. 4e), with 9 a stronger antennal response of immature individuals to ethylacetophenone and α-thujene, while mature 10 individuals responded more strongly to AITC (Fig 4d,f,). No significant effect of the sex or the interaction between the sex and the maturity status was observed in the second session (respectively F 11 12 = 0.22, p = 0.165; F = 1.01, p = 0.395) (Fig. 4d,f).

Fig. 4 Sex and maturity-dependent EAG responses to plant volatile compounds. Heatmaps of mean EAG amplitudes (i.e., all doses confounded) in response to the tested compounds according to sex and maturity of *Delia radicum* individuals, for session 1 (a) and session 2 (d). Mean amplitudes are pictured independently for each compound and represented by a color gradient from light yellow (lowest level) to dark red (highest level). Note that results are not comparable between lines but only between columns on a given line, due to compound-specific statistical standardisation of mean response amplitudes. Score plots and associated correlation circles of the redundancy analyses performed on mean EAG response amplitudes for each individual, for session 1 (b)(c) and session 2 (e)(f). AITC: allyl isothiocyanate,

10 EAP: ethylacetophenone.

2 Table 1: Wald tests on the effect of sex, maturity status, dose as well as all interactions between these variables on the mean EAG amplitude of *Delia* 3 *radicum* for the compounds tested according to sessions. Significant p-values are indicated in bold

															C	C	7					
	Compound	Dose			Sex		Maturity		Dose:Sex		Dose:Maturity			Sez	Sex:Maturity			Dose:Sex:Maturity				
		χ^2	df	Р	χ^2	df	Р	χ^2	df	Р	χ^2	df	Р	χ^2	df	Р	χ^2	df	Р	χ^2	df	Р
Session 1	AITC	128,53	1	< 0,001	0,42	1	0,519	0,05	1	0,824	0,05	1	0,815	8,22	1	0,004	2,16	1	0,142	1,85	1	0,174
	DMDS	14,76	1	< 0,001	1,68	1	0,195	7,78	1	0,005	0,07	1	0,797	1,74	1	0,187	0,94	1	0,333	0,31	1	0,579
	<i>cis</i> -3-Hexenyl acetate	254,43	1	< 0,001	0,01	1	0,918	2,21	1	0,137	0,23	1	0,630	8,63	1	0,003	0,86	1	0,354	0,11	1	0,743
	Methyl salicylate	162,23	1	< 0,001	1,08	1	0,298	3,39	1	0,065	0,94	1	0,331	0,06	1	0,805	0,74	1	0,391	2,33	1	0,127
	α-Farnesene	77,08	1	< 0,001	0,08	1	0,775	6,19	1	0,013	1,53	1	0,216	1,85	1	0,174	2,23	1	0,135	0,51	1	0,477
	β-Caryophyllene	48,25	1	< 0,001	9,98	1	0,002	6,92	1	0,009	0,46	1	0,498	2,25	1	0,133	0,02	1	0,879	0,18	1	0,674
	α-Pinene	99,68	1	< 0,001	3,64	1	0,056	0,09	1	0,767	0,74	1	0,389	2,74	1	0,098	0,03	1	0,870	1,08	1	0,299
	Eucayptol	159,40	1	< 0,001	0,92	1	0,336	0,08	1	0,777	4,34	1	0,037	1,65	1	0,198	1,09	1	0,296	1,52	1	0,217
	Limonene	140,33	1	< 0,001	1,96	1	0,162	3,48	1	0,062	0,12	1	0,726	5,84	1	0,016	0,37	1	0,541	0,02	1	0,882

	Linalool	379,59	1	< 0,001	0,69	1	0,406	0,28	1	0,598	0,95	1	0,329	0,28	1	0,597	0,83	1	0,364	1,19	1	0,276
	Myrcene	144,22	1	< 0,001	0,06	1	0,799	5,42	1	0,020	10,31	1	0,001	6,15	1	0,013	0,74	1	0,389	1,63	1	0,202
	Ocimene	124,60	1	< 0,001	4,69	1	0,030	2,05	1	0,152	0,10	1	0,752	4,35	1	0,037	0,01	1	0,928	0,64	1	0,423
Session 2	АПС	214,44	1	< 0,001	0,38	1	0,537	7,46	1	0,006	0,04	1	0,848	1,10	1	0,294	2,22	1	0,136	2,16	1	0,142
	Ethylacetophenone	386,01	1	< 0,001	0,13	1	0,714	6,44	1	0,011	2,31	1	0,128	0,21	1	0,647	0,08	1	0,782	0,01	1	0,934
	α -Thujene	47,81	1	< 0,001	0,07	1	0,789	2,16	1	0,141	0,01	1	0,939	0,06	1	0,804	0,10	1	0,758	0,20	1	0,651
	Myrcene	158,87	1	< 0,001	14,05	1	< 0,001	6,11	1	0,013	6,09	1	0,014	1,82	1	0,177	0,02	1	0,883	0,85	1	0,357
	Ocimene	215,26	1	< 0,001	3,44	1	0,064	0,80	1	0,372	3,58	1	0,059	0,28	1	0,597	0,05	1	0,828	0,85	1	0,356
	Sabinene	216,50	1	< 0,001	2,59	1	0,107	0,07	1	0,790	0,03	1	0,855	0,10	1	0,746	2,11	1	0,146	1,08	1	0,300

1 Discussion

2 Our results show that all tested plant-derived compounds are detected by D. radicum antennae in a dose-3 dependent manner and reveal highly variable responses to these compounds, as a function of sex and 4 maturity. Interestingly, the differences in antennal responses between mature and immature flies, as well 5 as between males and females, depend strongly on the tested compound. Behavioural significance of 6 the tested compounds is known only for a few of them and almost exclusively in mature females so far. 7 Therefore, we can here only speculate on the behavioural significance of the differences in antennal 8 detection, which we observed between the sexes and immature and mature flies. Two of the three 9 compounds, known to reduce oviposition in D. radicum females, DMDS and limonene, elicited stronger 10 responses in mature than in immature flies of both sexes, at least at high doses. The observed reduced 11 oviposition rate of female flies exposed to these compounds (Lamy et al., 2017; Liu et al., 2018) might 12 thus be due to a high sensitivity to these compounds, mediating a potential repulsive effect. However, 13 behavioural assays with immature insects need to confirm whether the sensitivity difference is indeed 14 responsible for such an effect only in mature insects. Allyl isothiocyanate and *cis*-3-hexenyl acetate, 15 compounds known to attract flies towards oviposition sites (Traynier, 1965, 1967; Städler, 1978), 16 elicited increased EAG responses, at least at high doses, in mature compared to immature adults. 17 Whereas increased sensitivity in mature females correlates with the stimulation of oviposition, it would 18 now be interesting to evaluate behavioural effects of these compounds on mature males. A compound 19 emitted by flowers used for nectar feeding in D. radicum (Rännbäck, 2008), ethylacetophenone, elicited 20 much stronger EAG responses in immature insects than in mature insects. This could be related to the 21 importance to find food sources in immature flies. Interestingly many of the compounds shown to be 22 emitted in various host plants of D. radicum elicited stronger responses in mature than in immature 23 insects (at least at higher doses) and some compounds elicited stronger responses in females than in 24 males at higher doses. This increased sensitivity could indicate that the concerned compounds might 25 play a role in host finding behaviour. However, the occasionally observed higher sensitivity in males 26 needs to be further investigated.

Our results on the plasticity of antennal responses to host plant odours in this species provide a complex dataset, allowing to choose compounds of interest for future behavioural experiments as a function of sex and maturity of this insect. However, even though the compounds not eliciting any differences in antennal responses between sexes and maturity might be potentially of less importance for adult flies, one should not exclude these compounds from further investigations, because modulation of plant odour sensitivity might well occur at the central nervous level, as previously observed in different moth species

33 (Barrozo et al., 2011; Masante-Roca et al., 2007).

34 Differences in antennal olfactory sensitivity to plant-derived volatiles between mature and immature 35 insects and between the sexes have rarely been investigated systematically. In other studies, single doses 36 of different components have been used as stimuli (Martel et al., 2009), but this limits the conclusions 37 that can be drawn. Indeed, as shown by our results, dose-response curves with different thresholds and 38 different slopes can occur and thus differences can be hidden when testing only a single dose. 39 Nevertheless significant differences in responses to a panel of plant-derived compounds have been 40 found in females of the noctuid moth Spodoptera littoralis as a function of mating and adult age (Martel 41 et al., 2009). Also in the Mediterranean fruit fly, Ceratitis capitata, EAG responses to plant headspace 42 of different host plants varied between the sexes, but also in both males and females as a function of 43 mating state and the origin of the flies (laboratory-reared or wildtype) (Sollai et al., 2020). EAG 44 responses of female blowflies to attractive and repellent compounds similarly depended on the maturity: 45 response amplitudes increased with age (Crnjar et al., 1990). Our results on the cabbage root fly confirm 46 that indeed differences in plant volatile responses between the sexes and maturity of insects exist already 47 at the detection level.

Whereas modulatory mechanisms of central olfactory sensitivity have been described in different insects, among others as a function of maturity (Gadenne et al., 2016; Ignell et al., 2001; Jarriault et al., 2009), the mechanisms underlying peripheral modulation of olfactory sensitivity are not well understood. Up- and down- regulation of the expression of olfaction-related antennal genes, such as

1 olfactory receptors and odorant binding proteins, for example, seem to correlate with antennal 2 sensitivity. In C. capitata for example, odorant binding protein expression levels varied as a function of 3 sex, sexual maturity and mating state, correlated with recently found EAG differences in response to 4 volatile organic compounds (Siciliano et al., 2014; Sollai et al., 2020). In the oriental fruit fly Bactrocera 5 dorsalis, mating leads to changes in the expression of various olfactory receptor genes, including ORs, 6 GRs and IRs, but the corresponding ligands are not known (Jin et al., 2017). In the same species, changes 7 of EAG sensitivity to a compound present in host plants as a function of starvation depended on the 8 presence of short neuropeptide F and the expression of its receptor (Jiang et al., 2017). With the recently 9 sequenced genome of D. radicum available (Sontowski et al., 2022), it will be possible in the future to 10 identify olfactory genes involved in the differences in antennal sensitivity between the sexes and as a function of maturity. Another potential mechanism is modulation of peripheral olfactory sensitivity by 11 12 modulatory feedback neurons from the brain and reaching the antennae, as it has been shown for 13 serotoninergic neurons in mosquitoes (Siju et al., 2008). Immunostaining of D. radicum antennae would 14 be necessary to potentially reveal such a mechanism.

15

16 **CRediT author contribution statement**

Kathleen Menacer: Conceptualization, Formal analysis, Writing. Maxime R. Hervé:
 Conceptualization, Formal analysis, Writing, Supervision, Project administration, Funding acquisition.
 Anne Marie Cortesero: Conceptualization, Writing, supervision, Funding acquisition. Tom Aujames:
 Investigation. Sylvia Anton: Conceptualization, Methodology, Investigation, Formal analysis, Writing original draft, Supervision.

22

23 Declaration of Competing Interest:

24 The authors declare that they have no known competing financial interests or personal relationships that 25 would have appeared to influence the work reported in this paper.

26

27 Acknowledgements

- 28 We thank Christophe Lunel for help with insect rearing and shipping.
- 29

30 Funding

This work was supported by a doctoral fellowship from Université Rennes 1 and a Research grant from
 the department Plant Health and Environment of INRAE, France.

33

34 **References**

- 35 Barrozo, R.B., Jarriault, D., Deisig, N., Gemeno, C., Monsempes, C., Lucas, P., Gadenne, C., Anton,
- 36 S., 2011. Mating-induced differential coding of plant odour and sex pheromone in a male moth.
- 37 European Journal of Neuroscience 33, 1841–1850. https://doi.org/10.1111/j.1460-9568.2011.07678.x
- Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models
 Usinglme4. *Journal of Statistical Software*, 67(1). https://doi.org/10.18637/jss.v067.i01

- Benjamini Y, Hochberg Y (1995) Controlling the False Discovery Rate: a practical and powerful
 approach to multiple testing. J Roy Stat Soc: Ser B (methodol) 57:289–300. https:// doi. org/ 10. 1111/j.
 2517- 6161. 1995. tb020 31.
- Brevault, T., Quilici, S., 2010. Flower and fruit volatiles assist host-plant location in the Tomato fruit
 fly *Neoceratitis cyanescens*. Physiological Entomology 35, 9–18. https://doi.org/10.1111/j.13653032.2009.00704.x
- Crava, C.M., Sassù, F., Tait, G., Becher, P.G., Anfora, G., 2019. Functional transcriptome analyses of *Drosophila suzukii* antennae reveal mating-dependent olfaction plasticity in females. Insect
 Biochemistry and Molecular Biology 105, 51–59. https://doi.org/10.1016/j.ibmb.2018.12.012
- 10 Crnjar, R., Yin, C., Stoffolano, J., Barbarossa, I., Liscia, A., Angioy, A., 1990. Influence of age on the
- electroantennogram response of the female blowfly (*Phormia regina*) (Diptera, Calliphoridae). Journal
 Of Insect Physiology 36, 917–921.
- Devescovi, F., Hurtado, J., Taylor, P.W., 2021. Mating-induced changes in responses of female
 Queensland fruit fly to male pheromones and fruit: A mechanism for mating-induced sexual inhibition.
 J Insect Physiol 129, 104195. https://doi.org/10.1016/j.jinsphys.2021.104195
- Ferry, A., Le Tron, S., Dugravot, S., Cortesero, A.M., 2009. Field evaluation of the combined deterrent and attractive effects of dimethyl disulfide on *Delia radicum* and its natural enemies. Biological Control
- 18 49, 219–226. https://doi.org/10.1016/j.biocontrol.2009.01.013
- Finch, S., 1989. Ecological Considerations in the Management of Delia Pest Species in Vegetable Crops.
 Ann Rev Entomol 34, 117–137.
- Finch, S., 1978. Volatile plant chemicals and their effect on host plant finding by the cabbage root fly
 (*Delia brassicae*). Entomologia Experimentalis et Applicata 24, 350–359.
 https://doi.org/10.1111/j.1570-7458.1978.tb02793.x
- Finch, S., Skinner, G., 1982. Upwind flight by the cabbage root fly, *Delia radicum*. Physiol Entomol 7,
 387–399. https://doi.org/10.1111/j.1365-3032.1982.tb00314.x
- Fox J. and Weisberg s. (2019). An {R} Companion to Applied Regression, Third Edition. Thousand
 Oaks CA: Sage. URL: https://socialsciences.mcmaster.ca/jfox/Books/Companion/
- Gadenne, C., Barrozo, R.B., Anton, S., 2016. Plasticity in insect olfaction: To smell or not to smell?
 Annu. Rev. Entomol. 61, 317–333. https://doi.org/10.1146/annurev-ento-010715-023523
- Gadenne, C., Dufour, M.-C., Anton, S., 2001. Transient post-mating inhibition of behavioural and
 central nervous responses to sex pheromone in an insect. Proc. R. Soc. Lond. B 268, 1631–1635.
 https://doi.org/10.1098/rspb.2001.1710
- Greiner, B., 2002. Central Processing of Plant Volatiles in *Agrotis ipsilon* Males is Age-independent in
 Contrast to Sex Pheromone Processing. Chemical Senses 27, 45–48.
 https://doi.org/10.1093/chemse/27.1.45
- Hawkes, C., 1975. Physiological Condition of Adult Cabbage Root Fly (*Erioischia brassicae* (Bouche))
 Attracted to Host-Plants. Journal of Applied Ecology 12, 497–506. https://doi.org/10.2307/2402170
- Hervé M. (2022). RVAideMemoire: Testing and Plotting Procedures for Biostatistics. R package
 version 0.9-81-2. https://CRAN.R-project.org/package=RVAideMemoire
- 40 Hieu, T.T., Jung, J., Kim, S.-I., Ahn, Y.-J., Kwon, H.W., 2014. Behavioural and electroantennogram 41 responses of the stable fly (*Stomoxys calcitrans* L.) to plant essential oils and their mixtures with

- 1 attractants: Effects of repellent oil with attractants on stable fly. Pest. Manag. Sci. 70, 163-172. 2 https://doi.org/10.1002/ps.3547
- 3 Ignell, R., Couillaud, F., Anton, S., 2001. Juvenile-hormone-mediated plasticity of aggregation 4 behaviour and olfactory processing in adult desert locusts. J Exp Biol 204, 249–259.
- 5 Jarriault, D., Barrozo, R.B., de Carvalho Pinto, C.J., Greiner, B., Dufour, M.-C., Masante-Roca, I.,
- 6 Gramsbergen, J.B., Anton, S., Gadenne, C., 2009. Age-dependent plasticity of sex pheromone response
- 7 in the moth, Agrotis ipsilon: Combined effects of octopamine and juvenile hormone. Hormones and
- 8 Behavior 56, 185-191. https://doi.org/10.1016/j.yhbeh.2009.04.005
- 9 Jiang, H.-B., Gui, S.-H., Xu, L., Pei, Y.-X., Smagghe, G., Wang, J.-J., 2017. The short neuropeptide F 10 modulates olfactory sensitivity of Bactrocera dorsalis upon starvation. J Insect Physiol 99, 78-85. 11 https://doi.org/10.1016/j.jinsphys.2017.03.012
- 12 Jin, S., Zhou, X., Gu, F., Zhong, G., Yi, X., 2017. Olfactory Plasticity: Variation in the Expression of 13 Chemosensory Receptors in *Bactrocera dorsalis* in Different Physiological States. Front Physiol 8, 672. 14 https://doi.org/10.3389/fphys.2017.00672
- 15 Kergunteuil, A., 2013. Des odeurs pour protéger les cultures: utilisation de composés volatils pour
- 16 modifier le comportement de la mouche du chou, Delia radicum et de ses ennemis naturels. PhD thesis,
- 17 Université Rennes 1 166.
- 18 Kergunteuil, A., Dugravot, S., Danner, H., van Dam, N.M., Cortesero, A.M., 2015. Characterizing
- 19 Volatiles and Attractiveness of Five Brassicaceous Plants with Potential for a 'Push-Pull' Strategy 20 Toward the Cabbage Root Fly, Delia radicum. J Chem Ecol 41. 330-339. 21 https://doi.org/10.1007/s10886-015-0575-9
- 22 Kergunteuil, A., Dugravot, S., Mortreuil, A., Le Ralec, A., Cortesero, A.M., 2012. Selecting volatiles
- 23 to protect brassicaceous crops against the cabbage root fly, Delia radicum: Selecting volatiles against 24 Delia radicum. Entomol Exp Appl 144, 69-77. https://doi.org/10.1111/j.1570-7458.2012.01257.x
- 25 Lamy, F.C., Poinsot, D., Cortesero, A.-M., Dugravot, S., 2017. Artificially applied plant volatile organic 26 compounds modify the behavior of a pest with no adverse effect on its natural enemies in the field: 27 Improving the push-pull strategy against a major Brassicaceae pest. J Pest Sci 90, 611-621.
- 28 https://doi.org/10.1007/s10340-016-0792-1
- 29 Lamy, F., Dugravot, S., Cortesero, A.M., Chaminade, V., Faloya, V., Poinsot, D., 2018. One more step
- 30 toward a push-pull strategy combining both a trap crop and plant volatile organic compounds against 31 the cabbage root fly Delia radicum. Environ Sci Pollut Res 25. 29868-29879. 32
- https://doi.org/10.1007/s11356-017-9483-6
- 33 Legendre, P., Legendre, L. (2012). Numerical ecology. Elsevier.
- 34 Lenth R. V. (2022). emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 35 1.7.4-1.https://CRAN.R-project.org/package=emmeans
- 36 Liu, Y., Zhang, H., Umashankar, S., Liang, X., Lee, H., Swarup, S., Ong, C., 2018. Characterization of
- 37 Plant Volatiles Reveals Distinct Metabolic Profiles and Pathways among 12 Brassicaceae Vegetables.
- 38 Metabolites 8, 94. https://doi.org/10.3390/metabo8040094
- 39 Martel, V., Anderson, P., Hansson, B.S., Schlyter, F., 2009. Peripheral modulation of olfaction by
- 40 physiological state in the Egyptian leaf worm Spodoptera littoralis (Lepidoptera: Noctuidae). Journal
- 41 of Insect Physiology 55, 793–797. https://doi.org/10.1016/j.jinsphys.2009.04.012

- 1 Masante-Roca, I., Anton, S., Delbac, L., Dufour, M.-C., Gadenne, C., 2007. Attraction of the grapevine
- 2 moth to host and non-host plant parts in the wind tunnel: effects of plant phenology, sex, and mating
- 3 status. Entomol Exper Applic 122, 239–245. https://doi.org/10.1111/j.1570-7458.2006.00510.x

4 Nottingham, S.F., 1988. Host-plant finding for oviposition by adult cabbage root fly, Delia radicum. 5 Journal of Insect Physiology 34, 227-234. https://doi.org/10.1016/0022-1910(88)90053-4

6 Ochieng, S., Park, K., Baker, T., 2002. Host plant volatiles synergize responses of sex pheromone-7 specific olfactory receptor neurons in male Helicoverpa zea. J Comp Physiol A 188, 325–333. 8 https://doi.org/10.1007/s00359-002-0308-8

9 Oksanen J., Simpson G. L., F. Blanchet G., Kindt R., Legendre P., Minchin P. R., O'Hara R.B., Solymos 10 P., M. Henry, H. Stevens, Eduard Szoecs, Helene Wagner, Matt Barbour, Michael Bedward, Ben 11 Bolker, Daniel Borcard, Gustavo Carvalho, Michael Chirico, Miquel De Caceres, Sebastien Durand, 12 Heloisa Beatriz Antoniazi Evangelista, Rich FitzJohn, Michael Friendly, Brendan Furneaux, Geoffrey 13 Hannigan, Mark O. Hill, Leo Lahti, Dan McGlinn, Marie-Helene Ouellette, Eduardo Ribeiro Cunha, 14 Tyler Smith, Adrian Stier, Cajo J.F. Ter Braak and James Weedon (2022). vegan: Community Ecology 15 Package. R package version 2.6-2. https://CRAN.R-project.org/package=vegan

- 16 Pierre, P.S., Jansen, J.J., Hordijk, C.A., van Dam, N.M., Cortesero, A.-M., Dugravot, S., 2011.
- 17 Differences in Volatile Profiles of Turnip Plants Subjected to Single and Dual Herbivory Above- and
- 18 Belowground. J Chem Ecol 37, 368. https://doi.org/10.1007/s10886-011-9934-3
- 19 Rännbäck, L.-M., 2008. Flower attractiveness and nectar accessibility for *Delia radicum* (Diptera:
- 20 Anthomyiidae) with implications for the control by Trybliographa rapae (Hymenoptera:Figitidae).
- 21 Master thesis, SLU Alnarp, Sweden 50.
- 22 Reddy, G.V.P., Guerrero, A., 2004. Interactions of insect pheromones and plant semiochemicals. Trends 23 in Plant Science 9, 253-261. https://doi.org/10.1016/j.tplants.2004.03.009
- 24 Ross, K.T.A., Anderson, M., 1987. Morphology of the antennal sensilla of the cabbage root fly, Delia 25 radicum L. (Diptera : Anthomyiidae). International Journal of Insect Morphology and Embryology 16, 26 331-342. https://doi.org/10.1016/0020-7322(87)90005-5
- 27 Ross, K.T.A., Anderson, M., 1991. Ultrastructure of the funicular sensilla of the cabbage root fly, Delia 28 radicum L. (Diptera : Anthomyidae). International Journal of Insect Morphology and Embryology 20, 29 83-101. https://doi.org/10.1016/0020-7322(91)90001-
- 30 Saveer, A.M., Kromann, S.H., Birgersson, G., Bengtsson, M., Lindblom, T., Balkenius, A., Hansson, 31 B.S., Witzgall, P., Becher, P.G., Ignell, R., 2012. Floral to green: mating switches moth olfactory coding 32 and preference. Proc. R. Soc. B 279, 2314-2322. https://doi.org/10.1098/rspb.2011.2710
- 33 Siciliano, P., Scolari, F., Gomulski, L. M., Falchetto, M., Manni, M., Gabrieli, P., Field, L. M., Zhou, J. 34 J., Gasperi, G., Malacrida, A. R. (2014). Sniffing out chemosensory genes from the Mediterranean fruit fly, Ceratitis capitata. PLoS One, 9(1), e85523. https://doi.org/10.1371/journal.pone.0085523 35
- 36 Siju, K.P., Hansson, B.S., Ignell, R., 2008. Immunocytochemical localization of serotonin in the central 37 and peripheral chemosensory system of mosquitoes. Arthropod Structure and Development 37, 248-
- 38 259. https://doi.org/10.1016/j.asd.2007.12.001
- 39 Sollai, G., Solari, P., Crnjar, R., 2020. Differences in the Olfactory Sensitivity of Ceratitis capitata to
- 40 Headspace of Some Host Plants in Relation to Sex, Mating Condition and Population. Diversity 12, 207.
- 41 https://doi.org/10.3390/d12050207

- 1 Sontowski, R., Poeschl, Y., Okamura, Y., Vogel, H., Guyomar, C., Cortesero, M., van Dam, N.M., 2022.
- A high-quality functional genome assembly of *Delia radicum* L. (Diptera: Anthomyiidae) annotated
 from egg to adult. Mol Ecol Resour 22, 1954–1971.
- 4 Tollsten, L., Bergstrom, G., 1988. Headspace volatiles of whole plants and macerated plant parts of 5 *Brassica* and *Sinapis*. Phytochemistry 27, 2073–2077.
- Traynier, R.M.M., 1967. Stimulation of oviposition by the cabbage root fly *Erioischia brassicae*.
 Entomologia Experimentalis et Applicata 10, 401–412. https://doi.org/10.1111/j.15707458.1967.tb02461.x
- 9 Traynier, R.M.M., 1965. Chemostimulation of Oviposition by the Cabbage Root Fly *Erioischia* 10 *brassicae* (Bouché). Nature 207, 218–219. https://doi.org/10.1038/207218a0

Tuttle, A.F., Ferro, D.N., Idoine, K., 1988. Role of visual and olfactory stimuli in host finding of adult
cabbage root flies, *Delia radicum*. Entomologia Experimentalis et Applicata 47, 37–44.
https://doi.org/10.1111/j.1570-7458.1988.tb02279.x

Varela, N., Avilla, J., Anton, S., Gemeno, C., 2011. Synergism of pheromone and host-plant volatile
blends in the attraction of Grapholita molesta males: Pheromone and plant volatile synergism in *Grapholita molesta*. Entomologia Experimentalis et Applicata 141, 114–122.
https://doi.org/10.1111/j.1570-7458.2011.01171.x

Wallbank, B.E., Wheatley, G.A., 1976. Volatile constituents from cauliflower and other crucifers.
Phytochemistry 15, 763–766. https://doi.org/10.1016/S0031-9422(00)94438-8

20 Yang, Z., Bengtsson, M., Witzgall, P., 2004. Host Plant Volatiles Synergize Response to Sex Pheromone

21inCodlingMoth,Cydiapomonella.JChemEcol30,619–629.22https://doi.org/10.1023/B:JOEC.0000018633.94002.afJChemEcol30,619–629.

Supplementary Table A Compounds used for stimulation in EAG experiments.

Compound	Chemical class	Purity	Purchased from*	Ecological relevance	References
Allyl isothiocyanate	sulfur compound	≥ 95%	Aldrich	Attractive to gravid females Found in some Brassica volatile organic compounds (VOC) profiles Stimulates oviposition	Wallbank & Wheatley, 1976; Finch, 1978; Finch & Skinner, 1982; Nottingham, 1988; Tuttle et al., 1988; Liu et al., 2018
Dimethyl disulfide	sulfur compound	≥ 99%	Aldrich	Reduces oviposition Found in some Brassica VOC profiles	Wallbank & Wheatley, 1976; Pierre et al., 2011; Kergunteuil et al., 2012; Lamy et al., 2017; Liu et al., 2018
<i>cis</i> -3-Hexenyl acetate	green leaf volatile	≥ 98%	Sigma-Aldrich	Main compound of attractive Chinese cabbage Found in other Brassica species	Wallbank & Wheatley, 1976; Tollsten & Bergstrom, 1988; Pierre et al., 2011; Kergunteuil et al., 2012; Liu et al., 2018
Methyl salicylate	defense hormone	≥ 99%	Sigma-Aldrich	Herbivore-induced plant volatile and attracting insects in the field in different crops, including Brassica	Orre et al., 2010; Simpson et al., 2011; Pierre et al., 2011; Kergunteuil et al., 2012
Ethylacetophenone	aromatic compound	97%	Sigma Aldrich	Flower-derived compound Attractive as food signal	Rännbäck, 2008
α-Farnesene	sesquiterpene	≥ 90%	Bedoukian Bio	Found in the volatile profiles of different <i>D. radicum</i> Brassica host species Predominant in the VOC profile of broccoli	Tollsten & Bergstrom, 1988; Pierre et al., 2011; Kergunteuil et al., 2015

β -Caryophyllene	sesquiterpene	≥ 98.5%	Sigma	Found in the volatile profiles of different <i>D. radicum</i> Brassica hosts species Predominant in the VOC profile of oil seed rape	Tollsten & Bergstrom, 1988; Pierre et al., 2011; Kergunteuil et al., 2015
α-Pinene	monoterpene	98%	Aldrich	Found in the VOC profiles of different <i>D. radicum</i> Brassica hosts species	Tollsten & Bergstrom, 1988; Pierre et al., 2011; Kergunteuil et al., 2015
α-Thujene	monoterpene	95 %	Toronto Research Chemicals	Found in the VOC profiles of different <i>D. radicum</i> Brassica hosts species,	Kergunteuil et al., 2015
Eucalyptol	monoterpene	99%	Aldrich	Reduces oviposition Found in some Brassica VOC profiles	Lamy et al., 2017; Liu et al., 2018
Limonene	monoterpene	97%	Sigma Aldrich	Found in volatile profiles of different <i>D. radicum</i> Brassica hosts species Reduces plant colonization	Pierre et al., 2011; Kergunteuil, 2013; Kergunteuil et al., 2015; Liu et al., 2018
Linalool	monoterpene	97%	Aldrich	Predominant in the VOC profile of Chinese cabbage	Kergunteuil et al., 2015
Myrcene	monoterpene	Technical grade	Aldrich	Found in the volatile profiles of different <i>D. radicum</i> Brassica host species	Tollsten & Bergstrom, 1988; Kergunteuil et al., 2015
Ocimene (mixture of isomers)	monoterpene	≥ 90%	Sigma-Aldrich	Found in the volatile profiles of different <i>D. radicum</i> Brassica hosts species	Tollsten & Bergstrom, 1988
Sabinene	monoterpene	98%	abcr chemicals	Found in the volatile profiles of different <i>D. radicum</i> Brassica hosts species	Tollsten & Bergstrom, 1988

* suppliers: Bedoukian, Danbury, CT, United States; Sigma-Aldrich, Saint Quentin Fallavier, France; Toronto Research Chemicals, Toronto, Canada; abcr chemicals, Karlsruhe,
 Germany