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A Modified δ-Generalized Labeled Multi-Bernoulli Filtering
for Multi-Source DOA Tracking with Coprime Array

Xudong Dong, Jun Zhao, Meng Sun, Xiaofei Zhang, Yide Wang

Abstract—For the target tracking problem where the number
of targets fluctuates with time and the measurement is a point
measurement, the random finite set (RFS) class filtering is
an available solution. However, in direction of arrival (DOA)
tracking, the array observation is a super-positional value, and
the tracking performance can be severely impaired if the RFS-
based filter approach is applied. As a result, a novel measurement
association mapping (NMAP) approach has been presented to
cope with the mapping problem between the array observations
and sources. Nevertheless, the tracking performance is poor when
the number of particles is small. In this paper, a modified delta-
Generalized Labeled Multi-Bernoulli (δ-GLMB) DOA tracking
particle filter is proposed in combination with the NMAP
strategy, which can achieve the same tracking performance
with a smaller number of particles by modifying the particles
in the δ-GLMB prediction step. Furthermore, the approach is
extended to a coprime array and can achieve better DOA tracking
performance than a uniform linear array. Simulation experiments
validate the effectiveness of the proposed algorithm.

Index Terms—Direction-of-arrival (DOA) tracking, coprime
array, δ-generalized labeled multi-Bernoulli filter (δ-GLMB),
super-positional measurement.

I. INTRODUCTION

MULTI-target filtering concerns the estimation of the
number of unknown time-varying targets and their

individual states (e.g., x − y position, direction of arrival
(DOA), etc.) from a series of observations [1]. Although
the words multi-target filtering and multi-target tracking are
often used interchangeably, there is a distinction. In multi-
target tracking, we are additionally interested in the target’s
trajectory (in fact, a real multi-target tracking system requires
tracking labels). There are a lot of recent works on multi-target
tracking applications that can track the position of targets [2],
or their DOAs [3]–[7]. The work presented in this paper is
focused on a Bayesian multi-target filtering that also provides
multi-source DOA tracking (called as multi-source tracking
for convenience).

The most difficult aspect of multi-source tracking is dealing
with super-positional measurement, which is the superpo-
sition of information from multi-source. Approaches based
on subspace update [3]–[7] have been proposed to address
this concern, but these methods all presume a known and
fixed number of sources, which is not applicable in practical
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circumstances. The random finite set (RFS, [2]) approach is a
Bayesian version of the multi-target filtering/tracking problem
in which the number of targets is random and the set of
target states is considered as a finite set. The RFS theory-
supported multi-target Bayesian filtering can detect dynam-
ically and simultaneously the number and state of sources,
where new sources appear (newborn) and old ones disappear
(death), and has a wide range of application areas, such
as sonar [8], computer vision [9], [10], traffic monitoring
[11], sensor network and distributed estimation [12]–[14]. Due
to the numerical complexity of Bayesian multi-target filter,
the probability hypothesis density (PHD) [15], Cardinalized
PHD (CPHD) [16] and multi-Bernoulli filters [17], have been
developed as approximations. In principle, these approaches
are not multi-target trackers because they are based on the
indistinguishability of the targets (i.e., they cannot track the
trajectory labels). Recently, Vo et al. propose the generalized
labeled multi-Bernoulli (GLMB, [18]) algorithm based on RFS
theory. Compared with the GLMB filtering, δ-GLMB [19]
filtering owns stronger results that are immediately applied
for multi-target tracking. However, the authors of [20] con-
sider that in traditional sensor array observations, each sensor
element’s measurement is formed by a mixture of all the
sources in the surveillance area, and this measurement model is
referred to as the super-positional measurement model, which
causes a mismatch in the source-measurement association
mapping and thus reduces the tracking accuracy [21].

Traditional methods use, firstly, detection algorithms to con-
vert the super-positional measurement model into a standard
measurement model, and then PHD/CPHD filters to extract
separable measurements. However, critical information will
be lost during the conversion process, resulting in inaccurate
estimations. RFS-based approaches are also widely employed
in the field of DOA tracking [20]–[25]. The new measure-
ment association mapping (NMAP) strategy proposed in [22]
redefines the matching mechanism between the source and
measurement, thereby resolving the problem of tracking per-
formance degradation due to the incorrect association mapping
[21]. However, the performance is poor at low signal-to-noise
ratio (SNR). Using the NMAP strategy, the PHD DOA track-
ing method [23] based on coprime array is proposed, which
improves the tracking accuracy and increases the number of
detectable sources compared to the classical particle filter (PF,
[6]) DOA tracking algorithm. In [20], [25], the multi-source
DOA tracking problem in the RFS framework is solved by
a CPHD filter. However, the aforementioned approaches will
suffer from particle deterioration and will be unable to track
the trajectory labels.

With respect to the previously discussed DOA tracking tech-
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niques based on the RFS framework, the tracking performance
of approach using sparse array [6], [23] is noticeably superior
to that of method based on uniform linear array (ULA) [7],
[21], [22]. This is due to the fact that, for a given number of
sensors, the sparse array approach has a larger virtual array
aperture than the ULA, which results in improved estimate
performance. In this paper, combining the existing NMAP
strategy [22], we extend the δ-GLMB filtering to the coprime
array [26] scenario and propose a modified δ-GLMB (Mδ-
GLMB) filtering. The main contributions are as follows:

• We extend the GLMB filtering to the coprime array DOA
tracking scenario to increase the degrees of freedom,
consequently the tracking perfromance and the number
of sources.

• We present a modified δ-GLMB filtering and provide
a sequential Monte Carlo implementation (also called
particle filtering) scheme.

• In the prediction step of the proposed Mδ-GLMB method,
a regularization method for the predicted particles is
introduced to rectify the application of the particles, thus
making them easier to approach the central area of the
posterior probability density function.

• The proposed method can also be extended to the other
sparse array geometries, like nested arrays, super nested
arrays, etc.

The paper is organized as follows. Section II introduces
the relevant backgrounds, including the source state model,
measurement model and δ-GLMB filtering. In section III, we
outline the recursive implementation of the δ-GLMB DOA
tracking filtering. Section IV presents the proposed modified
δ-GLMB filtering. Simulation and conclusion are given in
sections V and VI, respectively.

Notations 1: Upper-case (lower-case) bold characters
stand for matrices (vectors). [[a, b]] denotes the set
{x ∈ Z |a ⩽ x ⩽ b}, (·)T , (·)H and (·)

∗
denote the transpose,

conjugate transpose and conjugate of matrix, respectively.
diag (·) and vec (·) indicate the diagonal matrices and
vectorization operation, respectively. ⊗ and ⊙ denote
Kronecker and Khatri-Rao products, respectively. IN denotes
a N ×N identity matrix and 0N is the N ×N zero matrix,
E is the expectation operator.

Notations 2: A single target state is denoted by lowercase
letters (e.g., x, x), while multi-target states are expressed
as uppercase letters (e.g., X , X), symbols for labeled states
and their distributions are bolded to distinguish them from
unlabeled ones (e.g., x, X, π, etc.), spaces are represented by
blackboard bold (e.g., X, R, L, C, etc.), state space is defined
by Euclid math one font (e.g., X , Y , etc.), and the class of
finite subsets of a space X or X is represented by F(X ) or
F(X), respectively. Both := and

∆
= stand for definition or

equivalence.

II. BACKGROUND

This section presents the background of multi-source DOA
tracking based on δ-GLMB filtering, including the source state
model, measurement model, and basic theory of the δ-GLMB
filtering recursion.

A. Source state model

Assume that there are Nk sources with state xn
k =

[θn,k, θ̇n,k]
T , n = 1, · · · , Nk move with a velocity θ̇n,k (◦/s),

where θn,k denotes the DOA of the n-th source at time k. The
constant velocity (CV) model is given as follows

xn
k = Fkx

n
k−1 +Gkvk, (1)

with
Fk =

[
1 ∆T
0 1

]
;Gk =

[
∆T 2/2
∆T

]
, (2)

where Fk and Gk are coefficient matrices, ∆T represents
the time period and vk is a Gaussian white noise term with
distribution N

(
0, σ2

k

)
, where σ2

k is the noise variance.
Remark 1: In this paper, we add label to each source, and a

unique label l of the α-th source xα
k consisting of an ordered

pairs (k, α), where α is the index of targets born at time k (e.g.
there are 4 targets born at time 2, then their labels are (2, 1), (2,
2), (2, 3), (2, 4), respectively.). The label space of all targets up
to time k can be expressed as a disjoint union Lk =

⋃k
h=1 Bh,

where Bh denotes the label space of targets born at time h
(noting that Lk = Lk−1 ∪ Bk). Formally, the states in Eq. (1)
can be represented as a labeled vector xn

k := (xn
k , l

n
k ) with

label lnk = (k, n), and the trajectory of a target is composed
of a sequence of consecutive labeled states with the same label
[18].

B. Measurement model

Fig. 1 shows the extended coprime array (ECA) configura-
tion, the array locations are denoted as:

P={Nmd |m ∈ [[0, 2M−1]]} ∪ {Mnd |n ∈ [[0, N−1]]} ,
(3)

where M and N (M < N) are coprime numbers, let r1 < r2 <
· · · < rP , ri ∈ P, i = 1, · · · , P, r1 = 0, and P = 2M+N−1.
d = λ/2 is the minimum array spacing with λ denoting the
wavelength.

0       1      2             …                     2M-1

0     1      2  …    N-1

subarray 1

subarray 2

Nd

Md

Fig. 1: Extended coprime array (ECA).

Considering Nk narrowband far field incoherent sources
sn (k) , n = 1, 2, · · · , Nk with DOA θn,k, impinging on an
extended coprime array (shown in Fig. 1) with P sensors.
The measurement model is as follows

yk = A (θ) sk + nk, (4)

where
• yk [= y1 (k) , y2 (k) , · · · , yP (k)]

T is the super-
positional measurement;
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• sk = [s1 (k) , s2 (k) , · · · , sNk
(k)]

T is the source vector
and nk represents the additive Gaussian white noise
(AGWN) vector with covariance matrix σ2IP , where σ2

is the noise power;
• A (θ) = [a (θ1,k) ,a (θ2,k) , · · · ,a (θNk,k)] ∈ CP×Nk is

the directional matrix with
a(θn,k) =

[
1, · · · , e−j 2π

λ rP sin θn,k

]T
(5)

the steering vector.
The covariance matrix Rk of yk (4) is given by

Rk = E
{
yky

H
k

}
= A (θ)RsA

H (θ) + σ2IP , (6)

where Rs = E
{
sks

H
k

}
∈ CNk×Nk is the signal covariance

matrix, and Rk can be estimated as

R̃k ≈ 1

Tk

∑Tk

t=1
yk (t)y

H
k (t) , (7)

where Tk denotes the number of snapshots at time k. By adopt-
ing the coprime array technique [26] (including vectorization,
elimination of redundant terms and other operations), we can
obtain a virtual uniform linear array single snapshot vector z,
as follows

z = Ãb+ σ21MN+M , (8)

where Ã is the virtual directional matrix of the ULA with
2M(N +1)− 1 virtual sensors located from (−M(N +1)+
1)d to (M(N + 1) − 1)d; b = [σ2

1 , · · · , σ2
Nk

]T denotes the
signal vector with σ2

n the power of the n-th source; 1MN+M ∈
R(2M(N+1)−1)×1 is a zero vector except that the MN+M -th
element equals to 1.

Notice that the vector z is a single snapshot signal vector.
By employing spatial smoothing method, a rank restored data
covariance matrix [27] can be reconstructed by

R̄ss =
1

G

∑G

i=1
ziz

H
i , (9)

where zi = z (i : G+ i− 1, :) denotes a vector consisting of
the elements ranging from ith to (G + i − 1)th of z, and
G =M(N+1) denotes the total number of spatial smoothing
subarray elements. Then R̄ss is a full-rank matrix so that the
MUSIC [28] method can be performed for DOA estimation.

C. δ-GLMB FILTER
1) Labeled RFS: According to [18], a generalization of the

Kronecker delta function can be denoted as

δY (X)∆

{
1, if X = Y
0, otherwise , (10)

and the generalized indicator function 1Y (X)

1Y (X)∆

{
1, if X ⊆ Y
0, otherwise , (11)

To distinguish the target identity, each target is assigned a
unique label l ∈ L = {αi|i ∈ N}. In addition, Vo et al. provide
the label RFS [18] where can be written as

Xl
k =

{(
x1
k, l1

)
, · · · ,

(
xNk

k , lNk

)}
∈ F (X )× L, (12)

where xi
k ∈ X , i = 1, · · · , Nk is the single target state, li ∈ L

is a label independent of the target state, L is the discrete label

space. From Eq. (4), yk is a super-positional measurement
consisting of Nk source informations, then the measurement
RFS (without labels) is

Yk = {yk} ∈ F (Y) , (13)

where F (Y) is a set of all finite subsets of Y and Y denotes
the measurement space.

Let L : F(X )×L → L be the projection L ((x, l)) = l, then
a finite subset Xl

k of L : F(X )×L owns distinct labels if and
only if Xl

k and its labels L
(
Xl

k

)
= {L (x) : x ∈ Xl

k} have the
same cardinality, i.e., δ|X|(|L(X)|) = 1, where |X| represents
the cardinality of the set X. The distinct label indicator can be
defined as ∆(X) ≜ δ|X|(|L(X)|) [19]. For convenience, we
omit the complex representation of the time index k and label
index l, and define L ∆

=L0:k, B ∆
=Lk+1, L+

∆
=L∪B, π

∆
=πk,

π+
∆
=πk+1|k, g

∆
= gk, f

∆
= fk+1|k, X

∆
=Xk, Y

∆
=Yk.

2) δ-GLMB filtering: We use the standard inner product
notation ⟨f, g⟩ ∆

=
∫
f(x)gH(x)dx (for array signal processing)

and the multi-sources exponential nation hX
∆
=
∏

x∈X h(x),
where h(x) is a real-valued function with h∅ = 1 by conven-
tion.

Since the GLMB RFS is closed under Bayesian recursion,
the numerical implementation is not easy. According to [18],
[19], the δ-GLMB RFS is a particular case of the GLMB RFS
with the easy numerical implementation of expressions that
are well suited for multi-target tracking. The δ-GLMB RFS
posterior probability density can be expressed as

π (X) = ∆ (X)
∑

(I,ξ)∈F(L)×Ξ

ω(I,ξ)δI (L (X))
[
p(ξ)

]X
, (14)

∑
(I,ξ)∈F(L)×Ξ

ω(I,ξ) = 1, (15)

where Ξ is a discrete space. Each pair (I, ξ) represents a
history measurement association mapping (also can called
hypotheses), ω(I,ξ) is the hypotheses weight with I the set
of labels.

If the multi-target filter density at the current time is δ-
GLMB given by Eq. (14), then the multi-target prediction
density at the next time is also δ-GLMB, i.e.

π+ (X+) = ∆ (X+)
∑

(I+,ξ)∈F(L+)×Ξ

ω+
(I+,ξ)δI+ [L (X+)]

[
p+

(ξ)
]X+

,

(16)
ω+

(I+,ξ) = ωξ
S (I+ ∩ L)ωB (I+ ∩ B) , (17)

ωξ
S (L) =

[
η
(ξ)
S

]L ∑
L⊆I

1I (L)
[
1− η

(ξ)
S

]I−L

ω(I,ξ), (18)

η
(ξ)
S (l) =

∫ 〈
PS (·, l) f (x|·, l) , p(ξ) (·, l)

〉
dx, (19)

p
(ξ)
+ (x, l) = 1L (l) p

(ξ)
+,S (x, l) + 1B (l) pB (x, l) , (20)

p
(ξ)
+,S (x, l) =

〈
PS (·, l) f (x|·, l) , p(ξ) (·, l)

〉
η
(ξ)
S (l)

. (21)

• I+ ∈ F (L+) is a set of the predicted track labels,
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ξ
∆
=(θ1, · · · , θk) ∈ Ξ

∆
=Θ1 ×Θ2 × · · · ×Θk denotes the

association mapping history up to time k.
• Each pair (I+, ξ) ∈ F (L+) × Ξ denotes a prediction

hypotheses, with probability ω+
(I+,ξ); p

(ξ)
+ (x, l) and

p (·, l)ξ are the prediction and update probability densities
of the state with label l for history ξ, respectively;

• ωB (I+ ∩ B) is the weight of the newborn track labels
set and I+ ∩ B ̸= ∅, ωξ

S(L) denotes the weight of the
surviving labels set;

• B is the newborn label space and pB (x, l) is the prob-
ability density function of newborn source x with label
l. PS (·, l) is the survival probability and f (x|·, l) is the
transition kinematic density.

If the multi-target prediction density at the current time is
δ-GLMB given by Eq. (16), then the multi-target filtering (
update) density is also δ-GLMB, i.e.

π (X|Y) ∝ ∆(X)
∑

(I,ξ)∈F(L)×Ξ

∑
θ∈Θ(I)

ω(I,ξ,θ) (Y)

×δI(L (X))
[
p(ξ,θ) (·|Y)

]X
,

(22)

ω(I,ξ,θ) (Y) ∝
[
µ
(ξ,θ)
Y

]I
ω(I,ξ), (23)

µ
(ξ,θ)
Y (l) =

〈
p
(ξ)
+ (·, l), ψY (·, l; θ)

〉
, (24)

p(ξ,θ) (x, l|Y) =
p
(ξ)
+ (x, l)ψY (x, l; θ)

µ
(ξ,θ)
Y (l)

, (25)

ψY (x, l; θ) =

{
PD (x, l) g

(
yθ(l)|x, l

)
, θ (l) > 0

1− PD (x, l) , θ (l) = 0
. (26)

• Θ is the measurement association mapping: θ : L →
{0, 1, · · · , |Y|}, where Θ(I) denotes the subset of asso-
ciation mapping with domain I . and θ satisfies θ (i) =
θ (j) > 0 ⇒ i = j.

• (I, ξ, θ) is a hypotheses when the track label set I has
an association mapping history ξ

∆
=(θ1, · · · , θk+1) ∈

Ξ
∆
=Θ1 × Θ2 × · · · × Θk+1, and ω(I,ξ,θ) is the corre-

sponding hypotheses weight. An associative mapping θ
describes which trajectory generates which measurement,
i.e., trajectory l generates measurement yθ(l) ∈ Y, and
assigns the integer 0 to the missed detection trajectory.

• PD (x, l) represents the detection probability of state x
and g

(
yθ(l)|x, l

)
is a likelihood function.

III. RECURSIVE IMPLEMENTATION OF THE δ-GLMB DOA
TRACKING FILTERING

The δ-GLMB can be characterized by the parameter set{(
ω(I,ξ), p(ξ)

)
, (I, ξ) ∈ F (L× Ξ)

}
. From the implementa-

tion point of view, it is convenient to consider the δ-
GLMB parameter set as an enumeration of all hypotheses and
their corresponding (positive) weights and trajectories density{(
I(h), ξ(h), ω(h), p(h)

)}H

h=1
, where H ∈ R+ is the number

of all hypotheses, ω(h) ∆
=ω(I

(h),ξ(h)) and p(h)
∆
= p(ξ

(h)). The
hypothesis of the h-th component is denoted as

(
I(h), ξ(h)

)
,

while the corresponding weight and trajectory density are ω(h)

and p(h) (·, l) , l ∈ I(h), respectively. Thus, implementing the
δ-GLMB filter is equivalent to passing the δ-GLMB parameter
set forward with time recursively.

A. δ-GLMB prediction
The prediction density given in Eq. (16) has a compact form,

but it is more difficult to be calculated since in Eq. (18) it
is necessary to sum over all hypersets of L. [18] gives its
equivalent form

π+ (X+) = ∆ (X+)
∑

(I,ξ)∈F(L)×Ξ

ω(I,ξ)
∑

J∈F(I)

[
η
(ξ)
S

]J
×
[
1− η(ξ)

S

]I−J ∑
L∈F(B)

ωB (L)δJ∪L (L (X+))
[
p+

(ξ)
]X+

,

(27)
where J ⊆ I, L ⊆ B. Next, this subsection gives a detailed
implementation of δ-GLMB prediction, which uses the K-
shortest-path algorithm [29] to prune the predicted δ-GLMB
parameter set components without computing all the prediction
hypotheses and their weights.

1) Compute the predicted parameter sets (Sequential Monte
Carlo (SMC) implementation): For the SMC approximation,
assuming that each single target density p(ξ)(·, l) can be rep-

resented by a weighted sample set
{
ω
(ξ)
i (l) ,x

(ξ)
i (l)

}N(ξ)(l)

i=1

and that the newborn density p
(l)
B (·) can be represented by{

ω
(ξ)
i (l) ,x

(ξ)
i (l)

}N
(ξ)
B (l)

i=1
, we have

η
(ξ)
S (l) =

∑N(ξ)(l)

i=1
ω
(ξ)
i (l)PS

(
x
(ξ)
i (l) , l

)
, (28)

and p(ξ)+ (x, l) can be denoted as{
1L (l) ω̂

(ξ)
S,i (l) ,x

(ξ)
S,i (l)

}N(ξ)(l)

i=1
∪
{
1L (l)ω

(ξ)
B,i (l) ,x

(ξ)
B,i (l)

}N
(ξ)
B (l)

i=1
(29)

x
(ξ)
S,i (l) ∼ q

(
·
∣∣∣x(ξ)

i (l) , l,y
)
, i = 1, · · · , N (ξ) (l) , (30)

ω
(ξ)
S,i (l) =

ω
(ξ)
i (l) f

(
x
(ξ)
S,i (l)

∣∣∣x(ξ)
i (l)

)
PS

(
x
(ξ)
i (l) , l

)
q
(
x
(ξ)
S,i (l)

∣∣∣x(ξ)
i (l) , l,y

) ,

(31)

ω̂
(ξ)
S,i (l) = ω

(ξ)
S,i (l)

/∑N(ξ)(l)

i=1
ω
(ξ)
S,i (l), (32)

where q
(
·
∣∣∣x(ξ)

i (l) , l,y
)

is the suggested density.
2) Pruning the prediction density: Given the enumerated

parameter set
{(
I(h), ξ(h), ω(h), p(h)

)}H

h=1
with δ-GLMB fil-

ter density, (16) can be rewritten as

π+ (X+) =
∑H

h=1
π

(h)
+ (X+), (33)

π
(h)
+ (X+) = ∆ (X+)

∑
J∈I(h)

∑
L∈B

ω
(I(h),ξ(h))
S (J)

×ωB (L) δJ∪L (L (X+))
[
p+

(ξ(h))
]X+

.

(34)

From [19], for δ-GLMB prediction, the h-th component
generates 2|I

(h)|+|B| components. The K-shortest path prob-
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TABLE I: Pseudo-code of δ-GLMB prediction

1: Input:
{(

I(h), ξ(h), ω(h), p(h), K(h)
)}H

h=1
, KB , {(ς(l)B , p

(l)
B )}l∈B

2: Compute the cost function vector: cB = [cb(l1), · · · , cb(l|B|)],
where cb(li) = −ln[ς

li
B /(1 − ς

li
B )], i = 1, · · · , |B|.

3: {L(b)}KB
b=1 = K-shortest-path(B, cB , KB ).

4: Calculate ω
(b)
B =

∏
l∈B−L(b)

(
1 − ς

(l)
B

) ∏
l∈L(b)

ς
(l)
B , for b = 1, · · · , KB .

5: For h = 1 : H

Calculate η
(h)
S := ηξ(h)

S according to Eq. (28).

Calculate cost vector: c(h)
S := c

(I(h),ξ(h))
S = [cS(l1), · · · , cS(l|I(h)|)],

where cS(lj) = −ln[η
(h)
S (lj)/(1 − η

(h)
S (lj))], j = 1, · · · , |I(h)|.

{J(h,j)}K(h)

j=1 = K-shortest-path(I(h), c
(h)
S , K(h)).

For6: (j, b) = (1, 1) : (K(h), KB)

ω
(h,j,b)
+ := ω

(
I(h),ξ(h)

)
S

(
J(h,j)

)
ω

(b)
B

ω

(
I(h),ξ(h)

)
S

(
J(h,j)

)
= ω(h)

[
η

(h)
S

]J(h,j)[
1 − η

(h)
S

]I(h)−J(h,j)

I
(h,j,b)
+ := J(h,j) ∪ L(b)

End7:

Calculate p
(h)
+ := p

(ξ(h))
+ according to Eq. (29).

8: End

9: Normalize weight
{
ω

(h,j,b)
+

}(
H,K(h),KB

)
(h,j,b)=(1,1,1)

.

8: Output:
{
I
(h,j,b)
+ , ω

(h,j,b)
+ , p

(h)
+

}(
H,K(h),KB

)
(h,j,b)=(1,1,1)

.

lem attempts to find a subset of the K shortest distances of I
in non-decreasing order. Given the enumerated parameter set{(
I(h), ξ(h), ω(h), p(h)

)}H

h=1
with δ-GLMB filter density, the

K-shortest path algorithm is used to determine K(h) subsets

with maximum weights ω(h,1)
S ⩾ ω

(h,2)
S ⩾ · · · ⩾ ω

(h,K(h))
S .

For the newborn targets, the labeled multi-Bernoulli new-
born model is utilized, i.e.

ωB (L) =
∏
l∈B

(
1− ς

(l)
B

)∏
l∈L

1B (l) ς
(l)
B(

1− ς
(l)
B

) , (35)

pB (x, l) := p
(l)
B (x) , (36)

where ς(l)B is the existence probability with newborn label l
and p(l)B (x) denotes the newborn probability density function.
Similarly, KB newborn subsets with the highest newborn
weights can be obtained, and the specific K-shortest path
algorithm operation can be found in [19]. Then, for each h,
the pruning version of π(h)

+ can be expressed as

π̃
(h)
+ (X+) = ∆ (X+)

K(h)∑
j=1

KB∑
b=1

∑
J(h,j)∈I(h)

∑
L(b)∈B

ωB

(
L(b)

)
×ω(I

(h),ξ(h))
S

(
J (h,j)

)
δJ(h,j)∪L(b) (L (X+))

[
p+

(ξ(h))
]X+

.

(37)

The specific values of the number of required compo-
nents K(h) and KB are specified by the user or related
to the specific application. A general strategy is to choose
K(h) =

⌈
ω(h)Jmax

⌉
, where Jmax is the total number of

expected hypotheses. Moreover, KB can be chosen such that
the resulting pruning captures the probabilistic quality of the
desired proportion of the newborn density. The pseudo-code
of δ-GLMB prediction algorithm is given in TABLE I.

B. δ-GLMB update

The component pruning operation is also essential in the
δ-GLMB update process. This section presents a detailed
implementation of the δ-GLMB update, which prunes the
multi-objective filter density by a ranked assignment algorithm
[19], and also without exhaustively computing all hypotheses
and their weights. First, the ranked assignment problem in the
context of pruning the δ-GLMB filter density is introduced.

1) Ranked assignment problem: From Eq. (23), each hy-
pothesis (I, ξ) with weight ω(I,ξ) generates a new set of
hypotheses (I, (ξ, θ)), θ ∈ Θ(I) with weight ω(I,ξ,θ) (Y) ∝[
µ

(ξ,θ)
Y

]I
ω(I,ξ). For a given hypothesis (I, ξ), the component

with the maximum weight can be selected without exhaus-
tively computing all hypotheses and their weights if an associa-

tive mapping θ ∈ Θ(I) in descending order of
[
µ

(ξ,θ)
Y

]I
can

be generated. The solution of the following ranked assignment
problem proposed in [19] can achieve such a requirement.

Construct the |I| × |Y|-dimensional cost matrix C
(I,ξ)
Y as

C
(I,ξ)
Y =

 c1,1 · · · c1,|Y|
...

...
c|I|,1 · · · c|I|,|Y|

 , (38)

with

ci,j = − ln


〈
p
(ξ)
+ (·, li) , g (yj |·, li)

〉
〈
p
(ξ)
+ (·, li) , 1− pD (·, li)

〉
 (39)

the cost of assigning the j ∈ {1, 2, · · · , |Y|}-th measurement
to track li, i ∈ {1, 2, · · · , |I|}.

Note from the array model (4) that the measurement is
super-positional information (i.e., |Y| = 1), therefore the cost
matrix C becomes a vector with dimension |I| × 1, which
reduces the algorithm tracking performance. This allows a
single measurement to be assigned to multiple trajectories at
the same time, which leads to low pruning efficiency. An
alternative solution is the NMAP strategy proposed in [22],
denoted as follows

Γn = US,nτnU
H
S,n, n = 1, 2, · · · , Ñk, (40)

where Ñk is the estimated number of sources by MDL method
[30], US,n denotes the n-th column of matrix US , and US can
be obtained by performing eigenvalue decomposition (EVD)
of the spatial smoothing covariance matrix (9)

R̄ss = UΛUH =

G∑
i=1

τiuiu
H
i = UsΣsU

H
s +UNΣNUH

N ,

(41)
where Λ = diag {τ1, τ2, · · · , τG} is the eigenvalues matrix,
and τ1 ⩾ τ2 ⩾ · · · ⩾ τÑk

⩾ τÑk+1 ⩾ · · · ⩾ τG. Σs

is a diagonal matrix consisting of Ñk largest eigenvalues,
whereas ΣN is the diagonal matrix composed of the remaining
eigenvalues. Us =

[
u1,u2, · · · ,uÑk

]
is the signal subspace,

which is the eigenvectors matrix corresponding to the Ñk

largest eigenvalues. UN =
[
uÑk+1, · · · ,uG

]
is the noise

subspace, which is the eigenvectors matrix corresponding to
the remaining G− N̂k smallest eigenvalues.
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Remark 2: According to (40)-(41), we can get Ñk recon-
structed matrices Γn, n = 1, · · · , Ñk. Therefore the measure-
ment RFS (13) can be rewritten as

Yk =
{
Γ1,Γ2, · · · ,ΓÑk

}
∈ F (Y) , (42)

then, the dimension of the cost matrix (38) becomes |I|× Ñk,
and its computation is detailed in the next section.

2) Calculate the updated parameter sets: Assuming that
each single target density p(ξ)(·, l) can be represented by a

weighted sample set
{
ω
(ξ)
n (l) ,x

(ξ)
n (l)

}N(ξ)(l)

n=1
, then we have

cij =

− ln

∑J(ξ)(li)
n=1 ω

(ξ)
n (li)PD

(
x
(ξ)
n (li) , li

)
g
(
yj |x(ξ)

n (li) , li

)
∑J(ξ)(li)

n=1 ω
(ξ)
n (li)

(
1− PD

(
x
(ξ)
n (li) , li

))


, i = 1, · · · , |I| , j = 1, · · · , Ñk,
(43)

and for each give association history (ξ, θ),

µ
(ξ,θ)
Y (l) =

∑J(ξ)(l)

n=1
ω(ξ)
n (li)ψY

(
x(ξ)
n (l) , l; θ

)
, (44)

ω(ξ,θ)
n (l) =

ω
(ξ)
n (l)ψY

(
x
(ξ)
n (l) , l; θ

)
µ
(ξ,θ)
Y (l)

, (45)

and p(ξ,θ)(·, l|Y) can be denoted as the following weighted
sample sets {

ω(ξ,θ)
n (l) , x(ξ)n (l)

}J(ξ)(l)

n=1
. (46)

3) Calculation scheme for the likelihood function: By per-
forming EVD again to the measurement component Γn, n =
1. · · · , Ñk, we have

Γn = UnΣnU
H
n = Ũn,1Φ1Ũ

H
n,1 + Ũn,G−1ΦG−1Ũ

H
n,G−1,

(47)
where Σn = diag {ε1, ε2, · · · , εG} is the diagonal matrix and
Φ1 = ε1 denotes the largest eigenvalue. ΦG−1 is a matrix
consisting of the remaining eigenvalues. Ũn,1 ∈ CG×1 and
Ũn,G−1 ∈ CG×(G−1) stand for the n-th signal eigenvector
and remaining eigenvectors, respectively.

Then, the likelihood function can be replaced by the fol-
lowing MUSIC pseudo-spectrum

g
(
yj |x(ξ)

n (li) , li

)
= PMUSIC

(
x(ξ)
n (li)

)
=

∣∣∣∣∣∣∣
1

a
(
cx

(ξ)
n (li)

)H

Ũj,G−1ŨH
j,G−1a

(
cx

(ξ)
n (li)

)
∣∣∣∣∣∣∣
ζ

,

i = 1, · · · , |I|, j = 1, · · · , Ñk, n = 1, · · · , J (ξ)(li),

(48)

where c = [1, 0] such that cx
(ξ)
n (li) denotes the DOA

information, and ζ ∈ R+ is the exponential weighting factor.
Remark 3: Fig. 2 shows the exponential weighting of

the MUSIC spatial spectral function (also called likelihood
function. For convenience, we do not adopt the NMAP strategy
here, and the noise subspace of the MSUIC spectral function
can be obtained by Eq. (41)) for 2 sources (DOAs are −40◦
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Fig. 2: The likelihood function with different ζ.

and 50◦ , respectively.), where SNR = 10 dB, Tk = 200,
and the number of sensors M = 4, N = 5. It can be seen
from Fig. 2 that the likelihood function can be increased by
increasing exponential weighting factor ζ, and the beam width
of the MUSIC spectrum becomes narrower. However, if ζ is
very large, the diversity of particles will be lost, which leads to
the degradation of the algorithm tracking performance, i.e., a
suitable ζ should be chosen to make the algorithm performance
optimal. The specific value of ζ will be discussed in the
simulation.

4) Pruning update density: Given the enumerated parame-
ter set

{(
I(h), ξ(h), ω(h), p(h)

)}H

h=1
with δ-GLMB prediction

density, (22) can be rewritten as

π (X|Y) =
∑H

h=1
π(h) (X|Y), (49)

π(h) (X|Y) = ∆ (X)

|Θ(I(h))|∑
j=1

ω(h,j)δI(h) (L (X))
[
p(h,j)

]X
,

(50)
ω(h,j) ∆

=ω(I
(h),ξ(h),θ(h,j)) (Y) , (51)

p(h,j)
∆
= p(I

(h),ξ(h),θ(h,j)) (· |Y ) . (52)

Each δ-GLMB prediction component with index h yields∣∣Θ (
I(h)

)∣∣ δ-GLMB update density components. According
to [19], a simple and efficient method for pruning the δ-
GLMB update density Eq. (49) is to prune π(h) (·|Y). For
each prediction component with index h, solving the ranked

optimal assignment problem for the cost matrix C
(I(h),ξ(h))
Y

will produce T (h) hypotheses θ(h,j), j = 1, 2, · · · , T (h) with
the highest weight in non-increasing order. The prediction
component h produces a large number of δ-GLMB update
density components, and the ranked assignment algorithm
determines T (h) components with the maximum weights
ω(h,1) ⩾ ω(h,2) ⩾ · · · ⩾ ω(h,T

(h)). Thus, the pruned version
of π(h) (·|Y) can be expressed as

π̃(h) (X|Y)=∆ (X)

T (h)∑
j=1

ω(h,j)δI(h) (L (X))
[
p(h,j)

]X
. (53)

The value of the required components T (h) is specified by
the user or related to the specific application. A general strat-
egy is to choose T (h) =

⌈
ω(h)Jmax

⌉
, where Jmax is the total
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TABLE II: Pseudo-code of δ-GLMB update

1: Input:
{(

I(h), ξ(h), ω(h), p(h), T (h)
)}H

h=1
, Y

2: For h = 1 : H

Calculate cost matrix C
(h)
Y := C

(
I(h),ξ(h)

)
Y according to Eq. (38) and (43).

{θ(h,j)}T (h)

j=1 = ranked-assignment (Y, I(h),C
(h)
Y , T (h)).

For3: j = 1 : T (h)

Calculate µ
(h,j)
Y := µ

(
ξ(h),θ(h,j)

)
Y according to Eq. (43).

Calculate p(h,j) := p

(
ξ(h),θ(h,j)

)
(· |Y ) based on Eq. (44) and (46).

ω(h,j) :=
[
µ
(h,j)
Y

]I(h)

ω(h) according to Eq. (23).

I(h,j) := I(h).
ξ(h,j) :=

(
ξ(h), θ(h,j)

)
.

4: End
5: End

6: Normalize weights
{
ω(h,j)

}(
H,T (h)

)
(h,j)=(1,1)

.

7: Output:
{
I(h,j), ξ(h,j), ω(h,j,), p(h,j)

}(
H,T (h)

)
(h,j)=(1,1)

.

number of expected hypotheses. The pruned update density
has a total number of components of T =

∑H
h=1 T

(h), and
the pruned δ-GLMB update density is obtained by normalizing
the sum of the weights. TABLE II gives the pseudo-code of
δ-GLMB update algorithm.

IV. PROPOSED MODIFIED δ-GLMB FILTERING

In SMC implementation, the resampling is considered as a
way to reduce the particle degeneracy problem. However, it
has been pointed out that resampling causes additional issues,
particularly the loss of particle diversity. The regularization-
based step (a kind of jittering of particles) proposed in [31]
is called regularized particle filtering (RPF). The tracking
performance of the δ-GLMB algorithm is further improved
by regularizing to increase the diversity of predicted particles.
In this section, we first introduce the regularized PF, and then
apply it to the field of array signal processing, and finally give
a concrete implementation of the regularized δ-GLMB filtering
( called modified δ-GLMB).

A. Regularized PF

In fact, the regularization step is a jittering operation on the
particles that yields particles that are closer to the posterior
probability density. Suppose there is a weighted particle set{
xi
k, ω

i
k

}N

i=1
, where N denotes the total number of particles.

Then the corrected set of particles is as follows

xi∗

k = xi
k + hoptDkς

i, i = 1, · · · , N (54)

where
• hopt = A · N−1/(nx+4) is the optimal kernel bandwidth

[31] and A = [4/(nx + 2)]
1/(nx+4) is a constant.

• nx is the dimension of state vector xi
k.

• Dk such that DkD
T
k = Sk, where Sk is the empirical

covariance matrix of particle set
{
xi
k, ω

i
k

}N

i=1
.

The description of the regularized PF algorithm for one
cycle is given in TABLE III. Notice that the array signal
processing method is based on the complex domain, so the
computational scheme of the likelihood function g

(
yk|xi

k

)
no

longer follows Eq. (48). We utilize the least squares method

TABLE III: Regularized particle filtering

{
xi∗
k , ωi

k

}N

i=1
= RPF

{{
xi
k−1, ω

i
k−1

}N

i=1
,yk

}
1: For i = 1 : N

Draw xi
k ∼ f

(
xk|xi

k−1

)
according to Eq. (1) and Calculate ω̃i

k = g
(
yk|xi

k

)
.

2: End
3: Normalize the weights: ωi

k = ω̃i
k

/∑N
i=1 ω̃i

k .

4: Calculate Dk such that DkD
T
k = Sk .

5: Resample the particle set:
{
xi
k, ω

i
k,−

}N

i=1
= resample

{{
xi
k, ω

i
k

}N

i=1

}
.

6: For: i = 1 : N

Draw ςi ∼ N (0, 1) from the Gaussian kernel.
xi∗
k = xi

k + hoptDkς
i.

7: End

to obtain space domain filtering S, and a Gaussian function is
applied for likelihood function. The regularized PF algorithm
based on array signal processing (called RPF-SP) is given in
TABLE IV.

TABLE IV: Regularized particle filtering in the presence of array signal processing

{
xi∗
k , ωi

k

}N

i=1
= RPF-SP

{{
xi
k−1, ω

i
k−1

}N

i=1

}
1: For i = 1 : N

Draw xi
k ∼ f

(
xk|xi

k−1

)
according to Eq. (1).

Calculate ω̃i
k = g

(
yk|xi

k

)
:

Generate the observation yi
k for xi

k according to Eq. (4).
Calculate the direction vector a(cxi

k) based on Eq. (5).

Calculate the space domain filter S = a+yi
k , where a+ =

(
aHa

)−1
aH .

Calculate weight ω̃i
k = exp

[
−
∥∥yi

k − aS
∥∥2

]
.

2: End
3: Normalize the weights: ωi

k = ω̃i
k

/∑N
i=1 ω̃i

k .

4: Calculate the mean value: rmean
k =

∑N
i=1 cxi

kω
i
k .

Calculate the empirical covariance matrix: Sk =
∑N

i=1 ωi
k

(
cxi

k − rmean
k

)2.
Calculate Dk such that DkD

T
k = Sk:

5: Resample the particle set:{
xi
k,−

}N

i=1
= resample

{{
xi
k, ω

i
k

}N

i=1

}
.

6: For: i = 1 : N

Draw ςi ∼ N (0, 1) from the Gaussian kernel.
A = [4/(nx + 2)]1/(nx+4) with nx = 1.
hopt = A · N−1/(nx+4).
xi∗
k = xi

k + hoptDkς
i.

8: End

B. Modified δ-GLMB filtering
In this section, the RPF-SP algorithm is used to manipulate

the predicted particles of the δ-GLMB SMC implementation,
in fact, (30) and (31) can be rewritten as follows

x
(ξ)
S,i (l) ∼ f

(
·
∣∣∣x(ξ)

i (l) , l
)
, i = 1, · · · , N (ξ) (l) , (55)

ω
(ξ)
S,i (l) = ω

(ξ)
i∗ (l)PS

(
x
(ξ)
i (l) , l

)
(56)

with {
x
(ξ)
S∗,i (l) , ω

(ξ)
i∗ (l)

}N(ξ)(l)

i=1

= RPF-SP
{{

ω
(ξ)
i (l) ,x

(ξ)
S,i (l)

}N(ξ)(l)

i=1

}
,

(57)

then, (29) can be expressed as{
1L (l)ω

(ξ)
S,i (l) ,x

(ξ)
S∗,i (l)

}N(ξ)(l)

i=1
∪
{
1L (l)ω

(ξ)
B,i (l) ,x

(ξ)
B,i (l)

}N
(ξ)
B (l)

i=1
.

(58)
The detailed SMC implementation of the modified δ-GLMB

algorithm is given in TABLE V, integrating the contents of
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TABLE I, II and IV. In TABLE V, the multi-target state
estimation is given in step 4. For the GLMB update density,
a simple and intuitive multi-target estimator is the multi-
Bernoulli estimator [19], which selects the set of trajectories
or labels whose probability of existence (the probability of
existence of track l is the sum of the weights of all hypotheses
containing track l, i.e.,

∑
(I,ξ)∈F(L)×Ξ ω

(I,ξ)1I (l)) is above
some threshold, and then estimates the track state based on
the maximum a posteriori or expectation posterior of the
probability density p(ξ)(·, l), l ∈ L.

TABLE V: Pseudo-code of δ-GLMB update

1: For k = 1 : K
2: δ-GLMB prediction see TABLE I and IV.
3: δ-GLMB update see TABLE II.
4: Multi-target state estimation

Input: Nmax,
{
I(h,j), ξ(h,j), ω(h,j,), p(h,j)

}(
H,T (h)

)
(h,j)=(1,1)

.

Calculate the cardinality distribution:

ρ (n) =
∑H

h=1

∑T (h)

j=1 ω(h,j)δn
(∣∣∣I(h,j)

∣∣∣), n = 1, 2, · · · , Nmax.
Find the largest cardinality:

Ñ = argmax(ρ).
For n = 1 : Ñ(
h̃, j̃

)
= argmax(h,j)ω

(h,j)δn
(∣∣∣I(h,j)

∣∣∣).

Xk =
{
(x̃, l) : l ∈ I(h̃,j̃), |x̃ =

∫
xp(h̃,j̃) (x, l) dx

}
.

End
5: End

V. SIMULATION
The tracking performance of the proposed modified δ-

GLMB filtering is verified by three simulation scenarios (a
single source tracking scenario, multi-source with fixed num-
ber of sources and multi-source with time-varying number of
sources). We also give some simulation examples to illustrate
the performance of various methods-the proposed modified δ-
GLMB filtering, the GLMB filtering based on ULA (GLMB-
ULA, [22]), the PHD filtering with extended coprime array
(PHD-ECA, [23]), the spatially smoothed PAST (SS-PAST,
[5]) tracking method with ECA, particle filtering with ECA
(PF-ECA, [6]). However, particle filtering can only handle a
single source scenario, and the SS-PAST method is prone to
singular values in a single source scenario. Therefore, the SS-
PAST method is no longer considered for comparison in the
single source scenario, and similarly, the PF-ECA method is
not considered for comparison in the multi-source scenario.

A. CRB of DOA tracking

The performance evaluation of the proposed DOA tracking
algorithm can be assessed with the stochastic CRB [32], which
is the inverse of the Fisher information matrix (FIM). However,
the conventional FIM is singular when the number of sources
exceeds the number of physical sensors. To solve this problem,
the Fisher information matrix is converted to a virtual array-
based form in [33]–[35], and can be expressed as

FIM = Tk

[
vec

(
∂Rx

∂ξ

)]H(
RT

x ⊗Rx

)−1
[
vec

(
∂Rx

∂ξ

)]
,

(59)
which remains non-singular in a wider range of conditions,
where Tk denotes the number of snapshots at time k. Thus,

it overcomes the model mismatch problem of the stochastic
CRB and gives the lower bound on the estimation error when
the number of sources is larger than the number of physical
sensors.

In our research, the deterministic parameter vector ξ can be
expressed as

ξ =
[
θT ,bT , σ2

]T
. (60)

Then the Fisher information matrix can be written as

FIM = Tk

[
∂z̄

∂ξ

]H(
RT

x ⊗Rx

)−1
[
∂z̄

∂ξ

]
, (61)

where

z̄ = vec (Rk) = (A∗ ⊙A)b+ σ2vec (IP ) (62)

∂z̄

∂ξ
=

[
∂z̄

∂θ1
, · · · , ∂z̄

∂θNk

,
∂z̄

∂b1
, · · · , ∂z̄

∂bNk

,
∂z̄

∂σ2

]
, (63)

∂z̄

∂θn
= bn

[
∂a∗ (θn)

∂θn
⊗ a (θn) + a∗ (θn)⊗

∂a (θn)

∂θn

]
, (64)

∂z̄

∂bn
= a∗ (θn)⊗ a (θn) , n = 1, · · · , Nk, (65)

∂z̄

∂σ2
= vec (IP ) . (66)

Therefore, the CRB for the n-th source can be obtained by

CRB (θn) =
[
FIM−1

]
n,n
, (67)

for 1 ⩽ n ⩽ Nk. And CRB versus SNR or snapshots can be
defined as:

CRB =
1

KQNk

∑K

k=1

∑Q

j=1

∑Nk

n=1
CRBk,j (θn), (68)

where CRBk,j is the j-th Monte Carlo’s CRB at time k, Nk

is the true number of sources.

B. Evaluation and Measurement

In the following simulations, SNR is defined as:

SNR = 10 log σ2
s/σ

2, (69)

where σ2
s is the signal power and σ2 denotes the noise power.

And root mean square error (RMSE) can be expressed as

RMSE =

√√√√ 1

QKÑk

∑Q

j=1

∑K

k=1

Ñk∑
n=1

(x̃nj(k)− xn(k))
2
,

(70)
where x̃nj(k) is the estimated value of n-th true source xn(k)
at time k for the j-th Monte Carlo. Q is the total number of
Monte Carlo experiments, K is the total observation time and
Ñk stands for the estimated number of sources at time k.

An other evaluation method is the probability of conver-
gence (PROC), which can be defined as

PROC =
1

QK

∑K

k=1

∑Q

j=1
1kj (71)
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with

1kj =

1, if

√√√√ 1

Ñk

Ñk∑
n=1

(x̃nj(k)− xn(k))
2
< σ

0, otherwise

, (72)

where σ denotes the error threshold.

C. Exponential weighting factor ζ

The exponential weighting factor ζ is determined based
on experimental simulations. Fig. 3(a)-(b) run 100 MC to
select the appropriate exponential weighting factor ζ, where
M = 4, N = 5 and snapshots Tk = 100. Fig. 3(a) shows the
performance of the proposed algorithm in terms of ζ for two
given values of SNR, and Fig. 3(b) shows the performance of
the proposed algorithm versus SNR for 4 given values of ζ.
In the single-source scenario described in case 1, the larger
the value of ζ, the worse the performance of the proposed
algorithm, which indicates that the single source tracking can
achieve good results without exponential weighting. In both
cases 2 and 3, ζ has optimal values of 4 and 2, respectively.
Therefore, in case 1, ζ = 1. In cases 2 and 3, ζ = 4 and
ζ = 2 are chosen, respectively. Note that using a slightly
different value of ζ does not significantly change the tracking
performance. For example, in Case 2, using ζ = 4.1 or ζ = 3.9
leads to similar tracking performance.

D. Simulation scenarios

In the following three simulations, M = 4, N = 5 and the
number of array elements P = 2M + N − 1 = 12 (i.e. the
number of ULA sensors), K = 50s , ∆T = 1s and Tk =
200, the survival and detection probabilities of the sources are
assumed to be constants PS,k (xk) = 0.99 and PD,k (xk) =
0.98, respectively. The total number of expected hypotheses
Jmax = 2000, and KB = 5.

Case 1: A single source scenario
Consider a single source scenario with 1 source, surviving

at time 1− 40s. The initial source state is x1
0 = [−31.2◦, 1.2],

and the newborn model is a GLMB RFS with parameters

πB =
{
ζ
(l,i)
B , p

(l,i)
B (x, l)

}1

i=1
where ζ

(l,1)
B = 0.1 and the

probability density function p(l,i)B (x) =
(
x
(l,j)
B,k , ω

(l,j)
B,k

)N l
B,k

j=1
∼

N (x;m1,P), where m1 = [−30◦, 0], P = diag
{
42, 22

}
,

ω
(l,j)
B,k = 1/N l

B,k. Each newborn source produces 1000 parti-
cles, i.e., Nξ

B(l) = N l
B,k = 1000, and Nξ(l) = 1000. (The

number of particles of GLMB-ULA and PHD-ECA methods
is also 1000.)

Fig. 4(a) shows the single source trajectory tracking for
one MC and the tracking error for 100 MC is illustrated
in Fig. 4(b), where SNR = 10 dB and Tk = 200. It can
be seen from Fig. 4(a) that the four methods all have a
great tracking trajectory capacity. However, in Fig. 4(b), the
proposed algorithm has better tracking performance at each
time. Compared with the GLMB-ULA method, although the
proposed algorithm has a performance improvement of 0.02
degrees, the calculation cost is affordable. Table VI gives the
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Fig. 3: Selection of exponential weighting factor (a) RMSE versus ζ, Q = 100, (b)
RMSE versus SNR, Q = 100.

average running time of the proposed method and the GLMB-
ULA method by averaging the running time of 100 MC trials.
The operating environment is Intel(R) Core(TM) i7-10700F
CPU @ 2.90GHz 2.90 GHz processor with a 64-bit operating
system MATLAB 2020b. TABLE VI shows that the running
time of the proposed method is 1.1275s, which is only 9.95%
longer than that of GLMB-ULA method with running time
1.0255s.

TABLE VI: Average running time, Q = 100

Algorithm Survival particles Birth particles Running time/s
GLMB-ULA 1000 1000 1.0255

The proposed Mδ-GLMB 1000 1000 1.1275

Fig. 5 compares the RMSE performance and PROC versus
SNRs with Tk = 200. Different SNRs from -6 dB to 10
dB with an increment of 2 dB are utilized to generate noisy
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Fig. 4: (a) A single source trajectory tracking, SNR = 10 dB, Q = 1. (b) Tracking error
versus time step, SNR = 10 dB, Q = 100.

environments. For performance analysis, the error threshold
σ = 0.1. As shown in Fig. 5(a), although the RMSE per-
formance of the four methods improves with the increase of
SNR, the RMSE of the proposed method is the smallest.
The PF-PM method cannot accurately estimate the DOA,
resulting in the low PROC in Fig. 5(b). Compared with
the RFS based methods, such as GLMB-ULA and PHD-
ECA methods, the proposed modified δ-GLMB filtering has
better tracking performance. Fig. 5(b) provides the PROC
performance comparison of the four algorithms. It can be seen
from Fig. 5(b) that the proposed algorithm is superior to other
compared methods.

Case 2: Multi-source with fixed number of sources
Consider a multi-source scenario with 2 sources, whose

survival times are 1 − 50s and 1 − 50s, respectively. The
initial source states are x1

0 = [−41◦, 1],x2
0 = [51◦,−1],

and the newborn model can be expressed as parame-

ter sets πB =
{
ζ
(l,i)
B , p

(l,i)
B (x, l)

}2

i=1
where ζ

(l,1)
B =

0.04, ζ
(l,2)
B 0= .03 and the probability density function

p
(l,i)
B (x) =

(
x
(l,j)
B,k , ω

(l,j)
B,k

)N l
B,k

j=1
∼ N (x;mi,P), where

m1 = [−40◦, 0] ,m2 = [50◦, 0], P = diag
{
22, 12

}
, ω(l,j)

B,k =

1/N l
B,k. Each newborn source produces 200 particles, i.e.,
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Fig. 5: (a) RMSE performance comparison versus SNR, Tk = 200, Q = 100. (b)
PROC versus SNR, Tk = 200, Q = 100.

Nξ
B(l) = N l

B,k = 200, and Nξ(l) = 200. (The number of
particles is 200 for the GLMB-ULA method and 1000 for the
PHD-ECA algorithm.)

Fig. 6 depicts the comparison of RMSE and PROC versus
SNRs, where Q = 100, σ = 0.8 and Tk = 200. The RMSE
of the four compared methods shown in Fig. 6(a) decreases
as SNR increases, and the proposed method has the best
performance. Fig. 6(b) illustrates the comparison of PROC in
terms of SNRs. It can be seen that the proposed method has
better tracking performance than other methods, whose PROC
is almost close to 1 as the SNR increases.

The RMSE comparison results in terms of different snap-
shots are shown in Fig. 7. The RMSE performance of these
methods improves as the number of snapshots grows, and the
performance of these algorithms eventually stabilizes as the
number of snapshots grows higher, as shown in Fig. 7. How-
ever, compared to other approaches, the proposed method’s
performance is superior, as shown by its lower RMSE and
larger PROC.

Case 3: Multi-source with time-varying number of
sources

In order to show the viability of the proposed method in
the time-varying environment of source number, the survival
states of several random sources are given in TABLE VII. The
initial source targets are x1

0 = [−31.2◦; 1.2], x2
0 = [1◦;−1.0],
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Fig. 6: Comparison of RMSE and PROC versus SNRs, Q = 100, Tk = 200. (a)
RMSE. (b) PROC.

TABLE VII: Source survival state

Source Survival time initial source state (degree) Velocities(rad/s)
1 1-25s - 31.2 1.2
2 10-40s 1 -1.0
3 20-50s 51.2 -1.2
4 31-50s 9.2 0.8

x3
0 = [51.2◦;−1.2], x4

0 = [9.2◦; 0.8], and the newborn model

with parameters πB =
{
ζ
(l,i)
B , p

(l,i)
B (x, l)

}4

i=1
, where ζ(l,1)B =

0.02, ζ
(l,2)
B = 0.02, ζ

(l,3)
B = 0.03, ζ

(l,4)
B = 0.03 and the

probability density function p(l,i)B (x) =
(
x
(l,j)
B,k , ω

(l,j)
B,k

)N l
B,k

j=1
∼

N (x;mi,P), where m1 = [−30◦, 0] ,m2 = [0◦, 0] ,m3 =
[50◦, 0] ,m4 = [10◦, 0], P = diag

{
22, 12

}
, other experiment

parameters are the same as Case 2.
In this scenario, the received sources comprise one source

between time steps 1 and 9, two sources between time step 10-
19s, 26-30s, and 41-50s, and three sources between time steps
20-25s and 31-40s. The proposed method’s tracking result
is presented in Fig. 8 where SNR = 10 dB and Tk = 200,
including the tracking trajectories and cardinality estimation.
The results show that the proposed approach can efficiently
detect and estimate the source number. Furthermore, the
proposed approach can identify the appearance of new sources
and the disappearance of old sources, and it can estimate the
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Fig. 7: Comparison of RMSE and PROC versus snapshots, Q = 100, SNR = 10 dB.
(a) RMSE. (b) PROC.

number of sources accurately. For the GLMB-ULA method,
the DOA tracking values deviate from the true state during
time steps 31–35s and 41–50s, and even the source number
is overestimated (more estimated than the reality). Fig. 8(b)
shows that the PHD-ECA approach outperforms the GLMB-
ULA method in terms of estimated the number of sources, but
it overestimates or underestimates the source number at several
time steps. Because the SS-PAST approach is a subspace
update-based method that requires a known number of sources,
it cannot be used to estimate the number of sources. The
experimental results in Fig. 8 show that the proposed method
outperforms the GLMB-ULA and the PHD-ECA methods in
estimating the source number.

The comparison of RMSE and PROC for various SNRs and
snapshots is shown in Figs 9-10. Different SNRs from -6 dB
to 10 dB with an increment of 2 dB are employed to generate
noisy environments. The DOA tracking performance of all four
approaches improves with the increase of SNR or snapshot,
as shown in Fig. 9(a) and Fig. 10(a), but the method proposed
in this paper has higher tracking performance.

Fig. 9(b) shows the comparison of PROC at different SNRs,
where Tk = 200, σ = 1 or σ = 3. Fig. 10(b) exhibits
the comparison of PROC under different snapshot conditions,
where SNR = 10, σ = 3. Because the SS-PAST algorithm
has many deviated estimates (as can be seen in Fig. 8(a)) and
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Fig. 8: (a) Tracking trajectories of time-varying sources, Q = 1, Tk = 200, SNR = 10
dB. (b) Cardinality with time-varying sources, Q = 100, Tk = 200, SNR = 10 dB.

cannot solve the time-varying source DOA tracking problem,
it has the largest RMSE and a very small PROC. It can be seen
that the PROC of the proposed method is larger than the other
methods under the same threshold σ pre-condition. Similarly,
the PROC performance can be improved by increasing the
value of threshold σ. In summary, the proposed modified δ-
GLMB DOA tracking algorithm outperforms the SS-PAST
method, GLMB-ULA method and PHD-ECA method in esti-
mating and tracking the DOA.

E. Performance of other sparse array

The proposed method can also be extended to other sparse
arrays [36]–[40], like nested array (NA) [36], super nested
array (SNA) [37] and augmented nested array (ANA) [38].
Therefore, in this subsection, a simulation example of the
proposed method with sparse arrays (such as NA, SNA and
ANA) is presented. The subarrays N1 = N2 = 3 are taken
in NA-based arrays and M = 2, N = 3 are taken for ECA.
Other simulation parameters are same with those of the Case
3.

Fig. 11 compares the OSPA (the detailed definition can be
found in [41]) distance performance of the proposed algorithm
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Fig. 9: Comparison of RMSE and PROC versus SNRs, Q = 100, Tk = 200. (a)
RMSE. (b) PROC.

in the context of sparse arrays, where the OSPA distance
is considered as the performance metric. This simulation
example shows the applicability of the proposed Mδ-GLMB
method for the NA, SNA and ANA. Further investigation on
Mδ-GLMB with nested arrays or other sparse arrays will be
performed in the future.

VI. CONCLUSION

We have addressed the multi-source time-varying DOA
tracking problem in this paper. By combining the coprime
array methodology with the new measurement association
mapping method, a Mδ-GLMB filtering is proposed. To be
more specific, the predicted particles are rectified in the Mδ-
GLMB filtering prediction stage to improve particle validity.
Furthermore, the MUSIC spatial spectral function is applied
for the likelihood function of the particles and exponentially
weighted, which fixes the mapping problem between the array
observations and sources properly. Moreover, the method is
extended to the coprime array, which can provide better
DOA estimation and tracking performance than the traditional
uniform linear array. Simulation comparisons with existing
algorithms show the superiority of the proposed algorithm.
In addition, the proposed method is not only applicable to
the considered coprime array geometries, but also to arbitrary
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Fig. 10: Comparison of RMSE and PROC versus snapshots, Q = 100, SNR = 10 dB.
(a) RMSE. (b) PROC.
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types of sparse arrays, such as nested arrays, super-nested
arrays, etc., which will be discussed in the future work.
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