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For the target tracking problem where the number of targets fluctuates with time and the measurement is a point measurement, the random finite set (RFS) class filtering is an available solution. However, in direction of arrival (DOA) tracking, the array observation is a super-positional value, and the tracking performance can be severely impaired if the RFSbased filter approach is applied. As a result, a novel measurement association mapping (NMAP) approach has been presented to cope with the mapping problem between the array observations and sources. Nevertheless, the tracking performance is poor when the number of particles is small. In this paper, a modified delta-Generalized Labeled Multi-Bernoulli (δ-GLMB) DOA tracking particle filter is proposed in combination with the NMAP strategy, which can achieve the same tracking performance with a smaller number of particles by modifying the particles in the δ-GLMB prediction step. Furthermore, the approach is extended to a coprime array and can achieve better DOA tracking performance than a uniform linear array. Simulation experiments validate the effectiveness of the proposed algorithm.

I. INTRODUCTION

M ULTI-target filtering concerns the estimation of the number of unknown time-varying targets and their individual states (e.g., x -y position, direction of arrival (DOA), etc.) from a series of observations [START_REF] Reid | An algorithm for tracking multiple targets[END_REF]. Although the words multi-target filtering and multi-target tracking are often used interchangeably, there is a distinction. In multitarget tracking, we are additionally interested in the target's trajectory (in fact, a real multi-target tracking system requires tracking labels). There are a lot of recent works on multi-target tracking applications that can track the position of targets [START_REF] Mahler | Statistical multisource-multitarget information fusion[END_REF], or their DOAs [START_REF] Lin | Direction-of-arrival tracking via lowrank plus sparse matrix decomposition[END_REF]- [START_REF] Wu | DOA tracking based on unscented transform multi-Bernoulli filter in impulse noise environment[END_REF]. The work presented in this paper is focused on a Bayesian multi-target filtering that also provides multi-source DOA tracking (called as multi-source tracking for convenience).

The most difficult aspect of multi-source tracking is dealing with super-positional measurement, which is the superposition of information from multi-source. Approaches based on subspace update [START_REF] Lin | Direction-of-arrival tracking via lowrank plus sparse matrix decomposition[END_REF]- [START_REF] Wu | DOA tracking based on unscented transform multi-Bernoulli filter in impulse noise environment[END_REF] have been proposed to address this concern, but these methods all presume a known and fixed number of sources, which is not applicable in practical (Corresponding author: Meng Sun.) X. Dong, X. Zhang and M. Sun are with the College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210000, China, and also with the Key Laboratory of Dynamic Cognitive System of Electromagnetic Spectrum Space (e-mail: nanhangdxd@nuaa.edu.cn; zhangxiaofei@nuaa.edu.cn; mengsun@nuaa.edu.cn).
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circumstances. The random finite set (RFS, [START_REF] Mahler | Statistical multisource-multitarget information fusion[END_REF]) approach is a Bayesian version of the multi-target filtering/tracking problem in which the number of targets is random and the set of target states is considered as a finite set. The RFS theorysupported multi-target Bayesian filtering can detect dynamically and simultaneously the number and state of sources, where new sources appear (newborn) and old ones disappear (death), and has a wide range of application areas, such as sonar [START_REF] Jeong | Particle PHD filter multiple target tracking in sonar image[END_REF], computer vision [START_REF] Pham | Tracking multiple objects using probability hypothesis density filter and color measurements[END_REF], [START_REF] Hoseinnezhad | Visual tracking in background subtracted image sequences via multi-Bernoulli filtering[END_REF], traffic monitoring [START_REF] Canaud | Probabilty hypothesis density filtering for real-time traffic state estimation and prediction[END_REF], sensor network and distributed estimation [START_REF] Zhang | Adaptive control and reconfiguration of mobile wireless sensor networks for dynamic multi-target tracking[END_REF]- [START_REF] Ueney | Distributed fusion of PHD filters via exponential mixture densities[END_REF]. Due to the numerical complexity of Bayesian multi-target filter, the probability hypothesis density (PHD) [START_REF] Mahler | Multitarget Bayes filtering via first-order multitarget moments[END_REF], Cardinalized PHD (CPHD) [START_REF] Mahler | PHD filters of higher order in target number[END_REF] and multi-Bernoulli filters [START_REF] Vo | The cardinality balanced multitarget multi-Bernoulli filter and its implementations[END_REF], have been developed as approximations. In principle, these approaches are not multi-target trackers because they are based on the indistinguishability of the targets (i.e., they cannot track the trajectory labels). Recently, Vo et al. propose the generalized labeled multi-Bernoulli (GLMB, [START_REF] Vo | Labeled random finite sets and multi-object conjugate priors[END_REF]) algorithm based on RFS theory. Compared with the GLMB filtering, δ-GLMB [START_REF] Vo | Labeled random finite sets and the Bayes multi-target tracking filter[END_REF] filtering owns stronger results that are immediately applied for multi-target tracking. However, the authors of [START_REF] Masnadi-Shirazi | A covariance-based superpositional CPHD filter for multisource DOA tracking[END_REF] consider that in traditional sensor array observations, each sensor element's measurement is formed by a mixture of all the sources in the surveillance area, and this measurement model is referred to as the super-positional measurement model, which causes a mismatch in the source-measurement association mapping and thus reduces the tracking accuracy [START_REF] Zhao | Time-varying DOA tracking algorithm based on generalized labeled multi-Bernoulli[END_REF].

Traditional methods use, firstly, detection algorithms to convert the super-positional measurement model into a standard measurement model, and then PHD/CPHD filters to extract separable measurements. However, critical information will be lost during the conversion process, resulting in inaccurate estimations. RFS-based approaches are also widely employed in the field of DOA tracking [START_REF] Masnadi-Shirazi | A covariance-based superpositional CPHD filter for multisource DOA tracking[END_REF]- [START_REF] Saucan | CPHD-DOA tracking of multiple extended sonar targets in impulsive environments[END_REF]. The new measurement association mapping (NMAP) strategy proposed in [START_REF] Zhao | A new measurement association mapping strategy for DOA tracking[END_REF] redefines the matching mechanism between the source and measurement, thereby resolving the problem of tracking performance degradation due to the incorrect association mapping [START_REF] Zhao | Time-varying DOA tracking algorithm based on generalized labeled multi-Bernoulli[END_REF]. However, the performance is poor at low signal-to-noise ratio (SNR). Using the NMAP strategy, the PHD DOA tracking method [START_REF] Zhao | PHD filtering for multi-source DOA tracking with extended co-prime array: An improved MUSIC pseudolikelihood[END_REF] based on coprime array is proposed, which improves the tracking accuracy and increases the number of detectable sources compared to the classical particle filter (PF, [START_REF] Dong | Particle filter algorithm for DOA tracking using co-prime array[END_REF]) DOA tracking algorithm. In [START_REF] Masnadi-Shirazi | A covariance-based superpositional CPHD filter for multisource DOA tracking[END_REF], [START_REF] Saucan | CPHD-DOA tracking of multiple extended sonar targets in impulsive environments[END_REF], the multi-source DOA tracking problem in the RFS framework is solved by a CPHD filter. However, the aforementioned approaches will suffer from particle deterioration and will be unable to track the trajectory labels.

With respect to the previously discussed DOA tracking tech- .

niques based on the RFS framework, the tracking performance of approach using sparse array [START_REF] Dong | Particle filter algorithm for DOA tracking using co-prime array[END_REF], [START_REF] Zhao | PHD filtering for multi-source DOA tracking with extended co-prime array: An improved MUSIC pseudolikelihood[END_REF] is noticeably superior to that of method based on uniform linear array (ULA) [START_REF] Wu | DOA tracking based on unscented transform multi-Bernoulli filter in impulse noise environment[END_REF], [START_REF] Zhao | Time-varying DOA tracking algorithm based on generalized labeled multi-Bernoulli[END_REF], [START_REF] Zhao | A new measurement association mapping strategy for DOA tracking[END_REF]. This is due to the fact that, for a given number of sensors, the sparse array approach has a larger virtual array aperture than the ULA, which results in improved estimate performance. In this paper, combining the existing NMAP strategy [START_REF] Zhao | A new measurement association mapping strategy for DOA tracking[END_REF], we extend the δ-GLMB filtering to the coprime array [START_REF] Qin | Generalized coprime array configurations for direction-of-arrival estimation[END_REF] scenario and propose a modified δ-GLMB (Mδ-GLMB) filtering. The main contributions are as follows:

• We extend the GLMB filtering to the coprime array DOA tracking scenario to increase the degrees of freedom, consequently the tracking perfromance and the number of sources. • We present a modified δ-GLMB filtering and provide a sequential Monte Carlo implementation (also called particle filtering) scheme. • In the prediction step of the proposed Mδ-GLMB method, a regularization method for the predicted particles is introduced to rectify the application of the particles, thus making them easier to approach the central area of the posterior probability density function.

• The proposed method can also be extended to the other sparse array geometries, like nested arrays, super nested arrays, etc. The paper is organized as follows. Section II introduces the relevant backgrounds, including the source state model, measurement model and δ-GLMB filtering. In section III, we outline the recursive implementation of the δ-GLMB DOA tracking filtering. Section IV presents the proposed modified δ-GLMB filtering. Simulation and conclusion are given in sections V and VI, respectively.

Notations 1: Upper-case (lower-case) bold characters stand for matrices (vectors).

[[a, b]] denotes the set {x ∈ Z |a ⩽ x ⩽ b }, (•) T , (•) H and (•) *
denote the transpose, conjugate transpose and conjugate of matrix, respectively. diag (•) and vec (•) indicate the diagonal matrices and vectorization operation, respectively. ⊗ and ⊙ denote Kronecker and Khatri-Rao products, respectively. I N denotes a N × N identity matrix and 0 N is the N × N zero matrix, E is the expectation operator.

Notations 2: A single target state is denoted by lowercase letters (e.g., x, x), while multi-target states are expressed as uppercase letters (e.g., X, X), symbols for labeled states and their distributions are bolded to distinguish them from unlabeled ones (e.g., x, X, π, etc.), spaces are represented by blackboard bold (e.g., X, R, L, C, etc.), state space is defined by Euclid math one font (e.g., X , Y, etc.), and the class of finite subsets of a space X or X is represented by F(X ) or F(X), respectively. Both := and ∆ = stand for definition or equivalence.

II. BACKGROUND

This section presents the background of multi-source DOA tracking based on δ-GLMB filtering, including the source state model, measurement model, and basic theory of the δ-GLMB filtering recursion.

A. Source state model

Assume that there are N k sources with state

x n k = [θ n,k , θn,k ] T , n = 1, • • • , N k move with a velocity θn,k ( • /s),
where θ n,k denotes the DOA of the n-th source at time k. The constant velocity (CV) model is given as follows

x n k = F k x n k-1 + G k v k , (1) 
with

F k = 1 ∆T 0 1 ; G k = ∆T 2 /2 ∆T , (2) 
where F k and G k are coefficient matrices, ∆T represents the time period and v k is a Gaussian white noise term with distribution N 0, σ 2 k , where σ 2 k is the noise variance. Remark 1: In this paper, we add label to each source, and a unique label l of the α-th source x α k consisting of an ordered pairs (k, α), where α is the index of targets born at time k (e.g. there are 4 targets born at time 2, then their labels are (2, 1), (2, 2), (2, 3), [START_REF] Mahler | Statistical multisource-multitarget information fusion[END_REF][START_REF] Das | A Bayesian sparse-plus-low-rank matrix decomposition method for direction-of-arrival tracking[END_REF], respectively.). The label space of all targets up to time k can be expressed as a disjoint union L k = k h=1 B h , where B h denotes the label space of targets born at time h (noting that L k = L k-1 ∪ B k ). Formally, the states in Eq. ( 1) can be represented as a labeled vector

x n k := (x n k , l n k ) with label l n k = (k, n),
and the trajectory of a target is composed of a sequence of consecutive labeled states with the same label [START_REF] Vo | Labeled random finite sets and multi-object conjugate priors[END_REF].

B. Measurement model

Fig. 1 shows the extended coprime array (ECA) configuration, the array locations are denoted as:

P = {N md |m ∈ [[0, 2M -1]] } ∪ {M nd |n ∈ [[0, N -1]] } , (3) 
where M and N (M < N ) are coprime numbers, let r 1 < r 2 < • • • < r P , r i ∈ P, i = 1, • • • , P, r 1 = 0, and P = 2M + N -1. d = λ/2 is the minimum array spacing with λ denoting the wavelength. Considering N k narrowband far field incoherent sources s n (k) , n = 1, 2, • • • , N k with DOA θ n,k , impinging on an extended coprime array (shown in Fig. 1) with P sensors. The measurement model is as follows

0 1 2 … 2M-1 0 1 2 … N-1
y k = A (θ) s k + n k , (4) 
where

• y k [ = y 1 (k) , y 2 (k) , • • • , y P (k)]
T is the superpositional measurement; See https://www.ieee.org/publications/rights/index.html for more information.

• s k = [s 1 (k) , s 2 (k) , • • • , s N k (k)]
T is the source vector and n k represents the additive Gaussian white noise (AGWN) vector with covariance matrix σ 2 I P , where σ 2 is the noise power;

• A (θ) = [a (θ 1,k ) , a (θ 2,k ) , • • • , a (θ N k ,k )] ∈ C P ×N k is the directional matrix with a(θ n,k ) = 1, • • • , e -j 2π λ r P sin θ n,k T (5) 
the steering vector.

The covariance matrix R k of y k (4) is given by

R k = E y k y H k = A (θ) R s A H (θ) + σ 2 I P , (6) 
where

R s = E s k s H k ∈ C N k ×N k
is the signal covariance matrix, and R k can be estimated as

Rk ≈ 1 T k T k t=1 y k (t)y H k (t) , (7) 
where T k denotes the number of snapshots at time k. By adopting the coprime array technique [START_REF] Qin | Generalized coprime array configurations for direction-of-arrival estimation[END_REF] (including vectorization, elimination of redundant terms and other operations), we can obtain a virtual uniform linear array single snapshot vector z, as follows

z = Ãb + σ 2 1 M N +M , ( 8 
)
where à is the virtual directional matrix of the ULA with

2M (N + 1) -1 virtual sensors located from (-M (N + 1) + 1)d to (M (N + 1) -1)d; b = [σ 2 1 , • • • , σ 2 N k ]
T denotes the signal vector with σ 2 n the power of the n-th source; 1 M N +M ∈ R (2M (N +1)-1)×1 is a zero vector except that the M N + M -th element equals to 1.

Notice that the vector z is a single snapshot signal vector. By employing spatial smoothing method, a rank restored data covariance matrix [START_REF] Pan | An enhanced spatial smoothing technique with ESPRIT algorithm for direction of arrival estimation in coherent scenarios[END_REF] can be reconstructed by

Rss = 1 G G i=1 z i z H i , (9) 
where z i = z (i : G + i -1, :) denotes a vector consisting of the elements ranging from ith to (G + i -1)th of z, and G = M (N + 1) denotes the total number of spatial smoothing subarray elements. Then Rss is a full-rank matrix so that the MUSIC [START_REF] Schmidt | Multiple emitter location and signal parameter estimation[END_REF] method can be performed for DOA estimation.

C. δ-GLMB FILTER 1) Labeled RFS: According to [START_REF] Vo | Labeled random finite sets and multi-object conjugate priors[END_REF], a generalization of the Kronecker delta function can be denoted as

δ Y (X) ∆ 1, if X = Y 0, otherwise , (10) 
and the generalized indicator function 1 Y (X)

1 Y (X) ∆ 1, if X ⊆ Y 0, otherwise , (11) 
To distinguish the target identity, each target is assigned a unique label l ∈ L = {α i |i ∈ N}. In addition, Vo et al. provide the label RFS [START_REF] Vo | Labeled random finite sets and multi-object conjugate priors[END_REF] where can be written as

X l k = x 1 k , l 1 , • • • , x N k k , l N k ∈ F (X ) × L, (12) 
where

x i k ∈ X , i = 1, • • • , N k
is the single target state, l i ∈ L is a label independent of the target state, L is the discrete label space. From Eq. ( 4), y k is a super-positional measurement consisting of N k source informations, then the measurement RFS (without labels) is

Y k = {y k } ∈ F (Y) , (13) 
where F (Y) is a set of all finite subsets of Y and Y denotes the measurement space. Let L : F(X )×L → L be the projection L ((x, l)) = l, then a finite subset X l k of L : F(X ) × L owns distinct labels if and only if X l k and its labels L X l k = {L (x) : x ∈ X l k } have the same cardinality, i.e., δ |X| (|L(X)|) = 1, where |X| represents the cardinality of the set X. The distinct label indicator can be defined as ∆ (X) ≜ δ |X| (|L(X)|) [START_REF] Vo | Labeled random finite sets and the Bayes multi-target tracking filter[END_REF]. For convenience, we omit the complex representation of the time index k and label index l, and define

L ∆ = L 0:k , B ∆ = L k+1 , L + ∆ = L ∪ B, π ∆ = π k , π + ∆ = π k+1|k , g ∆ = g k , f ∆ = f k+1|k , X ∆ = X k , Y ∆ = Y k .
2) δ-GLMB filtering: We use the standard inner product notation ⟨f, g⟩ ∆ = f (x)g H (x)dx (for array signal processing) and the multi-sources exponential nation h X ∆ = x∈X h(x), where h(x) is a real-valued function with h ∅ = 1 by convention.

Since the GLMB RFS is closed under Bayesian recursion, the numerical implementation is not easy. According to [START_REF] Vo | Labeled random finite sets and multi-object conjugate priors[END_REF], [START_REF] Vo | Labeled random finite sets and the Bayes multi-target tracking filter[END_REF], the δ-GLMB RFS is a particular case of the GLMB RFS with the easy numerical implementation of expressions that are well suited for multi-target tracking. The δ-GLMB RFS posterior probability density can be expressed as

π (X) = ∆ (X) (I,ξ)∈F (L)×Ξ ω (I,ξ) δ I (L (X)) p (ξ) X , (14) 
(I,ξ)∈F (L)×Ξ ω (I,ξ) = 1, ( 15 
)
where Ξ is a discrete space. Each pair (I, ξ) represents a history measurement association mapping (also can called hypotheses), ω (I,ξ) is the hypotheses weight with I the set of labels.

If the multi-target filter density at the current time is δ-GLMB given by Eq. ( 14), then the multi-target prediction density at the next time is also δ-GLMB, i.e.

π + (X + ) = ∆ (X + ) (I+,ξ)∈F (L+)×Ξ ω + (I+,ξ) δ I+ [L (X + )] p + (ξ) X+ , ( 16 
) ω + (I+,ξ) = ω ξ S (I + ∩ L) ω B (I + ∩ B) , (17) 
ω ξ S (L) = η (ξ) S L L⊆I 1 I (L) 1 -η (ξ) S I-L ω (I,ξ) , (18) η (ξ) 
S (l) = P S (•, l) f (x|•, l) , p (ξ) (•, l) dx, (19) p (ξ) 
+ (x, l) = 1 L (l) p (ξ) +,S (x, l) + 1 B (l) p B (x, l) , (20) p (ξ) 
+,S (x, l) =

P S (•, l) f (x|•, l) , p (ξ) (•, l) η (ξ) S (l) . (21) 
• I + ∈ F (L + ) is a set of the predicted track labels, 

∆ = (θ 1 , • • • , θ k ) ∈ Ξ ∆ = Θ 1 × Θ 2 × • • • × Θ k denotes the association mapping history up to time k. • Each pair (I + , ξ) ∈ F (L + ) × Ξ denotes a prediction
hypotheses, with probability ω + (I+,ξ) ; p

+ (x, l) and p (•, l)

ξ are the prediction and update probability densities of the state with label l for history ξ, respectively; • ω B (I + ∩ B) is the weight of the newborn track labels set and I + ∩ B ̸ = ∅, ω ξ S (L) denotes the weight of the surviving labels set; • B is the newborn label space and p B (x, l) is the probability density function of newborn source x with label l. P S (•, l) is the survival probability and f (x|•, l) is the transition kinematic density. If the multi-target prediction density at the current time is δ-GLMB given by Eq. ( 16), then the multi-target filtering ( update) density is also δ-GLMB, i.e.

π (X|Y) ∝ ∆ (X) (I,ξ)∈F (L)×Ξ θ∈Θ(I) ω (I,ξ,θ) (Y) ×δ I (L (X)) p (ξ,θ) (•|Y) X , (22) 
ω (I,ξ,θ) (Y) ∝ µ (ξ,θ) Y I ω (I,ξ) , (23) µ (ξ,θ) 
Y (l) = p (ξ) + (•, l), ψ Y (•, l; θ) , (24) 
p (ξ,θ) (x, l|Y) = p (ξ) + (x, l) ψ Y (x, l; θ) µ (ξ,θ) Y (l) , (25) 
ψ Y (x, l; θ) = P D (x, l) g y θ(l) |x, l , θ (l) > 0 1 -P D (x, l) , θ (l) = 0 . ( 26 
)
• Θ is the measurement association mapping:

θ : L → {0, 1, • • • , |Y|},
where Θ (I) denotes the subset of association mapping with domain I. and θ satisfies θ (i) = θ (j) > 0 ⇒ i = j. • (I, ξ, θ) is a hypotheses when the track label set I has an association mapping history ξ

∆ = (θ 1 , • • • , θ k+1 ) ∈ Ξ ∆ = Θ 1 × Θ 2 × • • • × Θ k+1
, and ω (I,ξ,θ) is the corresponding hypotheses weight. An associative mapping θ describes which trajectory generates which measurement, i.e., trajectory l generates measurement y θ(l) ∈ Y, and assigns the integer 0 to the missed detection trajectory.

• P D (x, l) represents the detection probability of state x and g y θ(l) |x, l is a likelihood function.

III. RECURSIVE IMPLEMENTATION OF THE δ-GLMB DOA TRACKING FILTERING

The δ-GLMB can be characterized by the parameter set ω (I,ξ) , p (ξ) , (I, ξ) ∈ F (L × Ξ) . From the implementation point of view, it is convenient to consider the δ-GLMB parameter set as an enumeration of all hypotheses and their corresponding (positive) weights and trajectories density

I (h) , ξ (h) , ω (h) , p (h) H h=1 , where H ∈ R + is the number of all hypotheses, ω (h) ∆ = ω (I (h) ,ξ (h) ) and p (h) ∆ = p (ξ (h)
) . The hypothesis of the h-th component is denoted as I (h) , ξ (h) , while the corresponding weight and trajectory density are ω (h) and p (h) (•, l) , l ∈ I (h) , respectively. Thus, implementing the δ-GLMB filter is equivalent to passing the δ-GLMB parameter set forward with time recursively.

A. δ-GLMB prediction

The prediction density given in Eq. ( 16) has a compact form, but it is more difficult to be calculated since in Eq. ( 18) it is necessary to sum over all hypersets of L. [START_REF] Vo | Labeled random finite sets and multi-object conjugate priors[END_REF] gives its equivalent form

π + (X + ) = ∆ (X + ) (I,ξ)∈F (L)×Ξ ω (I,ξ) J∈F (I) η (ξ) S J × 1 -η (ξ) S I-J L∈F (B) ω B (L)δ J∪L (L (X + )) p + (ξ) X+ , (27) 
where J ⊆ I, L ⊆ B. Next, this subsection gives a detailed implementation of δ-GLMB prediction, which uses the Kshortest-path algorithm [START_REF] Eppstein | Finding the k shortest paths[END_REF] to prune the predicted δ-GLMB parameter set components without computing all the prediction hypotheses and their weights.

1) Compute the predicted parameter sets (Sequential Monte Carlo (SMC) implementation): For the SMC approximation, assuming that each single target density p (ξ) (•, l) can be represented by a weighted sample set ω

(ξ) i (l) , x (ξ) i (l) N (ξ) (l) i=1
and that the newborn density p

(l) B (•) can be represented by ω (ξ) i (l) , x (ξ) i (l) N (ξ) B (l) i=1 , we have η (ξ) S (l) = N (ξ) (l) i=1 ω (ξ) i (l) P S x (ξ) i (l) , l , (28) and p (ξ) 
+ (x, l) can be denoted as

1 L (l) ω(ξ) S,i (l) , x (ξ) 
S,i (l)

N (ξ) (l) i=1 ∪ 1 L (l) ω (ξ) B,i (l) , x (ξ) 
B,i (l)

N (ξ) B (l) i=1 (29) x (ξ) S,i (l) ∼ q • x (ξ) i (l) , l, y , i = 1, • • • , N (ξ) (l) , (30) ω (ξ) S,i (l) = ω (ξ) i (l) f x (ξ) S,i (l) x (ξ) i (l) P S x (ξ) i (l) , l q x (ξ) S,i (l) x (ξ) i (l) , l, y , (31) 
ω(ξ) S,i (l) = ω (ξ) S,i (l) N (ξ) (l) i=1 ω (ξ) S,i (l), (32) 
where q • x (ξ) i (l) , l, y is the suggested density. 2) Pruning the prediction density: Given the enumerated parameter set I (h) , ξ (h) , ω (h) , p (h) H h=1 with δ-GLMB filter density, ( 16) can be rewritten as

π + (X + ) = H h=1 π (h) + (X + ), (33) π (h) 
+ (X + ) = ∆ (X + ) J∈I (h) L∈B ω (I (h) ,ξ (h) ) S (J) ×ω B (L) δ J∪L (L (X + )) p + (ξ (h) ) X+ . (34) 
From [START_REF] Vo | Labeled random finite sets and the Bayes multi-target tracking filter[END_REF], for δ-GLMB prediction, the h-th component generates 2 |I (h) |+|B| components. The K-shortest path prob- 

I (h) , ξ (h) , ω (h) , p (h) , K (h) H h=1 , K B , {(ς (l) B , p (l) 
B )} l∈B 2: Compute the cost function vector:

c B = [c b (l1), • • • , c b (l |B| )],
where

c b (li) = -ln[ς l i B /(1 -ς l i B )], i = 1, • • • , |B|. 3: {L (b) } K B b=1 = K-shortest-path(B, c B , K B ). 4: Calculate ω (b) B = l∈B-L (b) 1 -ς (l) B l∈L (b) ς (l) B , for b = 1, • • • , K B . 5: For h = 1 : H Calculate η (h) S := η ξ (h)
S according to Eq. ( 28).

Calculate cost vector: c

(h) S := c (I (h) ,ξ (h) ) S = [c S (l1), • • • , c S (l |I (h) | )],
where c S (lj ) = -ln[η

(h) S (lj )/(1 -η (h) S (lj ))], j = 1, • • • , |I (h) |. {J (h,j) } K (h) j=1 = K-shortest-path(I (h) , c (h) 
S , K (h) ). For 6:

(j, b) = (1, 1) : (K (h) , K B ) ω (h,j,b) + := ω I (h) ,ξ (h) S J (h,j) ω (b) B ω I (h) ,ξ (h) S J (h,j) = ω (h) η (h) S J (h,j) 1 -η (h) S I (h) -J (h,j) I (h,j,b) + := J (h,j) ∪ L (b) End 7: Calculate p (h) + := p (ξ (h) ) +
according to Eq. ( 29). 8: End

9: Normalize weight ω (h,j,b) + H,K (h) ,K B (h,j,b)=(1,1,1)
.

8: Output:

I (h,j,b) + , ω (h,j,b) + , p (h) + H,K (h) ,K B (h,j,b)=(1,1,1)
. lem attempts to find a subset of the K shortest distances of I in non-decreasing order. Given the enumerated parameter set I (h) , ξ (h) , ω (h) , p (h) H h=1 with δ-GLMB filter density, the K-shortest path algorithm is used to determine K (h) subsets with maximum weights ω

(h,1) S ⩾ ω (h,2) S ⩾ • • • ⩾ ω (h,K (h) ) S .
For the newborn targets, the labeled multi-Bernoulli newborn model is utilized, i.e.

ω B (L) = l∈B 1 -ς (l) B l∈L 1 B (l) ς (l) B 1 -ς (l) B , (35) 
p B (x, l) := p (l) B (x) , (36) where ς (l) 
B is the existence probability with newborn label l and p (l) B (x) denotes the newborn probability density function. Similarly, K B newborn subsets with the highest newborn weights can be obtained, and the specific K-shortest path algorithm operation can be found in [START_REF] Vo | Labeled random finite sets and the Bayes multi-target tracking filter[END_REF]. Then, for each h, the pruning version of π (h) + can be expressed as

π(h) + (X + ) = ∆ (X + ) K (h) j=1 K B b=1 J (h,j) ∈I (h) L (b) ∈B ω B L (b) ×ω (I (h) ,ξ (h) ) S J (h,j) δ J (h,j) ∪L (b) (L (X + )) p + (ξ (h) ) X+ . ( 37 
)
The specific values of the number of required components K (h) and K B are specified by the user or related to the specific application. A general strategy is to choose K (h) = ω (h) J max , where J max is the total number of expected hypotheses. Moreover, K B can be chosen such that the resulting pruning captures the probabilistic quality of the desired proportion of the newborn density. The pseudo-code of δ-GLMB prediction algorithm is given in TABLE I.

B. δ-GLMB update

The component pruning operation is also essential in the δ-GLMB update process. This section presents a detailed implementation of the δ-GLMB update, which prunes the multi-objective filter density by a ranked assignment algorithm [START_REF] Vo | Labeled random finite sets and the Bayes multi-target tracking filter[END_REF], and also without exhaustively computing all hypotheses and their weights. First, the ranked assignment problem in the context of pruning the δ-GLMB filter density is introduced.

1) Ranked assignment problem: From Eq. ( 23), each hypothesis (I, ξ) with weight ω (I,ξ) generates a new set of hypotheses (I, (ξ, θ)), θ ∈ Θ (I) with weight ω (I,ξ,θ) (Y) ∝ µ (ξ,θ) Y I ω (I,ξ) . For a given hypothesis (I, ξ), the component with the maximum weight can be selected without exhaustively computing all hypotheses and their weights if an associative mapping θ ∈ Θ (I) in descending order of µ (ξ,θ) Y I can be generated. The solution of the following ranked assignment problem proposed in [START_REF] Vo | Labeled random finite sets and the Bayes multi-target tracking filter[END_REF] can achieve such a requirement.

Construct the |I| × |Y|-dimensional cost matrix

C (I,ξ) Y as C (I,ξ) Y =    c 1,1 • • • c 1,|Y| . . . . . . c |I|,1 • • • c |I|,|Y|    , (38) 
with

c i,j = -ln   p (ξ) + (•, l i ) , g (y j |•, l i ) p (ξ) + (•, l i ) , 1 -p D (•, l i )   (39) 
the cost of assigning the j ∈ {1, 2,

• • • , |Y|}-th measurement to track l i , i ∈ {1, 2, • • • , |I|}.
Note from the array model ( 4) that the measurement is super-positional information (i.e., |Y| = 1), therefore the cost matrix C becomes a vector with dimension |I| × 1, which reduces the algorithm tracking performance. This allows a single measurement to be assigned to multiple trajectories at the same time, which leads to low pruning efficiency. An alternative solution is the NMAP strategy proposed in [START_REF] Zhao | A new measurement association mapping strategy for DOA tracking[END_REF], denoted as follows

Γ n = U S,n τ n U H S,n , n = 1, 2, • • • , Ñk , (40) 
where Ñk is the estimated number of sources by MDL method [START_REF] Cheng | An MDL algorithm for detecting more sources than sensors using outer-products of array output[END_REF], U S,n denotes the n-th column of matrix U S , and U S can be obtained by performing eigenvalue decomposition (EVD) of the spatial smoothing covariance matrix ( 9) 

Rss = UΛU H = G i=1 τ i u i u H i = U s Σ s U H s + U N Σ N U H N , (41) where 
Λ = diag {τ 1 , τ 2 , • • • , τ G } is the eigenvalues matrix, and τ 1 ⩾ τ 2 ⩾ • • • ⩾ τ Ñk ⩾ τ Ñk +1 ⩾ • • • ⩾ τ G .
Y k = Γ 1 , Γ 2 , • • • , Γ Ñk ∈ F (Y) , (42) 
then, the dimension of the cost matrix [START_REF] Liu | Augmented nested arrays with enhanced dof and reduced mutual coupling[END_REF] becomes |I| × Ñk , and its computation is detailed in the next section.

2) Calculate the updated parameter sets: Assuming that each single target density p (ξ) (•, l) can be represented by a weighted sample set ω

(ξ) n (l) , x (ξ) n (l) N (ξ) (l) n=1
, then we have

c ij = -ln   J (ξ) (li) n=1 ω (ξ) n (l i ) P D x (ξ) n (l i ) , l i g y j |x (ξ) n (l i ) , l i J (ξ) (li) n=1 ω (ξ) n (l i ) 1 -P D x (ξ) n (l i ) , l i   , i = 1, • • • , |I| , j = 1, • • • , Ñk , (43) 
and for each give association history (ξ, θ),

µ (ξ,θ) Y (l) = J (ξ) (l) n=1 ω (ξ) n (l i ) ψ Y x (ξ) n (l) , l; θ , (44) ω (ξ,θ) n (l) 
= ω (ξ) n (l) ψ Y x (ξ) n (l) , l; θ µ (ξ,θ) Y (l) , (45) 
and p (ξ,θ) (•, l|Y) can be denoted as the following weighted sample sets

ω (ξ,θ) n (l) , x (ξ) n (l) J (ξ) (l) n=1 . (46) 
3) Calculation scheme for the likelihood function: By performing EVD again to the measurement component Γ n , n = 1. • • • , Ñk , we have 1) stand for the n-th signal eigenvector and remaining eigenvectors, respectively.

Γ n = U n Σ n U H n = Ũn,1 Φ 1 ŨH n,1 + Ũn,G-1 Φ G-1 ŨH n,G-1 , (47) where 
Σ n = diag {ε 1 , ε 2 , • • • , ε G } is the diagonal matrix and Φ 1 = ε 1 denotes the largest eigenvalue. Φ G-1 is a matrix consisting of the remaining eigenvalues. U n,1 ∈ C G×1 and U n,G-1 ∈ C G×(G-
Then, the likelihood function can be replaced by the following MUSIC pseudo-spectrum

g y j |x (ξ) n (l i ) , l i = P MUSIC x (ξ) n (l i ) = 1 a cx (ξ) n (l i ) H Ũj,G-1 ŨH j,G-1 a cx (ξ) n (l i ) ζ , i = 1, • • • , |I|, j = 1, • • • , Ñk , n = 1, • • • , J (ξ)(li) , (48) 
where c = [1, 0] such that cx

(ξ)
n (l i ) denotes the DOA information, and ζ ∈ R + is the exponential weighting factor.

Remark 3: Fig. 2 shows the exponential weighting of the MUSIC spatial spectral function (also called likelihood function. For convenience, we do not adopt the NMAP strategy here, and the noise subspace of the MSUIC spectral function can be obtained by Eq. ( 41)) for 2 sources (DOAs are -40 • and 50 • , respectively.), where SNR = 10 dB, T k = 200, and the number of sensors M = 4, N = 5. It can be seen from Fig. 2 that the likelihood function can be increased by increasing exponential weighting factor ζ, and the beam width of the MUSIC spectrum becomes narrower. However, if ζ is very large, the diversity of particles will be lost, which leads to the degradation of the algorithm tracking performance, i.e., a suitable ζ should be chosen to make the algorithm performance optimal. The specific value of ζ will be discussed in the simulation.

4) Pruning update density: Given the enumerated parameter set I (h) , ξ (h) , ω (h) , p (h) H h=1 with δ-GLMB prediction density, ( 22) can be rewritten as

π (X|Y) = H h=1 π (h) (X|Y), (49) 
π (h) (X|Y) = ∆ (X) |Θ(I (h) )| j=1 ω (h,j) δ I (h) (L (X)) p (h,j) X , (50) ω (h,j) ∆ = ω (I (h) ,ξ (h) ,θ (h,j) ) (Y) , (51) 
p (h,j) ∆ = p (I (h) ,ξ (h) ,θ (h,j) ) (• |Y ) . (52) 
Each δ-GLMB prediction component with index h yields Θ I (h) δ-GLMB update density components. According to [START_REF] Vo | Labeled random finite sets and the Bayes multi-target tracking filter[END_REF], a simple and efficient method for pruning the δ-GLMB update density Eq. ( 49) is to prune π (h) (•|Y). For each prediction component with index h, solving the ranked optimal assignment problem for the cost matrix

C (I (h) ,ξ (h) ) Y will produce T (h) hypotheses θ (h,j) , j = 1, 2, • • • , T (h)
with the highest weight in non-increasing order. The prediction component h produces a large number of δ-GLMB update density components, and the ranked assignment algorithm determines T (h) components with the maximum weights

ω (h,1) ⩾ ω (h,2) ⩾ • • • ⩾ ω (h,T (h)
) . Thus, the pruned version of π (h) (•|Y) can be expressed as π(h) (X|Y)=∆ (X)

T (h) j=1 ω (h,j) δ I (h) (L (X)) p (h,j) X . (53) 
The value of the required components T (h) is specified by the user or related to the specific application. A general strategy is to choose T (h) = ω (h) J max , where J max is the total 

I (h) , ξ (h) , ω (h) , p (h) , T (h) H h=1 , Y 2: For h = 1 : H Calculate cost matrix C (h) Y := C I (h) ,ξ (h)
Y according to Eq. ( 38) and (43).

{θ (h,j) } T (h) j=1 = ranked-assignment (Y, I (h) , C (h) 
Y , T (h) ). For 3:

j = 1 : T (h) Calculate µ (h,j) Y := µ ξ (h) ,θ (h,j)
Y according to Eq. (43).

Calculate p (h,j) := p ξ (h) ,θ (h,j) (• |Y ) based on Eq. ( 44) and (46).

ω (h,j) := µ (h,j) Y I (h)
ω (h) according to Eq. ( 23).

I (h,j) := I (h) . ξ (h,j) := ξ (h) , θ (h,j) . 4: End 5: End 6: Normalize weights ω (h,j) H,T (h) (h,j)=(1,1) . 7: Output: I (h,j) , ξ (h,j) , ω (h,j,) , p (h,j) H,T (h)

(h,j)=(1,1)
. number of expected hypotheses. The pruned update density has a total number of components of T = H h=1 T (h) , and the pruned δ-GLMB update density is obtained by normalizing the sum of the weights. TABLE II gives the pseudo-code of δ-GLMB update algorithm.

IV. PROPOSED MODIFIED δ-GLMB FILTERING

In SMC implementation, the resampling is considered as a way to reduce the particle degeneracy problem. However, it has been pointed out that resampling causes additional issues, particularly the loss of particle diversity. The regularizationbased step (a kind of jittering of particles) proposed in [START_REF] Musso | Improving regularised particle filters[END_REF] is called regularized particle filtering (RPF). The tracking performance of the δ-GLMB algorithm is further improved by regularizing to increase the diversity of predicted particles. In this section, we first introduce the regularized PF, and then apply it to the field of array signal processing, and finally give a concrete implementation of the regularized δ-GLMB filtering ( called modified δ-GLMB).

A. Regularized PF

In fact, the regularization step is a jittering operation on the particles that yields particles that are closer to the posterior probability density. Suppose there is a weighted particle set

x i k , ω i k N i=1
, where N denotes the total number of particles. Then the corrected set of particles is as follows

x i * k = x i k + h opt D k ς i , i = 1, • • • , N (54) 
where

• h opt = A • N -1/(nx+4)
is the optimal kernel bandwidth [START_REF] Musso | Improving regularised particle filters[END_REF] and A = [4/(n x + 2)] 1/(nx+4) is a constant.

• n x is the dimension of state vector

x i k . • D k such that D k D T k = S k
, where S k is the empirical covariance matrix of particle set

x i k , ω i k N i=1
. The description of the regularized PF algorithm for one cycle is given in TABLE III. Notice that the array signal processing method is based on the complex domain, so the computational scheme of the likelihood function g y k |x i k no longer follows Eq. ( 48). We utilize the least squares method 

x i * k , ω i k N i=1 = RPF x i k-1 , ω i k-1 N i=1 , y k 1: For i = 1 : N Draw x i k ∼ f x k |x i k-1
according to Eq. ( 1) and Calculate ωi k = g y k |x i k . 2: End 3: Normalize the weights: 

ω i k = ωi k N i=1 ωi k . 4: Calculate D k such that D k D T k = S k . 5: Resample the particle set: x i k , ω i k , - N i=1 = resample x i k , ω i k N i=1 . 6: For: i = 1 : N Draw ς i ∼ N (0,
x i * k , ω i k N i=1 = RPF-SP x i k-1 , ω i k-1 N i=1 1: For i = 1 : N Draw x i k ∼ f x k |x i k-1
according to Eq. ( 1). Calculate ωi k = g y k |x i k : Generate the observation y i k for x i k according to Eq. ( 4). Calculate the direction vector a(cx i k ) based on Eq. ( 5). Calculate the space domain filter S = a + y i k , where

a + = a H a -1 a H . Calculate weight ωi k = exp -y i k -aS 2 .
2: End 3: Normalize the weights:

ω i k = ωi k N i=1 ωi k . 4: Calculate the mean value: r mean k = N i=1 cx i k ω i k . Calculate the empirical covariance matrix: S k = N i=1 ω i k cx i k -r mean k 2 .
Calculate D k such that D k D T k = S k : 5: Resample the particle set:

x i k , - N i=1 = resample x i k , ω i k N i=1 . 6: For: i = 1 : N Draw ς i ∼ N (0, 1) from the Gaussian kernel. A = [4/(nx + 2)] 1/(nx +4) with nx = 1. hopt = A • N -1/(nx+4) . x i * k = x i k + hoptD k ς i . 8: End

B. Modified δ-GLMB filtering

In this section, the RPF-SP algorithm is used to manipulate the predicted particles of the δ-GLMB SMC implementation, in fact, ( 30) and ( 31) can be rewritten as follows

x (ξ) S,i (l) ∼ f • x (ξ) i (l) , l , i = 1, • • • , N (ξ) (l) , (55) 
ω (ξ) S,i (l) = ω (ξ) i * (l) P S x (ξ) i (l) , l (56) 
with

x (ξ) S * ,i (l) , ω (ξ) 
i * (l)

N (ξ) (l) i=1 = RPF-SP ω (ξ) i (l) , x (ξ) 
S,i (l)

N (ξ) (l) i=1 , (57) 
then, ( 29) can be expressed as

1 L (l) ω (ξ) S,i (l) , x (ξ) 
S * ,i (l)

N (ξ) (l) i=1 ∪ 1 L (l) ω (ξ) B,i (l) , x (ξ) 
B,i (l)

N (ξ) B (l) i=1 . (58)
The detailed SMC implementation of the modified δ-GLMB algorithm is given in TABLE V, integrating the contents of . TABLE I, II and IV. In TABLE V, the multi-target state estimation is given in step 4. For the GLMB update density, a simple and intuitive multi-target estimator is the multi-Bernoulli estimator [START_REF] Vo | Labeled random finite sets and the Bayes multi-target tracking filter[END_REF], which selects the set of trajectories or labels whose probability of existence (the probability of existence of track l is the sum of the weights of all hypotheses containing track l, i.e., (I,ξ)∈F (L)×Ξ ω (I,ξ) 1 I (l)) is above some threshold, and then estimates the track state based on the maximum a posteriori or expectation posterior of the probability density p (ξ) (•, l), l ∈ L. Input: Nmax, I (h,j) , ξ (h,j) , ω (h,j,) , p (h,j) H,T (h) (h,j)= [START_REF] Reid | An algorithm for tracking multiple targets[END_REF][START_REF] Reid | An algorithm for tracking multiple targets[END_REF] . Calculate the cardinality distribution:

ρ (n) = H h=1 T (h) j=1 ω (h,j) δn I (h,j) , n = 1, 2, • • • , Nmax.
Find the largest cardinality: Ñ = argmax(ρ).

For n = 1 : Ñ h, j = arg max (h,j) ω (h,j) δn I (h,j) .

X k = (x, l) : l ∈ I ( h, j) , |x = xp ( h, j) (x, l) dx . End 5: End V. SIMULATION
The tracking performance of the proposed modified δ-GLMB filtering is verified by three simulation scenarios (a single source tracking scenario, multi-source with fixed number of sources and multi-source with time-varying number of sources). We also give some simulation examples to illustrate the performance of various methods-the proposed modified δ-GLMB filtering, the GLMB filtering based on ULA (GLMB-ULA, [START_REF] Zhao | A new measurement association mapping strategy for DOA tracking[END_REF]), the PHD filtering with extended coprime array (PHD-ECA, [START_REF] Zhao | PHD filtering for multi-source DOA tracking with extended co-prime array: An improved MUSIC pseudolikelihood[END_REF]), the spatially smoothed PAST (SS-PAST, [START_REF] Zheng | Spatial smoothing past algorithm for DOA tracking using difference coarray[END_REF]) tracking method with ECA, particle filtering with ECA (PF-ECA, [START_REF] Dong | Particle filter algorithm for DOA tracking using co-prime array[END_REF]). However, particle filtering can only handle a single source scenario, and the SS-PAST method is prone to singular values in a single source scenario. Therefore, the SS-PAST method is no longer considered for comparison in the single source scenario, and similarly, the PF-ECA method is not considered for comparison in the multi-source scenario.

A. CRB of DOA tracking

The performance evaluation of the proposed DOA tracking algorithm can be assessed with the stochastic CRB [START_REF] Stoica | MUSIC, maximum likelihood and Cramer Rao bound: further results and comparisons[END_REF], which is the inverse of the Fisher information matrix (FIM). However, the conventional FIM is singular when the number of sources exceeds the number of physical sensors. To solve this problem, the Fisher information matrix is converted to a virtual arraybased form in [START_REF] Liu | Cramer Rao bounds for coprime and other sparse arrays, which find more sources than sensors[END_REF]- [START_REF] Wang | Coarrays, MUSIC, and the Cramer Rao bound[END_REF], and can be expressed as

FIM = T k vec ∂R x ∂ξ H R T x ⊗ R x -1 vec ∂R x ∂ξ , (59) 
which remains non-singular in a wider range of conditions, where T k denotes the number of snapshots at time k. Thus, it overcomes the model mismatch problem of the stochastic CRB and gives the lower bound on the estimation error when the number of sources is larger than the number of physical sensors.

In our research, the deterministic parameter vector ξ can be expressed as

ξ = θ T , b T , σ 2 T . (60) 
Then the Fisher information matrix can be written as

FIM = T k ∂z ∂ξ H R T x ⊗ R x -1 ∂z ∂ξ , (61) 
where

z = vec (R k ) = (A * ⊙ A) b + σ 2 vec (I P ) (62) 
∂z ∂ξ = ∂z ∂θ 1 , • • • , ∂z ∂θ N k , ∂z ∂b 1 , • • • , ∂z ∂b N k , ∂z ∂σ 2 , ( 63 
)
∂z ∂θ n = b n ∂a * (θ n ) ∂θ n ⊗ a (θ n ) + a * (θ n ) ⊗ ∂a (θ n ) ∂θ n , (64) 
∂z ∂b n = a * (θ n ) ⊗ a (θ n ) , n = 1, • • • , N k , (65) 
∂z ∂σ 2 = vec (I P ) . (66) 
Therefore, the CRB for the n-th source can be obtained by

CRB (θ n ) = FIM -1 n,n , (67) 
for 1 ⩽ n ⩽ N k . And CRB versus SNR or snapshots can be defined as:

CRB = 1 KQN k K k=1 Q j=1 N k n=1 CRB k,j (θ n ), (68) 
where CRB k,j is the j-th Monte Carlo's CRB at time k, N k is the true number of sources.

B. Evaluation and Measurement

In the following simulations, SNR is defined as:

SNR = 10 log σ 2 s /σ 2 , (69) 
where σ 2 s is the signal power and σ 2 denotes the noise power. And root mean square error (RMSE) can be expressed as

RMSE = 1 QK Ñk Q j=1 K k=1 Ñk n=1 (x nj (k) -x n (k)) 2 ,
(70) where xnj (k) is the estimated value of n-th true source x n (k) at time k for the j-th Monte Carlo. Q is the total number of Monte Carlo experiments, K is the total observation time and Ñk stands for the estimated number of sources at time k.

An other evaluation method is the probability of convergence (PROC), which can be defined as

PROC = 1 QK K k=1 Q j=1 1 kj (71) 
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. with

1 kj =        1, if 1 Ñk Ñk n=1 (x nj (k) -x n (k)) 2 < σ 0, otherwise , (72) 
where σ denotes the error threshold.

C. Exponential weighting factor ζ

The exponential weighting factor ζ is determined based on experimental simulations. Fig. 3 In the single-source scenario described in case 1, the larger the value of ζ, the worse the performance of the proposed algorithm, which indicates that the single source tracking can achieve good results without exponential weighting. In both cases 2 and 3, ζ has optimal values of 4 and 2, respectively. Therefore, in case 1, ζ = 1. In cases 2 and 3, ζ = 4 and ζ = 2 are chosen, respectively. Note that using a slightly different value of ζ does not significantly change the tracking performance. For example, in Case 2, using ζ = 4.1 or ζ = 3.9 leads to similar tracking performance.

D. Simulation scenarios

In the following three simulations, M = 4, N = 5 and the number of array elements P = 2M + N -1 = 12 (i.e. the number of ULA sensors), K = 50s , ∆T = 1s and T k = 200, the survival and detection probabilities of the sources are assumed to be constants P S,k (x k ) = 0.99 and P D,k (x k ) = 0.98, respectively. The total number of expected hypotheses J max = 2000, and K B = 5.

Case 1: A single source scenario Consider a single source scenario with 1 source, surviving at time 1 -40s. The initial source state is

x 1 0 = [-31.2 • , 1.2]
, and the newborn model is a GLMB RFS with parameters 4(a) that the four methods all have a great tracking trajectory capacity. However, in Fig. 4(b), the proposed algorithm has better tracking performance at each time. Compared with the GLMB-ULA method, although the proposed algorithm has a performance improvement of 0.02 degrees, the calculation cost is affordable. Table VI gives the average running time of the proposed method and the GLMB-ULA by averaging the running time of 100 MC trials. The operating environment is Intel(R) Core(TM) i7-10700F CPU @ 2.90GHz 2.90 GHz processor with a 64-bit operating system MATLAB 2020b. TABLE VI shows that the running time of the proposed method is 1.1275s, which is only 9.95% longer than that of GLMB-ULA method with running time 1.0255s. The RMSE comparison results in terms of different snapshots are shown in Fig. 7. The RMSE performance of these methods improves as the number of snapshots grows, and the performance of these algorithms eventually stabilizes as the number of snapshots grows higher, as shown in Fig. 7. However, compared to other approaches, the proposed method's performance is superior, as shown by its lower RMSE and larger PROC.

π B = ζ (l,i) B , p (l,i) B (x, l)
B (x) = x (l,j) B,k , ω (l,j) B,k N l B,k j=1 ∼ N (x; m i , P), where m 1 = [-40 • , 0] , m 2 = [50 • , 0], P = diag 2 2 , 1 2 , ω (l,j) B,k = 1/N l B,k . Each
Case 3: Multi-source with time-varying number of sources

In order to show the viability of the proposed method in the time-varying environment of source number, the survival states of several random sources are given in number of sources accurately. For the GLMB-ULA method, the DOA tracking values deviate from the true state during time steps 31-35s and 41-50s, and even the source number is overestimated (more estimated than the reality). Fig. 8(b) shows that the PHD-ECA approach outperforms the GLMB-ULA method in terms of estimated the number of sources, but it overestimates or underestimates the source number at several time steps. Because the SS-PAST approach is a subspace update-based method that requires a known number of sources, it cannot be used to estimate the number of sources. The experimental results in Fig. 8 show that the proposed method outperforms the GLMB-ULA and the PHD-ECA methods in estimating the source number. The comparison of RMSE and PROC for various SNRs and snapshots is shown in Figs 9-10. Different SNRs from -6 dB to 10 dB with an increment of 2 dB are employed to generate noisy environments. The DOA tracking performance of all four approaches improves with the increase of SNR or snapshot, as shown in Fig. 9(a) and Fig. 10(a), but the method proposed in this paper has higher tracking performance. cannot solve the time-varying source DOA tracking problem, it has the largest RMSE and a very small PROC. It can be seen that the PROC of the proposed method is larger than the other methods under the same threshold σ pre-condition. Similarly, the PROC performance can be improved by increasing the value of threshold σ. In summary, the proposed modified δ-GLMB DOA tracking algorithm outperforms the SS-PAST method, GLMB-ULA method and PHD-ECA method in estimating and tracking the DOA.

E. Performance of other sparse array

The proposed method can also be extended to other sparse arrays [START_REF] Pal | Nested arrays: A novel approach to array processing with enhanced degrees of freedom[END_REF]- [START_REF] Zheng | Augmented covariance matrix reconstruction for doa estimation using difference coarray[END_REF], like nested array (NA) [START_REF] Pal | Nested arrays: A novel approach to array processing with enhanced degrees of freedom[END_REF], super nested array (SNA) [START_REF] Liu | Super nested arrays: Linear sparse arrays with reduced mutual coupling?part i: Fundamentals[END_REF] and augmented nested array (ANA) [START_REF] Liu | Augmented nested arrays with enhanced dof and reduced mutual coupling[END_REF]. Therefore, in this subsection, a simulation example of the proposed method with sparse arrays (such as NA, SNA and ANA) is presented. The subarrays N 1 = N 2 = 3 are taken in NA-based arrays and M = 2, N = 3 are taken for ECA. Other simulation parameters are same with those of the Case 3.

Fig. 11 compares the OSPA (the detailed definition can be found in [START_REF] Schuhmacher | A consistent metric for performance evaluation of multi-object filters[END_REF]) distance performance of the proposed algorithm in the context of sparse arrays, where the OSPA distance is considered as the performance metric. This simulation example shows the applicability of the proposed Mδ-GLMB method for the NA, SNA and ANA. Further investigation on Mδ-GLMB with nested arrays or other sparse arrays will be performed in the future.

VI. CONCLUSION

We have addressed the multi-source time-varying DOA tracking problem in this paper. By combining the coprime array methodology with the new measurement association mapping method, a Mδ-GLMB filtering is proposed. To be more specific, the predicted particles are rectified in the Mδ-GLMB filtering prediction stage to improve particle validity. Furthermore, the MUSIC spatial spectral function is applied for the likelihood function of the particles and exponentially weighted, which fixes the mapping problem between the array observations and sources properly. Moreover, the method is extended to the coprime array, which can provide better DOA estimation and tracking performance than the traditional uniform linear array. Simulation comparisons with existing algorithms show the superiority of the proposed algorithm. In addition, the proposed method is not only applicable to the considered coprime array geometries, but also to arbitrary types of sparse arrays, such as nested arrays, super-nested arrays, etc., which will be discussed in the future work.

Fig. 1 :

 1 Fig. 1: Extended coprime array (ECA).

  ξ

  Σ s is a diagonal matrix consisting of Ñk largest eigenvalues, whereas Σ N is the diagonal matrix composed of the remaining eigenvalues. U s = u 1 , u 2 , • • • , u Ñk is the signal subspace, which is the eigenvectors matrix corresponding to the Ñk largest eigenvalues. U N = u Ñk +1 , • • • , u G is the noise subspace, which is the eigenvectors matrix corresponding to the remaining G -Nk smallest eigenvalues.

Remark 2 :

 2 According to (40)-[START_REF] Schuhmacher | A consistent metric for performance evaluation of multi-object filters[END_REF], we can get Ñk reconstructed matrices Γ n , n = 1, • • • , Ñk . Therefore the measurement RFS (13) can be rewritten as

Fig. 2 :

 2 Fig. 2: The likelihood function with different ζ.
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  (a)-(b) run 100 MC to select the appropriate exponential weighting factor ζ, where M = 4, N = 5 and snapshots T k = 100. Fig. 3(a) shows the performance of the proposed algorithm in terms of ζ for two given values of SNR, and Fig. 3(b) shows the performance of the proposed algorithm versus SNR for 4 given values of ζ.

  ; m 1 , P), where m 1 = [-30 • , 0], P = diag 4 2 , 2 2 , ω (l,j) B,k = 1/N l B,k . Each newborn source produces 1000 particles, i.e., N ξ B (l) = N l B,k = 1000, and N ξ (l) = 1000. (The number of particles of GLMB-ULA and PHD-ECA methods is also 1000.) Fig. 4(a) shows the single source trajectory tracking for one MC and the tracking error for 100 MC is illustrated in Fig. 4(b), where SNR = 10 dB and T k = 200. It can be seen from Fig.

Fig. 3 :

 3 Fig. 3: Selection of exponential weighting factor (a) RMSE versus ζ, Q = 100, (b) RMSE versus SNR, Q = 100.

Fig. 5 Fig. 4 :

 54 Fig. 5 compares the RMSE performance and PROC versus SNRs with T k = 200. Different SNRs from -6 dB to 10 dB with an increment of 2 dB are utilized to generate noisy

Fig. 5 :

 5 Fig. 5: (a) RMSE performance comparison versus SNR, T k = 200, Q = 100. (b) PROC versus SNR, T k = 200, Q = 100.

Fig. 7 :

 7 Fig. 7: Comparison of RMSE and PROC versus snapshots, Q = 100, SNR = 10 dB. (a) RMSE. (b) PROC.

Fig. 9 (Fig. 8 :

 98 Fig. 8: (a) Tracking trajectories of time-varying sources, Q = 1, T k = 200, SNR = 10 dB. (b) Cardinality with time-varying sources, Q = 100, T k = 200, SNR = 10 dB.

Fig. 9 :

 9 Fig. 9: Comparison of RMSE and PROC versus SNRs, Q = 100, T k = 200. (a) RMSE. (b) PROC.

Fig. 10 :

 10 Fig. 10: Comparison of RMSE and PROC versus snapshots, Q = 100, SNR = 10 dB. (a) RMSE. (b) PROC.

Fig. 11 :

 11 Fig. 11: OSPA distance versus SNR (p = 2, c = 20), SNR = 10 dB, Q = 100, T k = 200.
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TABLE I :

 I Pseudo-code of δ-GLMB prediction

	1: Input:

TABLE II :

 II Pseudo-code of δ-GLMB update

	1: Input:

TABLE III :

 III Regularized particle filtering

  1) from the Gaussian kernel.

	x i * k = x i k + hoptD k ς i .
	7: End
	to obtain space domain filtering S, and a Gaussian function is
	applied for likelihood function. The regularized PF algorithm
	based on array signal processing (called RPF-SP) is given in
	TABLE IV.

TABLE IV :

 IV Regularized particle filtering in the presence of array signal processing

TABLE V :

 V Pseudo-code of δ-GLMB update1: For k = 1 : K 2: δ-GLMB prediction seeTABLE I and IV. 3: δ-GLMB update see TABLE II. 4: Multi-target state estimation

TABLE VI :

 VI Average running time, Q = 100

	Algorithm	Survival particles	Birth particles	Running time/s
	GLMB-ULA	1000	1000	1.0255
	The proposed Mδ-GLMB	1000	1000	1.1275
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TABLE VII. The initial source targets are x 1 0

= [-31.2 • ; 1.2], x 2 0 = [1 • ; -1.0],
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other experiment parameters are the same as Case 2.

In this scenario, the received sources comprise one source between time steps 1 and 9, two sources between time step 10-19s, 26-30s, and 41-50s, and three sources between time steps 20-25s and 31-40s. The proposed method's tracking result is presented in Fig. 8 where SNR = 10 dB and T k = 200, including the tracking trajectories and cardinality estimation. The results show that the proposed approach can efficiently detect and estimate the source number. Furthermore, the proposed approach can identify the appearance of new sources and the disappearance of old sources, and it can estimate the