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SPEAR-Net: Self-Prior Enhanced Artifact Removal
Network for Limited-Angle DECT

Kai Chen, Chunfeng Yang, Hui Tang , Xu Ji, Gouenou Coatrieux, Senior Member, IEEE, Jean-Louis Coatrieux
Life fellow, IEEE, and Yang Chen, Senior Member, IEEE

Abstract—Dual-energy computed tomography (DECT) is a
fully functional instrument for disease detection in clinical
practice because of its ability to identify substances and quantify
materials. In some practical applications, due to the limitation of
scanning conditions, projection data can only be collected from
a limited angle, and the consistency of measurement cannot be
guaranteed. Existing dual-energy CT reconstruction methods fail
to address well the severe artifacts and noise in dual-energy
CT images caused by limited-angle scanning. In this paper,
we proposed a Self-Prior Enhanced Artifact Removal Network
(SPEAR-Net) for limited-angle DECT, which can effectively com-
bine the complementary information in the high- and low-energy
domains and self-prior information to contribute positively to
the reconstruction of high-quality dual-energy CT images. The
SPEAR-Net consists of an image-domain self-prior network(IP-
Net), two dual-energy image-domain networks(DIP-Net), and
a dual-energy sinogram-domain self-prior network(DSP-Net).
Specifically, the IP-Net and DIP-Net are adopted to extract the
features of the dual-energy CT reconstructed images under dual-
quarter scanning as prior information. The self-prior projection
obtained from the forward projection of the prior CT image is
harnessed by DSP-Net to complete the dual-energy limited-angle
projection data and to facilitate the performance of SPEAR-Net
in removing artifacts in the reconstructed dual-energy images.
Qualitative and quantitative analyses demonstrate the superior
capability of SPEAR-Net in dual-energy limited-angle projection
data complementation, detail preservation, and artifact removal.
Two popular DECT applications, virtual non-contrast (VNC)
imaging and iodine contrast agent quantification, reveal that
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images reconstructed by SPEAR-Net have promising clinical
significance.

Index Terms—Dual-energy computed tomography, limited-
angle reconstruction, virtual non-contrast imaging, iodine con-
trast agent quantification, deep learning.

I. INTRODUCTION

X-ray computed tomography (CT) is one of the measure-
ment instruments widely used in medical diagnosis, industrial
testing, and security inspection because of its fast imaging
speed and high imaging quality [1]–[5]. Dual-energy computed
tomography (DECT) is becoming increasingly popular be-
cause of its outstanding performance in material identification,
lesion detection, and tissue characterization [6]–[10]. However,
due to the limitations of scanning conditions [11]–[14], dual-
energy projection data can only be acquired within a limited
range of angles. In these dual-energy CT practices, incomplete
scan angles result in severe artifacts in the reconstructed
images, which significantly reduces the diagnostic accuracy
of the clinician. To solve this problem, a large number of
algorithms have been developed to cope with limited-angle
CT reconstruction. These algorithms can be divided into three
categories: reconstruction by compensating for missing data in
the projection domain, reconstruction with prior information
in the image domain, and reconstruction with deep learning-
based methods.

Completing the missing data in the projection domain is
an effective method to improve the quality of dual-energy
limited-angle reconstructed images. In 2008, Duan et al.
introduced the TV minimization model into the projection
domain for the metal artifact correction problem and repaired
the missing data according to the sparsity of the projection
domain to compensate for the projection domain image in-
formation better [15]. In 2012, Li et al. proposed a new
method for repairing sinograms by combining sinogram-like
decomposition with eigenvector-guided interpolation, in which
each missing sinogram point lies in a set of sinogram-like
curves and is estimated by eigenvector-guided interpolation to
maintain the continuity of the sinogram texture [16]. In 2014,
Kalke et al. consider the curvature feature of the sinogram
as an approximate sinusoidal wave in a limited region and
perform compensatory restoration of the projected sinogram
by solving the curvature feature, and the method obtains
better results in suppressing artifacts and reducing structural
blur [17]. Even though the above projection compensation
methods obtain promising reconstruction results by exploiting
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the characteristics of the projection domain data in many
aspects, in the limited-angle application, the projection com-
pensation is not effective for the limited-angle reconstruction
because the continuous projection data is severely damaged.
In 2015, Martin et al. addressed the limited-angle projection
problem by describing the sparsity of the projection domain
using the Total Generalized Variation (TGV) model to achieve
compensation for missing projection data [18]. In 2016, Choi
et al. proposed a truncated projection compensation method
based on a wavelet-tight framework based on the sparsity of
the projection domain images, which was applied in limited-
angle reconstruction [19]. By exploiting and utilizing the prior
knowledge of projection domain data for limited-angle CT
reconstruction, it is conducive to improving the quality of
reconstructed images under projection data missing conditions.

To improve the quality of CT reconstruction images, the
methods based on prior information in the image domain have
been investigated for limited-angle CT imaging. In 2008, Chen
et al. proposed a Prior Image Constrained Compressed Sensing
(PICCS) reconstruction algorithm, which uses the projections
obtained from the dynamic projection dataset to reconstruct
the prior image, and combines the prior image as a constraint
with the CS to reconstruct each frame in the dynamic CT
image sequence [20]. In 2012, Lu et al. proposed a strategy
of forming a double dictionary using image blocks of two
different quality prior images, high and low, to enhance the
quality of incomplete angle reconstruction images [21]. In
2013, Schorr et al. applied contours as reconstruction region
constraints to a limited-angle reconstruction of flat objects to
suppress finite angle artifacts [22]. Wu et al. proposed a Fea-
ture Constrained Compressed Sensing (FCCS) reconstruction
model based on PICCS, which used the atlas of a prior image
feature decomposition as a constraint term to obtain high-
quality reconstructed images in limited-angle reconstruction
[23]. In 2014, Zhang et al. proposed a Deformed Prior Image-
based Reconstruction (DPIR) reconstruction algorithm based
on the PICCS algorithm, which further reduced the require-
ments for prior images, and obtained better results in the
limited-angle reconstruction [24]. In 2015, Dang et al. studied
in depth the problem of balancing the prior image constraint
term with the fidelity term in the reconstruction process to
improve the robustness of the prior image-based reconstruction
method [25]. The limited-angle CT reconstruction method
based on the prior information in the image domain can assist
in suppressing the blurring artifacts caused by the missing
limited-angle projections and improving the quality of the
reconstructed images. However, the limitation of this method
is that it overly relies on the prior information of the object
to be reconstructed, and in some practical CT applications, it
is quite difficult to obtain structurally similar prior images or
high-precision contour information in advance, thus limiting
the application of this type of algorithm.

Recently, DL-based algorithms have attracted great attention
in the field of medical imaging [26]–[33]. In 2013, Pelt et al.
proposed a reconstruction method that uses the autonomous
learning capability of a Convolutional Neural Network (CNN)
to acquire prior information, and also demonstrated that
the method can be regarded as an equivalent combination

of filtering and inverse projection operations. Experimental
results show that the method can quickly reconstruct CT
images with good results using the projection information
acquired from the detector [34]. In 2016, Yang et al. defined a
new network architecture ADMM-Net (Alternative Direction
Method of Multipliers-Net) on the data flow graph. In this
network, it is the step-by-step solution of the CS-based nuclear
magnetic resonance (MRI) model using the ADMM method
that is used to derive this data flow graph. The final results
demonstrate that this algorithm can obtain high-quality recon-
structed images in MRI reconstruction models quickly [35].
In 2017, Jin et al. proposed a depth reconstruction algorithm
consisting of a combination of an analytic algorithm and a
convolutional neural network. In this reconstruction algorithm,
the physical output of the imaging system is first achieved
using the FBP algorithm, but the output image obtained
will have a large number of artifacts. The CNN network is
then used to combine multi-resolution decomposition with
residual learning to achieve the effect of preserving the image
structure and reducing the artifacts. The final results point
out that the algorithm obtains higher quality reconstructed
images in terms of parallel beam sparse projection recon-
struction [36]. The CD-Net (Comprehensive Domain Network)
proposed by Zhang et al. exploited information redundancy
with spectral complementarity to improve image quality and
reduce radiation dose for DECT imaging [37]. Zhang et al.
developed the Comprehensive Learning Enabled Adversarial
Reconstruction (CLEAR) method for Low-Dose CT Imaging
[38]. Hu et al.proposed a novel reconstruction framework
termed Deep Iterative Optimization-based Residual-learning
(DIOR) for limited-angle CT [39]. Quantitative and quali-
tative results show that the DIOR brings a promising im-
provement in artifact removal, detail restoration, and edge
preservation. Hu et al. developed a method termed Single-shot
ProjectionError Correction Integrated Adversarial Learning
(SPECIAL) progressive-improvement strategy, which could
effectively combine the complementary information contained
in the image domain and projection domain, and greatly
improve the reconstructions at the expense of small compu-
tational cost [40]. Previous works neglected feature fusion
and data complementation for dual-energy limited-angle CT
reconstruction using self-prior knowledge in the projection
and image domains. In this paper, we make the following
contributions:

• The prior information of a dual-energy CT image under
alternating high- and low-energy dual quarter-scan (half-
scan) was extracted, which made a great contribution to
guiding SPEAR-Net in feature learning, artifact removal,
and detail protection.

• Projections under full-scan are masked with the prior in-
formation of the dual-energy CT. This masking operation
corrects the noise caused by the limited-angle scan and
amplifies the statistical distribution of the true projection
data under full-scan.

• Two CT images under high and low energy quarter-scan
are fused with the masked features for feature-rich, which
facilitates the enhancement of the global features of the
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projection and the data complementation of the dual-
energy limited-angle.

• Two deep learning networks that adopt a novel multi-level
consistency loss are developed that exploit simultane-
ously redundant information in the high-and low-energy
domains and rich prior information in the projection
and image domains for dual-energy limited-angle CT
reconstruction.

The rest of this paper is organized as follows. Section II gives
the mathematical model of SPEAR-Net and the details of
the neural network architecture. The result and analysis are
presented in the section III. Section IV will discuss relevant
issues and present conclusions.

II. METHODOLOGY

A. One-Step DECT Limited-angle Reconstruction Strategy

π/2

π/2

0

π/2

π

Fig. 1. High- and low-energy complementary dual-quarter limited-angle CT
scanning scheme.

The energy redundancy of DECT and self-prior information
are utilized to develop a dual-energy CT limited-angle data
acquisition strategy as shown in Fig.1. High- and low-energy
x-source crossed 90◦ scan, and the patient’s anatomical infor-
mation is scanned in the range of 0◦ ∼ 90◦ and 90◦ ∼ 180◦

by alternating low- and high- energy. In this way, the patient
is half-scanned by dual-energy CT. It also provides as much
patient information as possible and minimizes scan times
and radiation doses. The self-prior enhanced artifact removal
network (SPEAR-Net) for one-step dual-energy limited-angle
reconstruction is shown in Fig.2(A). The SPEAR-Net consists
of an image-domain self-prior network(IP-Net), a dual-energy
sinogram-domain self-prior network(DSP-Net), and two dual-
energy image-domain self-prior networks(DIP-Net). Specifi-
cally, the image domain self-prior information is provided by
IP-Net for guiding SPEAR-Net in feature learning, artifact

removal, and detail protection. The sinogram domain self-prior
information is employed by DSP-Net to better complete the
projection domain data for dual-energy limited-angle recon-
struction. DIP-Net simultaneously reduces noise and removes
artifacts in the high- and low-energy domains for limited-angle
CT images. The procedure of extracting self-prior information[

ÎLl
ÎHl

]
from dual-energy limited-angle CT image

[
ILl
IHl

]
can be achieved by the function fIP:[

ÎLl
ÎHl

]
= f∗

IP

[
ILl
IHl

]
(1)

f∗
IP = argmin

fIP

∥∥∥∥fIP [
ILl
IHl

]
−

[
ILa
IHa

]∥∥∥∥ , (2)

where Îil and Iia with i = (L,H) represent the DE limited-
angle self-prior CT images and the DE CT images with
reconstructed artifacts from incomplete dual-energy projection
data. A Radon transform operator embedded in the Tensorflow
framework is employed to obtain DE limited-angle self-prior
projection data. [

p̂L
l

p̂H
l

]
= R

[
ÎLl
ÎHl

]
(3)

where

[
p̂L
l

p̂H
l

]
denote the projections corresponding to[

ÎLl
ÎHl

]
.

The dual-energy limited-angle prior projection is masked as
follows:

p̂L
m = p̂L

l ∗ (1− ML) + pL
f ∗ ML

p̂H
m = p̂H

l ∗ (1− MH) + pH
f ∗ MH

(4)

Where ML =


M1

L

M2
L

M3
L

M4
L


576×763

, M1
L =

 1 · · · 1
...

. . .
...

1 · · · 1


144×736

, M2
L = M3

L = M4
H =

 0 · · · 0
...

. . .
...

0 · · · 0


144×736

, MH =


M1

H

M2
H

M3
H

M4
H


576×763

,

M2
H =

 1 · · · 1
...

. . .
...

1 · · · 1


144×736

, M1
H = M3

H = M4
H =

 0 · · · 0
...

. . .
...

0 · · · 0


144×736

, and pi
f with i = (L,H) represent

the DE projection under full-scan.
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Fig. 2. The one-step DECT limited-angle reconstruction strategy based on SPEAR-Net. (A)The SPEAR-Net consists of an image-domain self-prior network(IP-
Net), a dual-energy sinogram-domain self-prior network(DSP-Net), and two dual-energy image-domain self-prior networks(DIP-Net). (B)The same Encoder-
Decoder architecture of IP-Net, DIP-Net, and DSP-Net.

The masked projection is simultaneously complemented and
restored using a function fDSP in the high and low energy
domains. [

p̃L
f

p̃H
f

]
=

[
p̂L
m

p̂H
m

]
− f∗

DSP

[
p̂L
m

p̂L
m

]
, (5)

f∗
DSP = argmin

fDSP

∥∥∥∥∥fDSP

[
p̃L
m

p̃H
m

]
−
[

pL
a

pH
a

]∥∥∥∥∥ , (6)

where p̃i
f and p̂i

m with i = (L,H) represent the approximate
solution to the full scan projection, the masked limited-

angle projection, respectively.
[

pL
a

pH
a

]
represent projections

corresponding to
[

ILa
IHa

]
. The sinogram domain and image

domain are bridged by a Radon transform operator embedded
in the Tensorflow framework:[

ĨLf
ĨHf

]
= R−1

[
p̃L
f

p̃H
f

]
, (7)

The image post-processing is adopted to further remove arti-
facts using a function fDIP:

[
IL,∗
c

IH,∗
c

]
=

[
ĨLf
ĨHf

]
− f∗

DIP

[
ĨLf
ĨHf

]
, (8)

f∗
DIP = argmin

fDIP

∥∥∥∥∥fDIP

[
ĨLc
ĨHc

]
−

[
ILa
IHa

]∥∥∥∥∥ , (9)
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where
[

ILa
IHa

]
and

[
ĨLf
ĨHf

]
and represent the corresponding

images of
[

pL
a

pH
a

]
and

[
p̃L
f

p̃H
f

]
, respectively.

[
IL,∗
c

IH,∗
c

]
is an

optimal estimate of the clinical normal dose DE images.

B. Details of the IP-Net, DIP-Net, and DSP-Net

The IP-Net, DIP-Net, and DSP-Net share the same encoder-
decoder architecture as shown in Fig.2(B). The encoder can
effectively extract rich low-level features of low-dimensional
manifolds and has good robustness to noise and disturbance.
The decoder is also able to complement dual-energy limited-
angle projection from the encoding space and restore high-
quality reconstructed images. The skip connections deliver the
encoder’s low-level and high-resolution properties to higher-
level and fine-grained properties through serial operations,
avoiding loss of detail and speeding up the flow of information.
Both DIP-Net and DSP-Net have to concate the input image
and the prior image in the channel dimension during input,
while IP-Net can just input the image directly. The number of
feature channels increases from 32 to 256 and then decreases
from 256 to 1, with the fusing of a 1 × 1 convolution
layer. The kernel size of all convolution and deconvolution
is 3× 3, except for the last layer. The ResBlock encompasses
two sequential convolutions and a residual connection. To
avoid resolution loss, the convolution with a stride set to 2
is used for down-sampling and the deconvolution with the
same stride is employed for up-sampling. Con2d relu differs
from Con2d pure in whether the convolution is followed by
activation with the ReLU function. The activation function
of IP-Net is ReLU, and that of DIP-Net and DSP-Net is
LeakyReLU.

The mean absolute error (MAE) and the structural similarity
index (SSIM) were combined to design the loss function for
SPEAR-Net [41]–[43]. MAE calculates the loss in Eq.(10):

LMAE(y, x) =
1

m

m∑
i=1

|yi − xi|, (10)

where x denotes the reconstructed image, y denotes the
corresponding reference image, and m is the number of pixels.
The subscript i indicates the ith pixel. The SSIM is defined
as follows:

SSIM(x1, x2) =
(2µx1µx2 + c1)(2σx1,x2 + c2)

(µ2
x1 + µ2

x2 + c1)(σ2
x1 + σ2

x2 + c2)
, (11)

where µ denotes the mean value of the image, σ2 is the
variance of the image, and σ(x1x2) indicates the covariance
of two images. c1 and c2 are constants associated with the
value range of the image. The SSIM error is formulated as:

LSSIM(y, x) = 1− SSIM(y, x), (12)

Dual-energy CT is used for the quantitative analysis of sub-
stances based on the difference in attenuation changes of
different substances at high and low energies. We developed
the dual-energy MAE to utilize this characteristic:

LDiff(y, x) = MAE(Diffy,Diffx), (13)

The differences between low-energy data and high-energy data
are defined as:

Diff = DL − DH, (14)

where DL and DH denote low-energy data and high-energy
data. The multi-level consistency loss in SPEAR-Net is de-
signed as follows:

L = α · LMAE + β · LSSIM + γ · LDiff , (15)

C. DECT Clinical Applications

This study is dedicated to virtual imaging and iodine quan-
tification, which are widely considered to be the two most
common clinical applications of dual-energy CT. A VNC im-
age is an image in which the contrast agent used is artificially
removed. Modeling CT scans without contrast and potentially
alleviating the clinical need for CT scans without contrast.
This quantitative iodine map is employed for the subjective
assessment of various lesions. The method is performed in [44]
for material decomposition. Eq.(16) illustrates the dependence
between the base material image and the energy-resolved
DECT image f(r).

b(r) = W · f(r), (16)

Where W is a matrix of weight coefficients, which has a size
of 2 × 2. The water and iodine contrast agent ROIs in the
DECT images were selected to correct the weighting factor
matrix W. They are taken as b1 = 1 and b2 = 0, and b1 = 1
and b2 = 1. Eq.(17)and Eq.(18) were used by ROIs to calibrate
the measurements.

b1 = W · c1, with b1 =

[
1
0

]
and c1 =

[
c1L
c1H

]
, (17)

and,

b2 = W · c2, with b2 =

[
1
1

]
and c1 =

[
c2L
c2H

]
, (18)

where the c1L and c1H are the measured CT number of high-
and low-energy CT image water ROIs, respectively. c2L and
c2H are the measured CT number of high- and low-energy
CT image iodine ROIs, respectively. The weighting coefficient
matrix W can be determined by Eq. (17) and Eq. (18), and
the VNC image and iodogram of a specific material can be
reconstructed using the DECT images obtained from full-scan
and limited-angle scanning. We performed a quantitative com-
parison of material-specific images with the results obtained
from DECT images using the full-scan approach as a baseline.

III. EXPERIMENT RESULTS AND ANALYSIS

A. Experimental datasets

In this study, the data set contains clinical DECT images
of 22 patients who had scanned under 100 kVp and 140 kVp
with an iodine contrast-enhanced SOMATOM Definition Flash
DECT scanner (Siemens Healthineers, Forchheim, Germany).
All scans were performed at the PLA General Hospital in
Nanjing, China, with institutional review board approval and
patient consent forms and were adherent to the tenets of the
Declaration of Helsinki. Data from 17 cases were used to train
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all networks in the experiment, data from the 2 cases were used
as a validation set, and the remaining 3 cases were treated as a
test set. The projection data were simulated based on a simple
Radon transform of clinical DECT images. The original spec-
tra for the clinical DECT images are 100 kVp (low-energy)
and 140 kVp (high-energy), respectively. Mean energies for the
100 kVp and 140 kVp spectra were approximately 65 keV and
80 keV, respectively. The Radon transform represents single-
energy (with a mean energy of 100 kVp and 140 kVp spectra)
forward projections. The source-to-detector distance and the
source-to-rotation centers were 1085.6mm and 595.0mm. The
736 detection elements are available, each with a size of
1.2858 mm. All CT images are 0.80mm × 0.80 mm pixels
in size. The projection data with the size of 576×736 and the
images with the size of 512× 512 were directly used to train
SPEAR-Net. All forward projection and reconstruction meth-
ods in this paper are implemented by a MATLAB Toolbox
(http://www.eecs.umich.edu/∼fessler/code/). A Poisson noise
in Eq. (19) was added for forwarding projection.

Zi ∼ Poisson{Z0i · exp(−Pi)}, i = 1, 2, ..., N. (19)

where Zi is the number of transmitted photons, Z0i is the
incident X-ray photon intensity, Pi is the line integral of
attenuation coefficients along the ith ray path, and N is
the total number of X-ray paths. CT values in Hounsfield
Unit (HU) can be represented as the linear transformation of
attenuation coefficient µ with the following equation:

HU = 1000× µ− µwater

µwater
, (20)

The relationships between 576-view DE projections pl and
projections pf under full-scan are brideged by the Eq(21):

pL
l (A1 : A1 +Angle) = pL

f (A1 : A1 +Angle),

pH
l (A2 : A2 +Angle) = pH

f (A2 : A2 +Angle),
(21)

where pi
f and pi

l with i = (L,H) represent the projection data
under full-scan and limited-angle scan. A1 is 0◦, A2 is 90◦,
and Angle is 90◦.

B. Parameter Setting

The algorithms in the DL-based comparison experiment and
ablation experiment were implemented using Python’s Tensor-
Flow framework. The computer configurations are as follows:
Intel(R) Core (TM) i9-9990K 3.6GHz CPU; NVIDIA RTX
3090 GPU with 24G memory. The sub-networks IP-Net, DIP-
Net, and DSP-Net of SPEAR-Net are trained simultaneously.
As for the α, β, andγ in Eq.15, a progressive improvement
strategy [45] was employed to adjust them. First, we set α and
β, γ = 0 to obtain a baseline. Then β was tuned with α = 1
and γ = 0. Finally, γ was tuned with fixed α and β until
the loss function was not decreasing, and the quality of the
reconstructed dual-energy CT images was optimized. Under
the guidance of extensive experiments, α = 1, β = 0.1, and
γ = 0.025 were set in Eq.15. At this time, the learning rate
λ was initially set to 10−4 and then decayed to 10−5. The
batch size was 1 and Adam optimizer with default settings was
employed. The total training epoch was set to 100. The IP-Net

and DIP-Net are trained with 9269 paired DE CT images of
size 512 × 512. The DSP-Net was trained with 9269 paired
DE projection data of size 736× 576.

C. Results and analysis of comparison experiments
To validate the performance of the proposed SPEAR-Net,

the FBP (filtered back projection) algorithm, CSI-GAN [46],
An-Net [47], CT-Net [48] were treated as the comparisons.
Besides, the mean absolute error (MAE), peak single-to-
noise ratio (PSNR), and structural similarity index (SSIM)
were adopted to evaluate the performance of various recon-
struction methods. Four axial reconstruction results and the
corresponding regions-of-interest (ROIs) of various algorithms
are illustrated in Fig.3. It can be seen that FBP induces serious
streak artifacts and loses diagnostic information in Fig.3(b1)-
(b4). These expose the limitation of traditional reconstruction
algorithms for limited-angle DECT. By deeply exploiting the
essential characteristics of DECT images, DL-based methods
comprehensively outperform traditional algorithms. Assisted
by inpainting sinogram data using real sinogram data, the
CSI-GAN algorithm gains better visual quality than FBP in
artifact removal and tissue restoration. However, compared
with other deep learning-based methods, CSI-GAN still fails
to reconstruct satisfactory images. Compared with the single
projection domain processing method, the three dual-domain
deep learning-based processing methods, AN-Net, CT-Net,
and SPEAR-Net, can better eliminate noise and remove arti-
facts in Fig.3(d1)-(f4). Specifically, CT-Net and SPEAR-Net,
which have dual-flow, dual-domain characteristics, are better
at preserving organ detail and better-facilitating tissue recovery
than An-Net, but SPEAR-Net is the highest performer of
the three(as specifically indicated by yellow arrows in red
rectangular in Fig.3(d1)-(f1)(d4-f4)). The sagittal and coronal
results of different reconstruction algorithms are presented in
Fig.4, and the magnified ROIs in red rectangles are placed
left in the corresponding images. We can observe that the
FBP reconstructed images are severely degraded by noise and
artifacts. The pre-processing technology, CSI-GAN, almost
cannot restore the subtle features, especially in red rectangular
in Fig.4(c1). Images reconstructed by An-Net suffer from
the over-smooth, especially in red rectangular in Fig.4(d1).
With the introduction of redundant information in the energy
and spatial domains, CT-Net eliminates the over-smooth, but
the reconstructed image is blurring(Fig.4(e1)). Compared with
CSI-GAN, An-Net, and CT-Net, SPEAR-Net can preserve the
subtle features better, as pointed out by yellow arrows in
Fig.4(f2). SPEAR-Net demonstrates promising performance in
structural fidelity after fully utilizing prior knowledge of the
projection and image domains.

Quantitative analysis was also conducted to evaluate the
proposed SPEAR-Net. Three metrics, MAE, SSIM, and PSNR,
were calculated for all the test slices. The average scores of all
slices are listed in TableI and the best scores are in bold. TableI
shows that the FBP algorithm leads to the worst assessments
in all cases. These results claim that traditional algorithms fail
to reconstruct high-quality images when the projection data
are incomplete. Meanwhile, it is observed that all the DL-
based methods obtain superior performance compared to FBP
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Fig. 3. The axial results of case1 with different reconstruction methods in comparison experiments. The display window is [-140, 260] HU.

TABLE I
QUANTITATIVE RESULTS FOR DIFFERENT RECONSTRUCTION METHODS IN THE COMPARISON EXPERIMENT. THESE METRICS WERE CALCULATED FOR

ALL SLICES OF THE TEST SET AND THE AVERAGE SCORES FOR ALL SLICES ARE LISTED IN THE TABLE

Patients Metrics FBP CSI-GAN AN-Net CT-Net SPEAR-Net

Case1
MAE 357.9843 21.5024 16.314 13.7162 9.0273
SSIM 52.5024 94.6923 97.6036 98.0168 99.1309
PSNR 9.8341 35.4214 38.3896 39.4347 43.9295

Case2
MAE 357.7236 21.4867 16.7408 16.3021 10.6613
SSIM 52.7607 95.1582 96.3563 98.0839 98.3693
PSNR 9.9875 35.9739 38.1434 38.9834 42.8852

Case3
MAE 350.4455 21.0506 15.9712 16.4002 10.0553
SSIM 53.122 95.8099 95.7556 97.0162 98.9455
PSNR 9.8893 36.6345 37.7836 39.4047 43.0215

TABLE II
THE STATISTICAL PROPERTIES(MEAN ± STANDARD DEVIATION) OF DIFFERENT ALGORITHMS IN THE COMPARISON EXPERIMENT

Materials ROI Reference FBP CSI-GAN An-Net CT-Net SPEAR-Net

VNC Image(HU)
ROI I 20.134±42.026 228.792±507.273 51.473±34.624 48.968±22.887 42.734± 21.397 22.158±34.43
ROI II 3.698±103.094 -50.899±341.115 39.972±92.131 14.505±100.072 16.931±97.119 8.8324±103.083
ROI III 22.026±41.793 -15.697±351.123 43.676±45.7 39.496±32.089 45.115±29.934 27.728±42.49

Iodine Map(%)
ROI IV 0.891±0.846 0.105±1.496 0.682±0.693 0.741±0.754 0.796±0.808 0.844±0.825
ROI V 0.461±0.46 1.174±1.356 0.336±0.368 0.4±0.368 0.42±0.39 0.454±0.447
ROI VI 0.966±0.855 0.298.±2.281 0.769±0.531 0.885±0.741 0.845±0.747 0.977±0.836

algorithms in all imaging conditions. Notably, the proposed
SPEAR-Net gains the best metric results with at least 4.69
HU decrements in MAE, 3.62 dB improvement in PNSR, and

0.29 promotion in SSIM compared to other advanced DL-
based methods.

VNC images and iodine maps derived from limited-angle
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Fig. 4. The sagittal and coronal results of different reconstruction algorithms
in comparison experiments. (a1)-(f1) and (a2)-f(2) are the reconstruction
results of case2 and case3, respectively. The display window is [-140, 260]
HU.

DECT images processed by different methods in compari-
son experiments are shown in Fig.5. As can be seen from
Fig.5(b1)-(b6), the corresponding VNC images and iodine
maps are seriously degraded due to the FBP reconstructed
DECT images suffering from severe artifacts and noise. It can
be seen that all deep learning-based techniques except CSI-
GAN derive VNC images and iodine maps that successfully
suppress most of the artifacts and recover most of the tissue
features in all cases. From Fig.5(c1)-(c6), it can be seen that
the VNC images and iodine maps derived from the dual-
energy CT images reconstructed by the CSI-GAN method,
which is filled with a large number of streaking artifacts, still
have a large number of artifacts. This phenomenon illustrates
the insufficiency of processing dual-energy limited-angle data
in the sinogram domain alone. It is observed that the VNC
images derived from dual-energy CT images reconstructed
by AN-Net and CT-Net with reconstruction methods working
in both projection and image domains, are over-smooth and
fail to recover tissue details, as indicated by yellow arrows
in Fig.5(d3)-(e3). Iodine maps generated from the CT image
reconstructed by SPEAR-Net are closest to the one generated
from the reference image, as indicated by the red arrows in
Fig.5(d4)-(f4). The statistical properties(mean ± standard devi-
ation) are performed on six representative ROIs selected from
the VNC images and iodine maps to evaluate the quantification
accuracy, and the results are listed in TableII. From TableII,
it can be observed that SPEAR-Net is the best in preserving

quantitative accuracy in VNC images and iodine maps. The
quantitative analysis metrics (mean) of ROI I in the derived
iodine maps for the SPEAR-Net reconstructed DECT image
are not the best, but its standard deviation metric is the closest
to that of the reference image. To sum up, SPEAR-Net not
only eliminates noise and removes artifacts, but also preserves
quantitative accuracy, which demonstrates the greater potential
of SPEAR-Net reconstructed images for clinical applications.

D. Results and analysis of ablation experiments
An ablation study was performed to probe the effective-

ness of mask operation, IP-Net, DSP-Net, and DIP-Net in
the proposed SPEAR-Net. As for the ablation analysis, a
progressive verification strategy was adopted. A one-step dual-
energy limited-angle reconstruction network CT-Net working
simultaneously in the high- and low-energy domains in the
projection and image domains is considered the baseline
model. First, the same masking operation as SPEAR-Net was
introduced by CT-Net, which is termed as CM-Net. Then, IP-
Net, which can extract prior information of a dual-energy CT
image under alternating high- and low-energy dual quarter-
scan (half-scan), is then incorporated into the CM-Net. Next,
DIP-Net which can extract prior information from two CT
images at high and low energy quarter scans, respectively,
is added to the model again. Finally, DSP-Net, which can
combine the prior knowledge extracted from IP-Net and DIP-
Net respectively with the original dual-energy limited-angle
projection data for feature fusion and data complementation,
is added to the model.

Four axial slices are illustrated in Fig.6. It can be seen
that each method in the ablation experiment improved the
reconstruction quality and removed artifacts. The blood vessels
(pointed by red arrows) cannot be well identified in the
reconstructed results using CT-Net, as presented in Fig.6(b1).
Fig.6(c1)-(f1) all recover the vessel details well and the recon-
structed images can better close to the reference image. This
indicates that the mask operation has a positive contribution
to dual-energy limited-angle projection data complementation
and feature fusion. Due to the contribution of prior feature
information from the image under the half-scan caused by
the alternating high- and low-energy scans, (d1)-(d4) in Fig.6
performs better than (c1)-(c2) in terms of structure recovery,
but the reconstructed image with IP-Net incorporated on the
base of CM-Net is overly smooth compared with (e1)-(e4),
which is possibly limited by the repeated use of convolutions
in DIP-Net and IP-Net. The DSP-Net was introduced to fuse
the features of a projection equal to the prior CT image at half-
scan and two projections of the CT image at quarter-scan with
high and low energy respectively for data complementation.
This allows SPEAR-Net to introduce self-prior information
in both the projection and image domains simultaneously,
which can better capture global features and can generate more
uniform images(as observed in (f1)-(f4) in Fig.6). In addition,
the proposed SPEAR-Net achieves the best performance in
edge preservation (as pointed out by the red arrow in Fig.6(a3)-
(f3)).

The sagittal and coronal results of different reconstruction
algorithms in ablation experiments are presented in Fig.7.
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Fig. 5. VNC images and iodine maps of different methods in comparison experiments. (a1)-(f1) and (a4)-(f4) are VNC images and iodine maps of case1,
(a2)-(f2) and (a5)-(f5) are VNC images and iodine maps of case2, with (a3)-(f3) and (a6)-(f6) are VNC images and iodine maps of case3. The VNC images
are displayed in [-160, 240] HU, and the iodine maps are displayed in [0.5, 1.4] HU.

TABLE III
QUANTITATIVE RESULTS FOR DIFFERENT RECONSTRUCTION METHODS IN THE ABLATION EXPERIMENT. THESE METRICS WERE CALCULATED FOR ALL

SLICES OF THE TEST SET AND THE AVERAGE SCORES FOR ALL SLICES ARE LISTED IN THE TABLE

Patients CT-Net Mask operation IP-Net DIP-Net DSP-Net MAE(HU) SSIM(%) PSNR(dB)

Case1

✓ 13.7162 98.0168 39.4737
✓ ✓ 10.8252 98.9526 42.1458
✓ ✓ ✓ 10.8582 99.0422 42.4371
✓ ✓ ✓ ✓ 9.0311 99.1094 42.6400
✓ ✓ ✓ ✓ ✓ 9.0273 99.1309 44.9295

Case2

✓ 13.5534 98.2365 40.3239
✓ ✓ 12.1120 98.5327 41.0504
✓ ✓ ✓ 12.6726 98.6214 41.3328
✓ ✓ ✓ ✓ 10.6613 98.7373 41.6206
✓ ✓ ✓ ✓ ✓ 10.5769 99.9693 42.8852

Case3

✓ 12.5326 98.2463 40.3652
✓ ✓ 12.2642 98.5521 40.7649
✓ ✓ ✓ 11.1705 98.7951 41.9335
✓ ✓ ✓ ✓ 10.1945 98.9269 42.8008
✓ ✓ ✓ ✓ ✓ 10.0553 98.9455 43.0215
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Fig. 6. The axial results of case1 with different reconstruction methods in ablation experiments. The display window is [-140, 260] HU.

As can be observed in Fig.7, the reconstruction methods by
CT-Net and CM-Net produced some bar artifacts(as pointed
out by the yellow arrow in Fig.7(b1)-(c1)). By exploring and
exploiting the anatomical consistency, energy-domain redun-
dancy, and comprehensive domain prior knowledge, the pro-
posed SPEAR-Net restore reliable anatomical information and
achieves promising performance in subtle structure restoration
as pointed by the red arrows in (b2)-(f2) in Fig.7.

TableIII provides the quantitative evaluations for the pro-
gressive ablation study. It can be noticed that the mask
operation produces better assessment scores compared to the
baseline since the mask operation incorporates part of the full-
scan projection in the dual-energy limited-angle projection,
which makes the projection data more feature-rich. Besides,
based on the IP-Net, the DIP-Net can mine more rich self-
prior information in image domains in the high- and low-
energy domains and brings improvements in MAE, PSNR,
and SSIM. It is worth noting that SPEAR-Net obtains the best
performance in all comparisons, validating the effectiveness of
exploiting self-prior knowledge in the projection domain. VNC
images and iodine maps derived from limited-angle DECT
images processed by different methods in ablation experiments
are shown in Fig.8. It can be observed from Fig.8 that the VNC
images and iodine maps derived from the reconstructed images

processed by all methods in the ablation experiment are effec-
tive in eliminating noise and removing artifacts. However, the
VNC images generated from the CT-Net reconstructed images
produced some bar artifacts(as indicated by the yellow arrow
in Fig.8(b2)). SPEAR-Net was able to generate more detailed
textures of the tissue closest to the reference image than each
method in the ablation experiment(as indicated by the yellow
circle in Fig.8(a6)-(f6)). With the incorporation of IP-Net and
DIP-Net, the VNC derived from each reconstruction method
is getting closer to the VNC image derived from the reference
image, and the tissue edges may become blurred due to the
increase of convolution operations, but SPEAR-Net can make
up for this shortcoming well by using the self-prior knowledge
learned from the projection domain(as indicated by the yellow
arrow in Fig.8(a1)-(f1)). We performed statistics (mean ± stan-
dard deviation) on six representative ROIs selected from the
VNC images and iodine maps derived from each method in the
ablation experiment to assess the accuracy of quantification,
and the results are listed in Table.IV. From Table.IV, it can
be observed that the mean of both the VNC and the ROI of
the iodine maps derived from the SPEAR-Net reconstructed
images are the closest to the reference image. In ROI VI,
SPEAR-Net performs worse than CM-Net in quantification
accuracy preservation (smaller standard deviations), and it
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TABLE IV
THE STATISTICAL PROPERTIES(MEAN ± STANDARD DEVIATION) OF DIFFERENT ALGORITHMS IN THE ABLATION EXPERIMENT

Materials ROI Reference CT CM CM+IP CM+IP+DIP SPEAR-Net

VNC Image(HU)
ROI I 15.261±40.104 19.831±30.286 17.207±30.963 22.814±31.575 31.137±28.618 16.982±33.582
ROI II 9.95±40.84 27.218±31.517 24.183±32.553 32.064±35.379 29.656±32.998 8.681±32.998
ROI III 10.479±34.544 23.53±29.129 23.63±29.121 34.228±32.312 31.135±31.994 10.508±34.525

Iodine Map(%)
ROI IV 1.311±0.725 1.287±0.714 1.27±0.711 1.255±0.749 1.281±0.752 1.314±0.727
ROI V 0.118±0.282 0.098±0.233 0.137±0.255 0.125±0.267 0.155±0.254 0.12±0.272
ROI VI 0.577±0.468 0.627±0.447 0.601±0.469 0.515±0.424 0.597±0.434 0.567±0.444

TABLE V
CALCULATION COST OF DIFFERENT METHODS (UNIT: SECOND)

Method FBP CSI-GAN+SART-TV AN-Net CT-Net SPEAR-Net
Time 27.27 29000.65 94.23 93.91 96.06

Reference CT CM

CM+IP CM+IP+DIP SPEAR-Net

(b1)

(b2)

(a1)

(a2)

(c1)

(c2)

(d1)

(d2)

(e1)

(e2)

(f1)

(f2)

Reference CT CM

CM+IP CM+IP+DIP SPEAR-Net

Fig. 7. The sagittal and coronal results of different reconstruction methods
in ablation experiments. (a1)-(f1) and (a2)-f(2) are the reconstruction results
of case2 and case3, respectively. The display window is [-140, 260] HU.

demonstrates a little worse performance in noise suppres-
sion. Overall, the more accurate SPEAR-Net-generated VNC
imaging with preserved quantitative accuracy can simulate a
scan without a contrast agent, better alleviating the need for
no-contrast-agent scanning during clinical contrast-enhanced
dual-energy imaging. More accurate measurement of iodine
quantification generated by SPEAR-Net is of great clinical
significance for subjectively assessing the various lesions.

E. Computational Cost
Table.V presents the computational cost of different meth-

ods with 1022 slices for 3 patients. CSI-GAN is a GAN-based

projection data complementation method, and the comple-
mented projection data are transformed to the image domain
using the SART-TV method. The SART-TV reconstruction
method requires interative calculations and takes a longer
time compared with other methods. In contrast to CT-Net and
AN-Net, SPEAR-Net introduces self-prior information in both
the projection and image domains, which takes longer time
than CT-Net and AN-Net. This is the reason why CT images
reconstructed by SPEAR-Net are of higher quality than those
reconstructed by CT-Net and AN-Net. This phenomenon is
acceptable.

IV. DISCUSSION AND CONCLUSION

Recently, numerous methods [39], [40], [46], [48]–[50]
have been developed to deal with the problem that limited-
angle reconstruction is incomplete for projection data, and
they have achieved remarkable achievement in limited-angle
reconstruction. However, none of these methods explore and
exploit the dual-energy limited-angle image information and
projections as prior knowledge to improve imaging quality.
Our developed SPEAR-Net can effectively fuse the prior
information of dual-energy CT images and projections with
the redundant information in the energy and spatial do-
mains, allowing a one-step reconstruction of high-quality dual-
energy limited-angle images, reducing the radiation dose and
shortening scan time. First, SPEAR-Net introduces the mask
operation, which positively contributes to the feature fusion
between dual-energy limited-angle projection and dual-energy
full-scan projection. Then, the addition of IP-Net after the
mask operation facilitates the extraction of prior information
from dual-energy CT images with alternating high- and low-
energy dual-quarter-scan. Next, DIP-Net, which can extract
prior information from two CT images under high-energy and
low-energy quarter scans, respectively, is again empowered
into the model. Finally, DSP-Net, which can combine prior
knowledge extracted from IP-Net and DIP-Net, respectively,
with the original dual-energy limited-angle projection data, is
enhanced by the introduction of SPEAR-Net for feature fusion
and data complementation. Both qualitative and quantitative
reconstruction results show that SPEAR-Net has remarkable
performance in artifact removal, noise elimination, and tissue
structure preservation. The excellent performance of SPEAR-
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Fig. 8. VNC images and iodine maps of different methods in ablation experiments. (a1)-(f1) and (a4)-(f4) are VNC images and iodine maps of case1,
(a2)-(f2) and (a5)-(f5) are VNC images and iodine maps of case2, with (a3)-(f3) and (a6)-(f6) are VNC images and iodine maps of case3. The VNC images
are displayed in [-160, 240] HU, and the iodine maps are displayed in [0.5, 1.4] HU.

Net-derived virtual non-contrast (VNC) imaging and iodine
contrast quantification demonstrates that SPEAR-Net simu-
lates scans without contrast and can better alleviate the need
for contrast-free scans in clinical contrast-enhanced dual-
energy imaging

Although the SPEAR-Net demonstrates encouraging im-
provement in dual-energy limited-angle CT reconstruction,
some issues are still to be noticed. Limited by current technical
bottlenecks, there may be noise and artifacts left in the
ground truth images, which may lower the performance of
the proposed algorithm in sagittal and coronal reconstruction
results. There is room for improvement in the extraction and
utilization of prior information for dual-energy limited-angle
images and projections because the high- and low-frequency
prior information components are not better empowered by
the distinction in the global space. Therefore, how to recon-

struct the energy and spatial domains with more frequency-
level prior feature space is still an open issue. The network
performance of SPEAR-Net does not overcome the drawback
of relying on the integrity of the projected data, i.e., the small
range of scanning angles, which improves little relative to
other algorithms. The effective integration of deep learning
into traditional iterative strategies remains a challenge. When
extracting prior information from CT images, the image edges
are blurred and the reconstructed images are over-smooth due
to the extensive use of convolution operations, which leads to
performance degradation. Therefore, how to balance the over-
smoothing and effective artifact removal in SPAER-Net is a
problem that needs attention in the future. The data simulation
in this paper was carried out through a simple Radon transform
without considering the polychromatic x-ray interaction or
complex detector responses. This is because we want to test the
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feasibility of the proposed SPEAR-Net in retrieving dual en-
ergy information from limited angle measurement by avoiding
other confounding factors. Investigation of the performance of
the proposed method on real experimental data or simulated
data involving more realistic x-ray interactions can be future
work.
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