Cédrick Béler
email: cedrick.beler@enit.fr

Xavier Desforges
email: xavier.desforges@enit.fr

EXPERIENCE FEEDBACK, FROM CASES TO KNOWLEDGE

Keywords: knowledge-based systems, knowledge representation, uncertainty, risk assessment

In this paper, we present experience feedback as an alternative solution to usual knowledge management systems. The main characteristics of the experience feedback process and architecture are presented. Then, several elements about the realization of experience feedback application are detailed. We especially insist on the core experience metamodel and the way expert analyses and uncertainties are integrated in the general frame of experience feedback.

INTRODUCTION

Since the early history, experience feedback has been a major concern aiming at improving the practices of human activities. It was already the subject of a strong concern in the agricultural field, with considerations on the taking into account of the implemented practices: "Accordingly, an attentive head of a household, whose heart is set on pursuing a sure method of increasing his fortune from the tillage of his land, will take especial pains to consult on every point the most experienced farmers of his own time; he should study zealously the manuals of the ancients, gauging the opinions and teachings of each of them, to see whether the records handed down by his forefathers are suited in their entirety to the husbandry of his day or are out of keeping in some respects." (Columella,42).

Nowadays, public and private organizations and firms increasingly consider knowledge as a major part of their assets, that should be manage as well as financial, material... assets. Indeed, in a world of movement where various changes continually impact organizations, managing these assets is a key factor of success, especially since ISO 9000 norm was released since this norm imposes to take measures to target continuous improvement.

With respect to the variety of organizations, firms and of their concerns in terms knowledge engineering, several approaches have been developed that mainly aim at modelling, capitalizing, storing and reusing knowledge to support and improve their practices in their various processes. The improvements brought by knowledge engineering can be of different types, such as: make well at first attempt to reduce costs of nonquality, face the internal or external turnover of their personnel, integrate new information technologies in processes, make new actors operational as fast as possible in the different expert domains.

Among the methodologies of Knowledge Engineering that were developed, we find classical "top-down" approaches such as the popular CommonKADS (Knowledge Acquisition and Design Structuring) methodology [START_REF] Schreiber | Knowledge Engineering and Management: The CommonKADS Methodology[END_REF], where knowledge modeling is at first highly conceptual and then applied to more specific processes. The main drawbacks of such approaches are, according to us: the high level of abstraction of models makes them difficult to be adopted, they are a time and human resources consumer [START_REF] Duribreux | Elicitation and Analysis of Expert Knowledge on the Operation of Gas Distribution Networks[END_REF], they generally require the intervention of a knowledge engineer whose role is to help the experts to describe their knowledge, the knowledge extraction is not contextualized, the knowledge maintenance and update requires regular knowledge acquisition sessions.

Since the dynamics of evolution and complexity of the companies accentuate the difficulties of knowledge persistence within companies, the changing environment imposes a capitalization of knowledge in real time. In this context, "bottom-up" approaches, where knowledge is built incrementally from useful cases, is a way to ensure partial knowledge preservation. The source can be a problem resolution process, a causal study of an event, the description of a good practice… This approach is defined by [START_REF] Bergmann | Experience Management: Foundations, Development Methodology, and Internet-Based Applications[END_REF] as experience management (EM). According to him, it is a kind of knowledge management confined to knowledge originating from experience. EM gathers the terms "experience feedback" (EF), "lesson learned" (LL) and has become a challenging research topic (see for instance [START_REF] Bickford | Sharing Lessons Learned in the Department of Energy, Intelligent Lessons Learned Systems Workshop[END_REF], [START_REF] Aha | Bridging the Lesson Distribution Gap[END_REF], [START_REF] Bergmann | Experience Management: Foundations, Development Methodology, and Internet-Based Applications[END_REF]). EM advantages come from the contextualization of knowledge which makes it useful for practical needs; hence it requires less manpower and time and the experience base updates are done gradually, when new event occurs. Among the interesting features of this approach, let us point out that there is a no need to build a formal model of the expert knowledge. On the opposite, generated information can be too sparse and/or too specific. It also sometimes lacks of abstraction, for instance textual representations (even in structured applications) are often used and whereas it is excellent to give explanations, it becomes difficult when it comes to knowledge extraction and reuse.

The second part of this paper is dedicated to the description of the processes and the role of the actors involved in experience feedback from the collect of cases and the exploitation of experiences. Although the organizations wish to address various problems in various contexts, the experience feedback processes show enough similar features to consider the development of an experience feedback application generator.

The third part is dedicated to modelling and processing experience according to the object oriented approach. It takes into account the subjectivity of the actors involved in the processes by considering uncertainty and incompleteness. The meta-modelling of the generator is also proposed as a way of representing and associating the analyses of the experts to the cases. Eventually, it defines mechanisms to exploit the experiences.

We conclude by briefly presenting an implementation of experience feedback process in a context of risk prevention in Pyrenees Mountains and by showing this frame can be applied to industrial concerns.

EXPERIENCE FEEDBACK

Experience Feedback (EF) can be considered as an organizational process aiming at using the experience of the actors involved in the processes to grow the knowledge bases of the organizations progressively. In the loop of EF, knowledge is generated from the direct capitalization of the experiences and the knowhow used by the actors in their activities, using the tools and the methods that they daily employ. Thanks to this continuous capitalization, the EF makes it possible to maintain the knowledge of the organization up to date without requiring extra activities. Rakoto, et al. (2004) define experience feedback as: "a structured method of capitalization and exploitation of information resulting from the analysis of negative and/or positive events. It implements a set of human and technological resources which must be managed to contribute to reduce the repetitions of errors and to support some best practices". Fig. 1. Experience feedback macro-process (Rakoto, et al., 2004) EF, as shown in fig. 1, is a macro-process made of two main sub-processes: Capitalization: this sub-process gathers the set of activities allowing to add new experiences to the Experience feedback database, Exploitation: this sub-process consists in the activities allowing the dissemination and the use of these experiences to support decision and problem resolution.

Fig. 1 also shows the five major components contributing to the experience feedback processes: process activities which result in capitalizing and in exploiting information, information handled throughout the activities, from experience to knowledge, and stored in the experience feedback database (EF database) which constitutes the keystone of the EF process, actors and therefore competences for the creation of knowledge, the tools implemented to instrument the experience feedback, the performance indicators of the process.

The set of identified components that support the experience feedback process (activities, information, actors, tools and indicators) shown in Figure 1 described in more details below.

Activities refer to the different steps in the experience feedback process. The first step corresponds to the description of the context of occurrence of an event (observation). This step may provide statistical information. The second level, called "experience", is where the described events are analysed and solved, generally by experts. Then the last step is to analyse sets of experiences in order to extract rules, procedures or practices that should improve the processes of the organization.

The step of analysis is fundamental. Indeed, it adds the basic layer of knowledge to the description of the context and is usually achieved by domain experts. This analysis relates mainly: to the definition of the factors that explain the event occurrence, and to the characterization of solutions.

Actors refer to the competences involved in the iterative knowledge creation and play a central role in the EF processes. During the capitalization subprocess experts having competences are solicited to solve the identified problems (elaboration of experiences) and to create knowledge. During the exploitation process, actors who have the ability to improve their activities using the results of the experience feedback need to be identified and trained to the results provided by the systems.

Fig. 2. Information layers

Information refers to data modelling so as to express experience and therefore knowledge. During an EF cycle, the actors gradually transform events into knowledge. As shown in Fig. 2, in an EF application, we consider three layers to express the relationships between data, experience and knowledge. The first layer is the description of the context of occurrence of the event, which is a pure descriptive part. The second layer is when values are added to the pure descriptive scheme by analyzing chosen aspects of it. This is properly an experience, i.e. an analysed contextualized description which can be built along a problem resolution process. Actually this is a knowledge encoding in some ways, but as specific to a case, a context, we call it experience. Finally, the last layer corresponds to general knowledge, where generic conclusion can be drawn from a certain set of experiences.

Tools refer to experience feedback applications, i.e. applications and techniques that support the whole E.F. process, actually both sub-processes capitalization and exploitation. They support on one hand, the information flow management and, on the other hand, the analysis of the results of the experience feedback done by the actors. Thus, we distinguish two types of tools: the standard tools used to improve communication, collaborative work and coordination in the processes, and the advanced tools which facilitate the access to relevant and useful information. For example, these tools can be based on Case-Based-Reasoning mechanisms (CBR) ([START_REF] Kolodner | Case-Based Reasoning[END_REF], [START_REF] Aamodt | Case-based reasoning: foundational issues, methodological variations, and system approaches[END_REF], [START_REF] Ruet | Search and adaptation in a fuzzy object oriented case base[END_REF] and in particular rely on the concept of similarity which makes it possible to identify the past experiences potentially similar to the current experience.

Our general objective is to elaborate a framework for experience feedback applications. Such a tool should include all dimensions shown previously, but in the following section, we will focus on the experience modelling and processing aspects. Actors, according to their competences, are the users of these applications. Their role in the processes are converted into multiple uses cases and are the starting point in the development of specific applications. Several roles and activities need to be defined as the interactions between them but this will not be the point in this paper. Here, we focus on the experience element as an entity which is the central element of the E.F. process. Also, even if the system has been implemented as a web application, we will not describe in details the technical choice we made.

EXPERIENCE MODELING AND PROCESSING

Experience, as an entity, is the kernel of EF applications and consists in an organization of information carried out by events. We chose a flexible but structuring organization because, on one hand, the captured information comes from the real world and then need to be flexible enough to integrate the world"s "fuzziness", and on the other hand, the structuring organization should ease data processing, especially experience reuse.

The descriptor, an attribute model

An experience can be considered as a model of data coming from the real world and being interpreted by an expert actor during an EF process. That is why the term "descriptor" often used in CBR will be preferred to the term "attribute".

Considering this, an experience is composed of descriptors and describes, according to a given point of view the analysis of a particular event. For instance, let us consider the case of the height of a person. In a traditional Information System (IS), it could be an integer (180), a range (from 175 to 185) or a string representing a category, a classification ("tall"). Instead of this, a descriptor is an object that can"t be assumed to be of a primitive type. Its structure, as defined in the section 2.3, provides the model of descriptors, which are the lower level representation entity of an experience model. Hence, it can be considered like the foundation of the experience meta-model.

Modelling paradigm, an OO-based light ontology

Experience can be represented by a set of descriptors and there are several kinds of them. First of all, there is a String descriptor, called TextDescriptor, where the associated domain corresponds to a list of strings. They have little encoded semantics. Then, there are primitive descriptor types comprising more semantic like quantities, basically a number associated with a unit, dates and even external domain objects. To illustrate the difference between string and domain object, here is an example. Let us consider a descriptor for a list of activities; it can be either a string list with no semantics ("activity1", "activity2"…) or a list of activity objects associated with some ontological semantics and description.

Ideally, all descriptor primitive (input type) should be structured because they are carrying semantics. That is why we ban free text description (full sentences), except to expose remarks, comments, without taking them into account in the reasoning process.

What is proposed is actually a minimum ontology model ready to be computed. That is why the metamodel has to follow imperatively and declaratively principals that we grab from the fields of Object-Orientation (OO) and Ontologies. All these principals are illustrated in fig. 3. Ontology is a shared domain conceptualization consisting of entities, relations between entities, constraints, business rules. Ontology insists on the semantics whereas OO principals are more application-oriented. They nevertheless share a common kernel. Fig. 3. Relation between OO, and ontology [START_REF] Knublauch | An Agile Development Methodology for Knowledge-Based Systems Including a Java Framework for Knowledge Modelling and Appropriate Tool Support[END_REF] Pure Ontology language like Description Logics (DL), frames (RDF) are the most common modelling paradigm in Knowledge Based Systems but are too complex to handle, especially by software agent. This explains why we consider a simpler modelling framework in which uncertainty consideration (integration and processing) is provided (see 2.4). Therefore, the following section is devoted to the model of a descriptor, in other words the core metamodel of experience feedback applications.

Experience meta-model

As said previously, the descriptor model can be considered as the core metamodel of experience feedback applications. Below is presented a simplified version exposing the main modelling characteristics. An example is then given to illustrate how it"s instantiated.

Fig. 4. Experience core metamodel

To build this model, one very common design pattern known as the composite pattern [START_REF] Gamma | Design Patterns: Elements of Reusable Object-Oriented Software[END_REF] is used. It is used twice and allows to have a tree-like structure, first, to categorize descriptors and, second, to compose descriptors. Container allows to categorize descriptors and an experience usually possesses a context container which is also composed of others containers. Concerning descriptors, an ObjectDescriptor is a composed descriptor. The difference with the container is that it has its own value whereas the container does not. Descriptors other than ObjectDescriptor are TextDescriptor (a descriptor with little semantic) and primitive descriptor which is declined in several sub-types (quantity, date, ontology object…). TextDescriptor is the "simplest" EF data entry and the possibility to transform a TextDescriptor into a PrimitiveDescriptor or ObjectDescriptor should be considered later.

Value is actually an object that is presented in the section dedicated to uncertainty consideration because it incorporates the chosen uncertainty framework (see. fig. 5). This value is compulsory and corresponds to the interpreted data (by an actor). It can be totally unknown, precise, partially defined and even not filled.

Also, not all elements are presented here. For instance, descriptors possess an optional raw data equivalent to the classical attribute in traditional forms and are more or less unnecessary. They are useful in case of automatic transformation (expert rules) or sometime to ease the user input.

To illustrate this metamodel, here is an example concerning the weather conditions taken from the application we realized regarding mountain activity experience feedback. It is an ObjectDescriptor because composed of several other descriptors and eventually having its own value comprised in the set {good, bad, extreme}.

Uncertainty consideration

In the chosen model, the interpreted value even if compulsory can be totally unknown or imprecise (and even false) as the descriptor expresses an opinion coming from any human being"s part of subjectivity. Actually, the system should be able to capture an expert opinion thanks to an actor (the expert himself) in a quite natural way without changing the original semantics.

Thus, actors have the possibility to express their opinion through the choice of the value of a descriptor over a set of possible value (called frame of discernment). Considering the example again, let us try to express weather conditions knowing the possible values are "good", "bad" or "extreme". The expert can of course choose each value independently but he also has the possibility to express: "I don"t know", "certainly bad but can be "good"… Dempster-Shafer Theory (DST) was chosen because, first, its expressiveness allows to capture such opinions, and second, this is a theory that provides information fusion techniques through the Dempster rule of combination like information revision when new information occur [START_REF] Shafer | Mathematical Theory of Evidence[END_REF]. We actually chose the Transferable Belief Model (TBM) which is an evolution of the DST with a better axiomatic justification [START_REF] Ph | The transferable belief model[END_REF]. This other advantage of this theory is that it generalizes the other frameworks of uncertainty modelling ([START_REF] Shafer | Mathematical Theory of Evidence[END_REF], [START_REF] Dubois | Possibility theory[END_REF]. Indeed, probability and possibility theories are both specific cases of TBM Without going deeper in the description, DST is based on a basic belief assumption (bba), a unit belief mass distribution on the power set of the frame of discernment traducing the agent belief over a set of possible values as targeted. Probability is equivalent to masses affected to each element of the set (instead of superset) and possibility corresponds to masses affected to consonant subsets of the powerset (overlapped sets). Such a theory allows to express the various ways of considering uncertainty like unknowing, partial and full knowledge. TBM enable to express the fact that the value does not belong to the frame of discernment. Also, the possibility to leave a descriptor unfilled is allowed and is taken into account in the reasoning process.

Fig. 5 Value model

The bba is the initial definition stored as the descriptor value and defined from the associated domain object. Methods are provided to convert in plausibility and credibility measures equivalent respectively to upper and lower probabilities [START_REF] Shafer | Mathematical Theory of Evidence[END_REF] and also to a possibility and necessity measure [START_REF] Dubois | Possibility theory[END_REF].

Experience analysis and processing

Analysis, as said in the section 1, is the essential part of the EF process. An experience is a conjunction of descriptors which are relevant enough to describe an experience, and then factual knowledge (expert analyses) can be expressed by relations involving some of the descriptors. Once this analysis is done, experience has its semantic set and is ready to be processed. Although quite straight, it provides very useful information that can be used for a better indexing or as in our case to extract some kind of knowledge.

The aim is to express a relation between an event aspect and a combination of descriptors. For instance, in a project, we work on interpreting the occurrence of an event by establishing relations with combinations of the most significant descriptors assigned by an expert.

To illustrate the analysis method, an experience composed of 4 descriptors is considered. Each descriptor Di has a domain i and a precise value di i. Without any analyses, this experience is purely descriptive and can be interpreted in the following way: "event occurs when D1 was d1 and D2 was d2 and D3 was d3 and D4 was d4". Once analysed, the information carried out could be something like:

"This event occurred because:

(1) descriptor1=aVal AND descriptor3= aVal (2) OR (3) descriptor4= aVal [aVal, aVal2] (4) and I"m nearly sure of it".

To model the analysis step, the TBM frame is again used adding a new information layer in the experience structure consisting in a belief mass distribution over the scalar product of all descriptors. "AND" convey a conjunction of information whereas "OR" an alternative analysis. Two kinds of analyses are possible, either the expert will directly point a value (1), or he will observe that the value belongs to a particular range (closed or opened) (3). Then each analysed attribute has its value (a mass distribution) copied in another instance variable and eventually modified to express (3). When not analysed, the value is not consider but in order to uniformize the distribution to be able to combine distributions later, we must proceed to a vacuous extension on the nonanalysed descriptors, i.e. considering that whatever the value of the descriptor is, it does not matter. Consequently, the previous analysis gives the following bba: This lookup is based on similarity calculation based on the algorithm developed by [START_REF] Ruet | Search and adaptation in a fuzzy object oriented case base[END_REF]. Each descriptor has a similarity strategy attached to it (a similarity matrix, a function…) as illustrated in fig. 5. In fact, the analysis step when pointing a particular range instead of a value can even adjust the similarity strategy associated to a descriptor. For instance, if the analysis says that the event happened because a value was in a sub-set, then all values of this subset are considered equal.

CONCLUSION

The general experience modeling framework proposed in this paper has been applied in the context of a European INTERREGIIIa project called SUP (Security and Emergency in the Pyrenees). One of the objectives of the project is to improve mountain safety for professionals through experience feedback.

The model proposed in this paper has been implemented and instantiated on this specific problem. The resulting application is a web based software that is currently under deployment. Of course, the applicability of the proposed concepts is not restricted to this project and the framework can be used to elaborate experience feedback processes in organizations. From a scientific perspective, several issues can be studied now such as the improvement of the reuse techniques and a better integration with the actors of the organization (with respect to their competences).

 are analyzed, the lookup phase can be launched and consists in comparing a present context to all analyzed experience contexts. This is what effectively gives the experience feedback.