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Abstract A new framework called Rigid Depth Constructor (RDC) is proposed, al-
lowing a user to create his own dataset for the validation of depth map estimation
algorithms in the context of autonomous navigation. Compared to the existing tools
that rely on high quality fixed Lidar sensor, RDC is usable in low-cost setups re-
quiring only a camera and any (e.g. handheld, or UAV-carried) Lidar sensor, which
implies more flexible - and much faster - scene scan. Furthermore, unlike photogram-
metry tools that use sparse RGB views, it can be applied to smooth videos while
remaining computationally tractable. The framework includes a test suite to get in-
sightful information from the evaluated algorithm. As examples, validation videos
made from UAV footage are provided to evaluate two depth prediction algorithms
initially tested on in-car driving video datasets, which shows that the drone context
is dramatically different. This supports the need to benchmark depth estimation al-
gorithms on a dataset that fits one’s particular context, which often means creating
a brand new one. An open source implementation accompanies the paper, designed
to be as user-friendly as possible, to make depth dataset creation possible even for
small teams. The key contributions are the following: (1) a complete, open-source
and almost fully automatic software application for creating validation datasets with
densely annotated depth, adaptable to a wide variety of image, video and range data;
(2) selection tools to adapt the dataset to specific validation needs, and conversion
tools to other dataset formats; (3) as use case examples, two new real datasets, out-
door and indoor, readily usable in UAV navigation context are provided, and used as
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test sets in the evaluation of two depth prediction algorithms, using a collection of
comprehensive (e.g. distribution based) metrics.

Keywords Monocular Depth Estimation · Validation Dataset Construction · Depth
Evaluation Metrics

1 Introduction

Using computer vision for navigation has long been well established, as a camera
sensor is very easy to set up, cheap and power efficient. The main uses are for odom-
etry and 3D maps which are then used to control the navigation, especially find a path
and avoid obstacles.

Estimating depth from a camera is not an easy task, and validation data is very
hard to obtain. Indeed, knowing depth requires to know the 3-dimensional environ-
ment the camera is facing with respect to its position. This requires to explicitly
measure depth with range sensors like Lidar or RGB-d cameras.

A major example of depth validation dataset is KITTI [1], where a set of cameras
and a Lidar are mounted on a car. Following the acquisition, the Lidar and video
signals are calibrated and synchronized in order to construct sparse depth maps for
every camera at every moment. The main problem with this method is that you need
to construct a rigid rig between a Lidar and a camera, which, in addition to being very
costly, can become very heavy, and is not suitable to recreate the natural movement
of a handheld camera or a consumer UAV camera. Other datasets have been built
using RGB-d cameras based on different technologies like Structured light or Time-
of-Flight [2], but their use is limited to indoor and/or short range applications, due
to visibility constraints of the projected light pattern, or to phase ambiguities in the
periodic light signals.

To address these problems, a new software tool is proposed to construct a depth
dataset with a two-step method that first uses a Lidar to scan an environment, and
then localizes images from a video camera with respect to the Lidar point cloud. Its
goal is to be the most user friendly possible, and with maximal flexibility, both on the
methods to construct the point cloud, and on the type of camera used for acquisition.

The flexibility regarding point clouds implies that the tool should work with the
most generic point cloud: points are not colored, and they are not structured. This
means that there is no information of outside or inside, or even from which point of
view each point is visible. As such, it is very hard to estimate the local orientation of
the surface (which is made by calculating a normal vector at each point of the cloud),
and then to compute a mesh from the point cloud. This format, where only position
of points is known is a possible output format when using proprietary scanning gear
or measurements made by a team of professionals.

In addition to the paper, an open source package is provided that has been thor-
oughly tested with an industrial research team to ensure its usability. The tool is used
in this paper to build datasets corresponding to two different UAV use cases. These
datasets are used to show, with a benchmark on monocular depth estimation algo-
rithms, that results can vary greatly depending on the context, and that the in-car
environment - well referenced through the KITTI benchmarks - is far from being
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representative of all navigation use cases. This means that for each new navigation
scenario, a new dataset should be constructed, at least for validation, which is exactly
what the proposed tool aims at making easier and cheaper.

The goal of the Rigid Depth Constructor (RDC) tool proposed in this paper is then
to help answer the question asked in the title: ”does it work outside this benchmark?”,
that is to say ”will it work as well in my use case?”. It allows a user to build, with
minimal cost and effort, a validation dataset of image sequences with dense depth
ground truth annotation, on the environment corresponding to his particular use case,
so that he can actually evaluate a depth map estimation algorithm, whose performance
metrics are generally provided on a standard benchmark, which can differ much from
the user’s need.

The contributions of the RDC framework are listed as follows:

– The tool itself: a complete, open-source and almost fully automatic software ap-
plication for creating validation datasets with densely annotated depth, adaptable
to a wide variety of image, video and range data

– Some additional tools, like: selection functions to adapt the dataset to specific
validation needs, or conversion functions to other dataset formats

– As use case examples: two new real datasets, outdoor and indoor, readily usable
in UAV navigation context

– A collection of comprehensive (e.g. distribution based) metrics, whose use is il-
lustrated in the evaluation of two depth prediction algorithms on the two previous
test sets

The remainder of the paper is organized as follows: Section 2 presents the exist-
ing softwares that can be used for building depth validation datasets, and points out
their limitations and constraints. Section 3 details the construction pipeline of RDC,
built on the combination and adaptation of existing tools. Section 4 presents the dif-
ferent quality metrics that can be used in the evaluation, discusses the existing ones,
and proposes new ones. Section 5 presents results on two different use cases - one
outdoor and one indoor - and for two aspects: first in the construction of the vali-
dation datasets, and second in the evaluation of two depthmap prediction algorithms
on these datasets. Finally Section 6 concludes the paper and discusses the remaining
limitations and possible future works.

2 Related works

2.1 Depth estimation for navigation

Depth estimation, and more generally 3D perception is a core task for autonomous
navigation. In the context of very light vehicles such as UAV, that can’t carry heavy
hardware, depth is often deduced from one or multiple cameras. The stereo camera
is often used to compute depth from disparity [3], that can also be estimated with a
single camera, which has the advantage of being much cheaper to integrate. Depth
can then be deduced from motion, by using methods based on epipolar geometry
[4]. Structure from motion and SLAM techniques can then be used to deduce both
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depth and camera movement using only optical flow and geometric equations. It must
be noted that all structure from motion algorithms require rigid scenes, i.e. without
moving objects.

More recently, depth inference networks have been shown to be able to estimate
depth from a single image solely from perspective and context. Indeed, with only
one image, they were able to get reasonable scale invariant (i.e. relative depth maps)
quality measures [5, 6, 7, 8]. However, in a navigation context, the scale invariant
quality is not really interesting without a way to link the estimation to the real world.

Instead of relative or normalized values, absolute depths are needed for a navi-
gation algorithm such as Model Predictive Control [9] to be used. To this end, depth
algorithms need to estimate both depth and camera displacement in order to work
for navigation. Following Zhou et al [10], different authors have used photometric
reconstruction error as a self-supervised training loss to predict the relative pose of
the camera [11, 12, 13, 14].

It is important to note that depth from a single image does not use pixel dis-
placements. It is deemed a more bio-inspired method which makes use of end-to-end
training of convolutional neural networks and their capacity of generalizing implicit
pixel structure (see also [15], that uses scale parameter from SIFT points to relate lo-
cal appearance to distance) but it does not rely on explicit geometric constraints. As
such, it is expected to be less robust for unusual scene, especially with an ambiguous
3d perspective.1

2.2 Validation sets and benchmarks: the specific case of consumer UAV cameras,
and the need for a new dataset

This work was mostly motivated by the specific use case of depth estimation from
UAV consumer drone, which lacks a proper validation dataset. Indeed, most depth
algorithms are currently tested either for autonomous driving environments such as
KITTI [16], or indoor environment such as NYUv2 [17]. In these evaluation frame-
works, single image depth prediction algorithms heavily prevail within the leader-
board, which makes these techniques de facto state of the art.

However, those datasets are extremely distinctive in terms of appearance and con-
text: KITTI images are always in-car viewed road scenes, with peculiar perspective
and no pose changes; NYUv2 images are exclusively indoor room scenes viewed by
a standing adult, with many straight lines and human artefacts. On the other hand,
the context of UAV navigation is much more heterogeneous, both in terms of cam-
era pose and surrounding environment. However, contrary to KITTI, the problem of
moving objects is deemed (at least for now) a secondary problem when flying high
above the ground. It is thus not certain that algorithms performing well on KITTI
or NYUv2 will not perform poorly in this context. This is especially true when con-
sidering that moving objects in KITTI make depth from motion much harder, while
depth from context is inherently sensitive to viewpoint variations [18]. As such, these

1 i.e. when the 3d scene and/or the camera position produces an image where perception of distance
or object sizes is ambiguous, or even deceptive (famous extreme examples are the Ame’s room or the
Corridor illusion).
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KITTI[16] NYUv2[17] Sintel Depth[19] Still Box [21] a good UAV dataset
Moving objects 3 7 3 7 7

Outdoor 3 7 3 N/A 3
Camera orientation variation 7 3 3 3 3

Camera position variation 7 7 3 3 3
Real videos 3 3 7 7 3

Table 1 Difficulties featured in existing datasets. Being non photo-realistic, the distinction between Indoor
and Outdoor is irrelevant for Still Box.

datasets address issues for particular use cases with their own difficulties that are not
reflected in the UAV use case and vice-versa. This idea is corroborated by the fact
that the Sintel depth dataset [19] remains largely unsolved for the moment because in
addition to moving objects, scene heterogeneity is much more prevalent.

Inspired by the Flying Chairs synthetic dataset for optical flow[20], which is
founded on a surrealistic abstraction of the difficulties of optical flow, Still Box [21]
has been proposed. It is a synthetic dataset aiming at simulating the difficulties of a
UAV flight, focusing on heterogeneity of appearance, using random shapes and tex-
tures. As such, it is a good (fully supervised) training dataset, the same way Flying
chairs is a good training dataset for optical flow, but obviously, it is not suited for
evaluation. Table 1, which compares the difficulties of the datasets currently used as
benchmarks for depth quality, shows that none of them is actually relevant for the
UAV camera use case.

2.3 Constructing a depth enabled dataset

The basic principle of depth enabled dataset construction is to use a device with reli-
able depth estimation capability, that won’t be available during evaluation, typically a
rig with an RGB camera and a depth sensor like structured light [17], Time of Flight,
embedded Lidar [16, 22], or light-field camera grids [23]. For evaluation, only the
camera will be available, and the evaluation step will then measure the agreement
between ”reliable depth” measured by the dedicated sensor and estimated depth. It is
important to note that an evaluation is only informative up to a certain point, where
the quality of both methods are comparable. For dedicated depth sensors, one usu-
ally relies on the vendor’s datasheet. However, this solution requires the simulation
of camera movements typical of the targeted use case, i.e. without potentially heavy
depth sensors. This is problematic for consumer UAV, because such movements are
difficult to mimic. Not only the camera is well stabilized, with a very smooth trajec-
tory, that is not reproducible by hand, but the size of these cameras make it easy to fly
very close to obstacles, which is not reproducible by a heavier UAV that could carry
an additional depth sensor. These kinds of UAVs are usually very dangerous and need
to be operated far from obstacles.

An interesting method for rigid scenes has been presented with ETH3D [24] and
Tanks and Temples [25] that usually serve to evaluate photogrammetry. Instead of
having a depth sensor and a camera attached to the same rig, the data acquisition
is done in two steps. They first get a point cloud measure from static tripod laser
scanners such as the FARO Focus, and then take images from cameras in the same
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scene after removing the laser scanner. This implies that no object is moving in the
scene, but allows for any camera to be used. However, with this technique, the Lidar
needs to be static and render colored point clouds. This makes the use of mobile scan-
ners impossible, and thus the data acquisition very long. Gollob [26] compared static
scanning and handheld mobile scanning in a forest case study, and established that
static scanning was up to five times slower than mobile scannng with handheld lidar
scanners. The difference would be even greater for mobile scanning with a dedicated
UAV or ground vehicle. In the particular case of ETH3D, they added a photogram-
metry step, using the taken pictures and some RGB-d rendering of the Lidar scanner
with the COLMAP software [27]. This allowed them to get frame localization with
respect to each other, but also with respect to the Lidar scanner position. With this
technique, they were able to get depth map indirectly from the Lidar point cloud.
They then used the generated depth map and camera position to get a stereo valida-
tion, with rectified frames. The ETH3D dataset construction method has been used
as a foundation of our framework.

To summarize, the constraints / limitations of the existing works for building
depth validation dataset, and that the RDC framework proposed in this paper aims at
overcoming are the following:

– the need for a fixed, heavy, or potentially dangerous Lidar system
– the limitation to large / medium distances adapted to photogrammetry applica-

tions, preventing its use for medium to short distances. However, the whole range
of distances is necessary for the navigation of light autonomous vehicles.

– the need for colored / rendered point clouds in the case of ETH3D, which are
unavailable in many Lidar systems.

– the acquisition and computation costs, more adapted to sparse images than smooth
videos.

The goal of the RDC framework is to generalize the ETH3D method not only for
photogrammetry oriented footage, but for all kinds of videos, using anything available
to acquire a 3D point cloud of a scene.

3 Dataset creation method

3.1 The foundations: COLMAP and ETH3D

ETH3D already offers to compute depth maps from a Lidar point cloud and a separate
camera, but it has been used in a very particular context and some of its methods are
not suited for a more general one. Since the proposed RDC framework uses the same
tools as ETH3D, they are now analyzed to see what needs to be changed in order to
increase flexibility.

3.1.1 Photogrammetry with COLMAP

COLMAP [28, 27] is a photogrammetry tool designed to be very robust, in order
to reconstruct a 3D model from crowdsourced images taken from the internet. To



Rigid Depth Constructor 7

Images Feature
extraction (SIFT) Feature matching

Image reg-
istration

Point
triangulation

Bundle
Adjustment

Output
COLMAP model

Sparse 3D
point cloud

PatchMatch
stereo

Already existing
COLMAP model

Dense
point cloud

Visibility index

Delaunay
MesherFinal mesh

Fig. 1 Photogrammetry workflow used in COLMAP. Blue boxes represent data inputs and outputs, red
boxes are operators. The green box stands for the mapping process which is a looped incremental proce-
dure. Note that the mapping process can stop at ”Image registration” and the Delaunay mesher accepts any
point cloud as long as the visibility index is correct.

go from a set of images to a 3D model with images localization, the steps applied
are presented in Fig. 1. The main problem of COLMAP is that even if the matching
process can be dramatically accelerated with vocabulary tree matching [29], it is still
in O(n3) where n is the number of images. As such, the reconstruction process is
practically intractable for videos.

3.1.2 Depth generation with ETH3D

ETH3D [24] uses COLMAP to localize calibrated images with respect to a Lidar
point cloud taken with a FARO Focus. The FARO Focus is a fixed point Lidar that
renders colored 3D points. Since it is fixed, every 3D point is measured from the
same origin. This device allows then to synthesize high quality depth-valued images
with known position of the scanner (i.e. the cloud origin) that can be integrated in
the COLMAP reconstruction process. The position of each image is thus known with
respect to the point cloud. Each image then gets its position refined by matching
feature points between real images and rendered images from the colored point cloud
of an equivalent camera at the estimated position. But this localization method is not
usable in many use cases that have only access to basic point clouds, i.e. without
colors. Nevertheless, as stated in their paper, the localization step can be done when
simply constructing a 3D model with COLMAP and then register it with respect to
the Lidar point cloud, with e.g. ICP [30].

Once the images are localized with respect to Lidar, the depth rendering part
is detailed in Fig. 2. Mainly, in addition to image calibration and localization, an
occlusion mesh needs to be computed from the point cloud, which is then used to
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COLMAP model
localized and

calibrated Image

Registered lidar
point cloud

Occlusion Mesh

Splat Creator

Splats

Create depth
map from Lidar

Discard if beyond
occlusion depth

Create occlusion
Depth map

Ground truth
depth

Ground truth
odometry

Fig. 2 Photogrammetry workflow used with ETH3D. As for figure 1, blue boxes represent data and red
boxes represent operators. The green box here stands for the ground truth creation process. Note that
this workflow does not include localization, which is much more complicated but ignored in the RDC
framework, which assumes that the point cloud is not colored.

construct an occlusion aware depth map. This depth map is significantly worse than
the one from the point cloud, but it is only used to determine occlusion (and thus
point visibility) and then avoid the ghosting effect of seeing through a 3D object
due to the sparsity of the point cloud. This occlusion mesh can be improved by the
use of ”splats”, which are created from isolated points: assuming such points are
representative of thin objects (such as the leg of a chair), they may not be represented
by the occlusion mesh but still count as occluding point. The splat creator then puts
an oriented square facet at each point position, in order to avoid the risk of rendering
depth values of a background object for the rest of the thin object.

In ETH3D[24], the occlusion mesh is constructed with Poisson algorithm [31].
This supposes that normal vectors can be computed for all points. Again, this is pos-
sible with point clouds coming from a fixed laser scanner, where normals are always
oriented toward the origin, but it is not always the case for generic point clouds, for
which alternative solutions have to be found.

3.2 Changing the ETH3D workflow

The constraints from the ETH3D use case context can be summarized this way:

– The number of images for the typical use case is very small. In contrast, for
autonomous navigation uses cases, that use video streams, thousands of frames
must be localized, which represents a redhibitory computational cost.

– The Lidar is a very high quality color-enabled fixed scanner, which makes the reg-
istration and the meshing processes easier, but also implies acquisition protocol
much heavier and longer. In contrast, the RDC framework must be able to use any
collection of generic unordered point clouds, possibly acquired from handheld or
UAV-carried scanners. devices allows for a much faster and cheaper acquisition,
but the lower quality makes the computation of the mesh much harder.
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So the purpose is to find a way to localize images with COLMAP in linear time
while keeping a good 3D reconstruction, and a way to construct a good mesh from
unordered point clouds.

3.2.1 Managing the COLMAP reconstruction complexity

The issue regarding the number of images can be solved by simply using a subset
of images for reconstruction. The reconstruction needs to be good enough to be pre-
cisely registered with respect to the Lidar point cloud. For a small subset of frames,
the full structure from motion mapping process can be applied even if it is very ex-
pensive. However, for remaining frames, the 3D point cloud will only be marginally
better since their views are supposedly already covered by nearby frames. It then
becomes manageable to only perform registration with respect to the already exist-
ing reconstruction. This process is much less expensive, as it does not need a global
bundle adjustment at each frame.

The issue is now to choose a good subset of frames. This can be solved during
the data acquisition step, by taking a set of pictures dedicated to photogrammetry fol-
lowing guidelines in [32]. The goal is, for a fixed number of pictures to be used in the
mapping process, to have pictures with the most uniformly distributed position and
orientation view points. This can be done for example with a UAV orbiting around
a particular object or flying along a grid above the scene: pictures are sampled at a
regular pace to ensure a good parallax between images.

3.2.2 Constructing the Occlusion mesh

If every image has been successfully localized with respect to the Lidar point cloud,
a specific tool can be used to construct a mesh. After point cloud densification with
multi view synthesis and depth maps fusion, COLMAP outputs a point cloud with
normals and a visibility index indicating from which frame each 3D point is visible.
These two features are used for mesh reconstruction. Indeed, as discussed earlier,
Poisson reconstruction [31] can be used thanks to normals, and Delaunay meshing
[33] can be used with visibility index. Under the (unrealistic) assumption that both
dense reconstruction from COLMAP and Lidar point cloud are perfect, these features
can be easily transferred from one cloud to another. Although COLMAP is known to
have a low recall, by discarding many points in textureless areas, it has been observed
in our experiments that transferring feature from the nearest neighbor of each Lidar
point was sufficient.

3.3 RDC’s final workflow

The final version of the workflow can be found in Figure 3, that represents the com-
plete algorithm needed for ground truth creation from ETH3D. It is now developed
in details.
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Fig. 3 Simplified representation of RDC’s workflow before using ETH3D tools. As for figure 1, blue boxes
represent data and red boxes represent operators. Video frames get registered with respect to the recon-
struction point cloud, along with the Lidar point cloud. As such, ETH3D can be used with the COLMAP
model, the Occlusion mesh and the registered Lidar point cloud.

3.3.1 Data acquisition and ground truth point cloud creation

In order to maximize the accessibility of the RDC framework, the acquisition proto-
col is made as unconstrained as possible, and only asks for a point cloud of the scene,
acquired by any mean, and not necessarily colored. The point cloud will be used as
a perfect ground truth, which means that subsequently constructed depth maps can
only be as precise as this point cloud. As suggested by [24], a tripod fixed Lidar
scanner can be used in order to have the maximum precision and density (precision
at the millimeter level). However, other Lidar sensors can be used, such as mobile
Lidars attached to a UAV, or a human handle. Although they lack precision (which is
now at the centimeter level), their ease of use can be leveraged to have a much more
complete point cloud, especially in cluttered environments or unreachable places like
a building’s roof. As a last resort, when no Lidar is available, even the result of a
photogrammetry can be used, in order to compare a real-time depth algorithm to a
thorough reconstruction algorithm that does not sacrifice quality for speed. Through-
out this section, the point cloud that serves as a ground truth is referred to as Lidar
point cloud, but everything applies the same for any other ground truth point cloud
creation method.

3.3.2 First thorough photogrammetry

This first step uses COLMAP to construct a photogrammetry comprising a point
cloud and the viewpoint position of every image that was successfully localized. The
reconstructed point cloud will then be localized with respect to the ground truth point
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cloud. Note that this step is different from ETH3D since the point cloud is not sup-
posed to be colored, and then cannot be used to synthesize images from Lidar data.

As said above, the goal is to make model reconstruction as efficient as possible.
If all the video frames had to be localized, the reconstruction would be comprehen-
sive, but also extremely long. Instead, in addition to the ”photogrammetry frames”,
only a subset of each video sequence is input to the photogrammetry process, so
that the reconstruction is not too long while including sufficient number of different
view points. The sampling can be based on frame rate (e.g. only take one frame per
second), but it is not ideal when the camera velocity is not constant. An interesting so-
lution could be to use a method similar to real-time SLAM systems like ORB-SLAM
[34] where a subset of key frames is constructed progressively during the reconstruc-
tion. Frame that are too similar from already existing key frames won’t be used for
the reconstruction, and only for odometry. This solution was not considered for this
tool as this would have needed heavy modifications in COLMAP’s core algorithm.

However, for some camera devices like drones or IMU enabled cameras, video
frames will include displacement or position metadata. A more efficient sub-sampling
can thus be obtained by using K-means [35] on a 6D point cloud composed of frames
positions and orientations obtained from metadata. Note that the importance of ori-
entation in sampling can be parameterized by normalizing each angle coordinate α
by R tan(α), where R is the weight corresponding to the typical view range of the
sequence.

3.3.3 Registration of ground truth point cloud with respect to the output of
photogrammetry

This step requires to find the optimal rigid transformation (rotation, translation and
scale) between the reconstructed point cloud and the Lidar point cloud. Assuming
COLMAP’s reconstruction is good enough, a simple ICP [30] or related algorithm
like point-to-plane ICP [36] can be used to align the two point clouds. It is probably
the most sensitive step of the process, that often requires a human supervision.

Indeed, ICP is a somewhat unstable process that needs assessment and a good
initialization. As such, a human generally needs to thoroughly check the point cloud
alignment and, sometimes, manually estimate a first rough transformation, with e.g.
point pair picking. This can be done by e.g. meshlab 2 or Cloudcompare 3. Although
this actually prevents the process from being fully automatic, it is essential to empha-
size that it is the only step of the whole process that can require human supervision,
and that it is not expected to take more than a few minutes.

3.3.4 Video localization

This step only uses the image registration tool from COLMAP applied to the exist-
ing reconstruction. It does not contribute to the point cloud reconstruction, and only
uses local bundle adjustment to localize the frame with respect to its neighbors. As

2 https://www.meshlab.net/
3 http://www.cloudcompare.org/

https://www.meshlab.net/
http://www.cloudcompare.org/
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such, this operation is much faster than the whole reconstruction process, where point
triangulation and global bundle adjustment was used.

3.3.5 Localization filtering

A significant advantage regarding COLMAP compared to other SLAM method is
that everything is global. This way every frame is not only localized with respect to
its neighbors, but also with respect to any other frame with which it shares a suffi-
cient field of view. As such, if each video frame contains features matched in enough
well globally localized photogrammetry frames, the localization does not drift with
respect to the reconstruction. However, since odometry is not perfect either, it can
generate a noisy trajectory that would not be possible for a real camera with bounded
acceleration. This is especially true for consumer UAVs which usually focus on video
smoothness using a gimbal stabilizer for aesthetic purposes.

To reflect this observation, on each localized video, a Savitzky-Golay filter [37]
is applied to both trajectory and orientation. This filter not only smoothes the move-
ment, but also helps detecting outlier that were badly localized. This way, we can
discard the frames for which the distance between estimated and filtered 6D posi-
tions is above a certain threshold, and interpolate their position from neighboring
frames. These frames will not be used for depth evaluation, but can be used e.g. for
depth algorithms that rely on odometry.

3.3.6 Depth and pose ground truth generation

Finally, RDC uses the ground truth creator developed for ETH3D [24] to construct
depth maps for all the video frames, so that a ground truth for odometry and depth is
obtained for each successfully localized frame.

3.3.7 Dataset conversion and evaluation subset creation

Once obtained images with annotated odometry and dense maps, the dataset format
can be converted in compliance with more popular datasets. For example, the same
format as KITTI odometry can be used, in order to ease validation of depth algorithms
on new datasets.

In addition, the same way as Eigen[8] proposed an evaluation split for depth, the
subset of frames actually used for depth evaluation can be defined and adapted - based
on odometry information - to different evaluation scenarios:

– Candidate frames can be selected according to the movement, e.g. only forward
motion (like in the context of a car), or without rotation.

– For algorithms based on normalized (relative) depth with corresponding pose es-
timation with respect to previous frames (e.g. SFMLearner [10]), the scale factor
can be solved with displacement magnitude, as suggested in [38].

– For algorithms that need odometry, such as multi view stereo, or algorithms that
need frames with compensated rotation [38], it can be provided. This scenario is
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realistic for navigation context in the case of a UAV, where velocity and orienta-
tion need to be known primarily for a stable flight and a smooth video, and thus
are available for these algorithms.

3.4 Automation

All the above processes have been included into a script that makes extensive use of
COLMAP, ETH3D, PCL, and Parrot’s Anafi SDK. This script is intended to be as
easy to use and as flexible as possible, in order to cover a wide range of use cases and
budgets. It is open-sourced on Github with extensive usage documentation. 4

3.5 How good a ground truth can we hope to reach?

During the whole process, it has been assumed that the 3D point cloud was perfect,
or at least the best quality possible, which implies trusting precision ranges given by
scanner vendors. For example for a fixed Lidar scanner such as the Faro Focus, the
precision is below the centimeter, while for handheld Lidars such as Velodyne VLP16
used either with a UAV or handheld, the precision is below 5 centimeters. This means
that depending on the device used for mapping, one needs to pay attention to the
depth ranges seen during videos to be localized. This is particularly true for videos
very close to obstacles, where the precision of depth maps measured by COLMAP’s
patch match stereo step can be better than Lidar reference. Using fixed or mobile
scanners is then a trade-off between mobility, scan time, precision and completeness.

Regarding odometry, the localization made by COLMAP is assumed to be per-
fect. It can be noted that this was not the case for ETH3D, where they applied a pose
fine tuning for each frame. Unfortunately, their method is only available for colored
point clouds, which is not available for most mobile Lidars. This problem can be
mitigated by two factors:

– The colorless scanners are also the less precise ones. As such, solving this prob-
lem might bring negligible improvement since the point cloud quality will then
become the limiting factor. Otherwise, ETH3D’s pose refinement technique can
simply be applied.

– COLMAP was tested on EuroC dataset, and surprisingly, odometry from the pro-
vided ground truth (measured with a Lidar scanner and an IMU) was not very
good compared to odometry computed by COLMAP. This can be seen on Fig. 4,
where the triangulated 3d points are visibly much less noisy from COLMAP
odometry than from Lidar and IMU ground ”truth”. This is corroborated with
the EuroC depth dataset proposed by [39], where synthesized depth maps from
frame position and camera calibration were not exactly aligned with the camera,
even in their illustrating figure (see Fig. 5).

In sum, there are good, albeit subjective, reasons to think that the odometry from dedi-
cated sensors is not necessarily needed compared to the one computed by COLMAP.

4 https://github.com/ClementPinard/depth-dataset-builder/

https://github.com/ClementPinard/depth-dataset-builder/
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(a) (b)

Fig. 4 Visual qualitative assessment from COLMAP mapping process, using COLMAP GUI. (a) local-
ization from available ground truth odometry, measured from Lidar and IMU. (b) localization deduced by
COLMAP during the mapping process with SLAM. The black points form the point cloud of the mapping,
while the red polyhedra represent the estimated poses of the camera.

This is only based on visual assessment, but as mentioned in the first point, point
cloud quality is often the limiting factor. However, it turns out that for some par-
ticular cases, such as a video that is isolated in a cluttered part of a scene and only
connected to the rest of the photogrammetry by a few frames, the odometry can drift.
This makes these localized frames misaligned with the Lidar point cloud, and thus
with a poor ground truth depth, even if the Lidar point cloud registration step is opti-
mal, because it’s only a rigid transformation. A solution to this problem could be to
apply a non-rigid registration [40] of the COLMAP point cloud, deforming the cloud
and then also the frame localization to fit the Lidar point cloud more precisely.

This might be the occasion of a future work combining COLMAP’s bundle ad-
justment and cloud-to-cloud distance between COLMAP and Lidar point cloud. How-
ever, a more direct way of limiting this problem is to ensure during data acquisition
that all video frames can be localized with a large number of photogrammetry ori-
ented pictures, so that a ”loop closure” step is applied very often, with pictures de-
signed to have a very precise localization with respect to the reconstruction cloud.

4 Measuring depth quality for navigation purposes

For an evaluation dataset, the most informative metrics are needed. In the present
context of navigation, the methodology proposed in [38] is applied. Namely, contrary
to the well used ”Eigen-split” [8], using metrics from Garg et al [41], in a realistic
navigation scenario, the estimated depth needs to be absolute, and not up to a factor
computed with the ratio of medians. This makes depth from single view algorithms
unable to compete, unless there is a way to compute the scale factor by compar-
ing odometry with actual displacement, which is much more realistic for any kind
of autonomous vehicle. Single frames algorithms such as Deep Ordinal Regression
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(a) (b) (c)

Fig. 5 Depth maps proposed by [39] (Figures from their supplementary materials) showing alignment
problems. (a) and (b, zoom detail): foreground/background delimitation error. (c): alignment error larger
than 40 pixels.

Network (DORN) [5] or Big to Small (bts) [6] can thus not be used, but some other
algorithms such as SFMLearner and its variants [10, 11, 12, 14, 13] are trained with
a pose estimator and thus can be evaluated.

4.1 On the information a metric gives

Most of the time, for evaluation datasets, metrics are used for the only purpose of
ranking different algorithms. This is useful for benchmarking and choosing an ex-
isting algorithm for one’s usage, but it raises some problems from the end user’s
perspective:

– It does not reflect the context of the use case that might be different from the
original validation set. For example, if someone wants to estimate depth from a
single camera but only for close objects because the long range is already covered
by another sensor, this user won’t be interested in long range depth estimation
quality, and the metric used for benchmarking will have to reflect this.

– Some characteristics of an algorithm are inherently antagonistic, and thus a trade-
off must be decided between them. The most usual example is accuracy vs speed.
By ranking algorithms with only one metric, the dataset makes the trade-off de-
cision in place of the end user and thus takes the risk of not being informative.
For example, because speed is only given as declared from the authors, KITTI
depth benchmark [16] completely disregards it. It would be interesting to have
data presented into a 2D chart, the same way as VOT [42] so that the end user can
eventually set his own speed/accuracy trade-off.

– A metric can give information about the distribution of expected values given
a particular estimation. As such, as shown in [43, p. 38], all metrics are not the
same when it comes to trying to characterize possible real values of an estimation.
The ideal solution would be to give for each estimated depth value the exact
distribution of real depth. That would require an infinite set, but the validation set
can give an approximation that gives more insight than just a single number.

To reflect those practices, both classic metrics and histograms are provided in the
next section, in order to give as much information as possible for a given algorithm.
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Metric Name Acronym Formula

Mean Absolute Error MAE E|θ̃ − θ|

Mean Relative Error MRE E |θ̃−θ|
θ

Mean Log Error MLE E| log(θ̃)− log(θ)|

Standard Absolute Error SAE

√
E(θ̃ − θ)2

Standard Log Error SLE

√
E(log(θ̃)− log(θ))2

Precisions δ Pδ P
(∣∣∣log ( θ̃θ)∣∣∣ ≤ log(δ)

)
Table 2 Summary of the considered metrics

Again, the code for metric measurement is open sourced on Github 5. It consists in
getting all depth pixels and their estimation, within an unordered set V . Note that
this evaluation set is not image-wise, all depth values are collected at first with corre-
sponding metadata, and the metric computation is done at the end. This is useful for
images with a very sparse depth, where no representative statistics can be computed.

4.2 Scalar metrics

A scalar metric is obtained by computing depth errors for all points and then averag-
ing them. As mentioned above, the mean is global over the validation set V .

Ef =
1

|V |
∑

(θ̃,θ)∈V

f(θ̃, θ) = EV (f(θ̃, θ)) (1)

It is computed for any error function f as shown by Equation 1, where θ is the
ground truth depth for a particular pixel, θ̃ its estimate, |V | is the cardinality of set V ,
and EV is the expectation calculated over V .

Table 2 shows the provided error functions and their corresponding names.

4.3 Histogram metrics

Histogram metrics cannot be used for ranking algorithms but they give much more
information. Two different kinds of histograms are proposed as follows:

– Depth wise error: Given a scalar metric, the error can be computed as shown in
Equation 2 for particular depth ranges Θi = [θi, θi+1[.

HD(Θi) = E{θi≤θ<θi+1}(f(θ, θ̃)) (2)

5 https://github.com/ClementPinard/depth-dataset-builder/tree/master/
evaluation_toolkit

https://github.com/ClementPinard/depth-dataset-builder/tree/master/evaluation_toolkit
https://github.com/ClementPinard/depth-dataset-builder/tree/master/evaluation_toolkit
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– Difference distribution: This distribution is normally centered around 0, and its
standard deviation is the standard error mentioned on Table 2. Having the whole
distribution is especially interesting for distribution that are not symmetrical. A
safety interval can then be deduced from this histogram for each side of estimated
depth. For this part, it is assumed that the log of depth estimation is more likely to
follow a symmetrical distribution than raw depth estimation. It is equivalent to get
a distribution of the ratio between estimation and ground truth, usually centered
around 1, see Equation 3.

H∆(δ) = P (δ < log(θ̃)− log(θ) < δ + 1) = P

(
10δ <

θ̃

θ
< 10δ+1

)
(3)

4.4 Displacement wise metrics

In addition to those metrics, a displacement wise metric in the form of a histogram is
particularly relevant for navigation. Knowing the displacement of the camera, it can
be deduced what point in the image the camera is moving towards. This point, called
the flight path vector (FPV) for aircraft, also corresponds to the epipole for multi-
view geometry, and to the focus of expansion (FOE) for optical flow in the case of
rotation-less movement. As a consequence, these points are deemed more important
than the other ones.

EFPV (α) = EV (α)(f(θ̃, θ)) (4)

The corresponding histogram based metrics is defined in Equation 4, where V (α) is
the set of points at a distance α from the FPV of each image (be it in pixels, or in
radians).

This particular distribution can help discard an algorithm that fails to estimate
depth around those points while having good metrics otherwise. This is the case for
optical flow based method for a stabilized camera without rotation: optical flow is too
small around the FPV and thus disparity based depth estimation becomes too noisy.
[43, p 32]

5 Applications

5.1 Preamble

This section presents two use cases that have been covered using this tool. They both
feature drone footage, and are used to test two algorithms: DepthNet [21] and SFM-
Learner [10]. They are not state-of-the-art on popular benchmarks like KITTI[16],
but they are relevant to demonstrate the interest of the proposed evaluation frame-
work and data sets, for the following reasons:

– They are both compatible with an evaluation scenario focused on navigation,
since their scale estimation can be scaled using only odometry
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– They are supposed to be real time, contrary to MVS algorithms like the one used
in COLMAP

– Their performance metrics are similar on KITTI depth [16]
– Contrary to SFMLearner, DepthNet has been specifically designed to be robust

to variability of context and scene layout. As such, for heterogeneous data sets,
DepthNet is expected to perform better than SFMLearner [28].

The evaluation protocol is the same for the two scenarios. Images and depth maps
are rescaled to 416 × 234, and for both neural networks, the training schedule is the
same as described in their original publication. As such, no hyperparameter search is
performed and no validation set is needed. The dataset is thus divided into two parts,
one for training and one for testing. These experiments are not intended to form an
actual benchmark, but rather to show the possibility of constructing an evaluation
where a reference benchmark, here, KITTI [16], is not longer relevant. DepthNet is
pre-trained on the Still Box dataset [21], then trained on the learning data set with
photometric depth auto-supervision, and supervision for odometry rotation. SFM-
Learner is not pre-trained (no improvements were observed when pre-training with
KITTI); it is entirely trained on the learning data set without any supervision.

5.2 First application: The drone Manoir dataset

5.2.1 Context

The first use case is a scene with a mansion (in French: manoir) in the countryside, on
a 350×100m2 terrain. The maximum altitude of obstacle is 20m. 3D Lidar data was
captured by a DJI Matrice 600 with a Velodyne VLP-16 on board, with RTK GPS
system (see Figure 6). The flight altitude of this UAV was 30 meters at minimum for
safety reasons. The UAV was used because it can cover an area much faster than any
fixed scanner, and can easily scan building roofs. The whole scanning process took
less than 10 minutes, meaning a very large area could have been covered in less than
a day.

For photogrammetry oriented pictures, an Anafi drone was used with the free
Pix4D app that allows to make one grid and two orbits above the scanned field. A
personal DSLR (Sony alpha-6000) was also used for additional photo. Videos were
acquired at two different quality settings for a total of 65k frames to localize:

– 3840× 2160 (4K) at 30 fps, best quality setting.
– 1280× 720 at 120 fps, bad quality but high frame rate.

See Figure 7.

5.2.2 Result

A subjective result of photogrammetry can be seen on Figure 8, for the optimal subset
of 1000 frames and a full video taken by a drone. Finally, Figure 9 shows a sample of
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Fig. 6 3D Mapping process of the Manoir dataset. Top: map of the scanned area and scan device used for
mapping. Bottom: two views of the resulting point cloud.

computed depth maps. A video playlist is available as a supplementary material for
all the sequences 6

5.2.3 Note on point cloud completeness

As it can be seen in Figure 6, the point cloud seriously lacks completeness for parts
that are not easily seen from an altitude of 30 meters. This includes vertical sections
like walls or poles, like seen in Figure 10, or cluttered sections, like under trees or
inside a tunnel. From this remark, two observations can be made:

– Although it covers a large area very quickly, UAV Lidar scanning does not cover
a wide range of viewpoints. The 30 meters altitude makes it difficult to see the
same thing as within a few meters of altitude. As such, it would have been useful
to add Lidar scans from a lower altitude, using other methods, for example a fixed
or a handheld Lidar. Regarding this use case, a handheld Lidar is recommended
because it’s much faster than fixed Lidar (typically as fast as human gait, while
fixed Lidar requires several minutes per viewpoint), and if a UAV is available, all
the hardware for using Lidar with IMU technique like e.g. LIO-SAM [44] or a
proprietary technique like GeoSLAM is already available.

6 https://youtube.com/playlist?list=PLMeM2q87QjqhYA_
LfJY925ZAGyD5cS6Q-

https://youtube.com/playlist?list=PLMeM2q87QjqhYA_LfJY925ZAGyD5cS6Q-
https://youtube.com/playlist?list=PLMeM2q87QjqhYA_LfJY925ZAGyD5cS6Q-
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Fig. 7 Video acquisition process of the Manoir dataset. Left: grid (top) and orbit (bottom) flight plan used
for photogrammetry. Right: Video samples from the Anafi drone, 4k (top) and 720p (bottom).

Fig. 8 Left: global photogrammetry result (point cloud in black, camera odometry in red). Right: camera
odometry during a given video footage (red curve), w.r.t. the global photogrammetry.

– In case no other Lidar scan is possible (e.g. because the area is not reachable
other than with a drone), the COLMAP cloud is locally good. An interesting
compromise for future work would be to combine the Lidar cloud with COLMAP
reconstruction for obstacles very close to the camera.
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Fig. 9 Depth result from the Manoir dataset. From top to bottom, left to right: RGB image, depth map,
depth map superposed to grayscale image, occlusion depth.

5.2.4 Benchmark

Now, regarding the evaluation of the two mentioned algorithms, scalar metrics are
shown in Table 3. Figure 12 (left panel) displays, on the top the histogram of (estima-
tion / ground truth) ratios (equivalent to log depth difference, see Equation 3), and on
the bottom, the histogram of log-errors according to the estimated depth (See Equa-
tion 2), while samples can be seen Figure 13 (first three rows). This first evaluation
shows that unsurprisingly, DepthNet largely outperforms SFMLearner in all metrics.
This is also visible on the log difference distribution: although both distributions have
their maximum at a null log difference (i.e. a ratio of 1), indicating an unbiased es-
timator, DepthNet’s distribution is much more concentrated. Both distributions also
exhibit a clear skewness toward negative difference. This is corroborated by the sec-
ond plot where, for both algorithms, the log error is much lower above 20 meters.
This is a good hint for a potential drone manufacturer to think of a dedicated system
for low depth values. For example, a stereo camera setup would be complementary
to these two systems, because it’s more accurate for lower depth values.

For conciseness purpose, all the proposed histogram based metrics are not dis-
played here. However, they can be easily generated using the open source tool. 7

7 https://github.com/ClementPinard/depth-dataset-builder#
depth-algorithm-evaluation

https://github.com/ClementPinard/depth-dataset-builder#depth-algorithm-evaluation
https://github.com/ClementPinard/depth-dataset-builder#depth-algorithm-evaluation


22 Clément Pinard, Antoine Manzanera

Fig. 10 Typical problems coming from point cloud sparsity. Top: depth map superposed to grayscale im-
age. Bottom: corresponding occlusion depth map. Left: Thin object vanishment. Right: Tunnel shrinkage.

Method / Metric MAE MRE MLE SAE SLE P1.25 P1.252 P1.253

SFMLearner [10] 18.40 0.5145 1.005 24.46 1.458 0.2395 0.4113 0.5385
DepthNet [38] 11.99 0.3275 0.5290 18.51 0.9099 0.5241 0.7069 0.7717

Table 3 Metric comparison between SFMLearner [10] and DepthNet [38] on the Manoir dataset. See
metrics formulae in Table 2

5.3 Second application: University hall dataset

5.3.1 Context

The second use case is an indoor scene, shown on Figure 11, the hall of a University
with a very high ceiling. For scan mapping, a handheld Zeb Horizon from GeoSLAM
was used, with an announced precision of 4 cm. The videos were acquired using
an Anafi drone, without using specific frames for photogrammetry. Like for Manoir
dataset, the results of the small benchmark can be seen on Table 4 and Figure 12
(right panel). Some samples can be seen on Figure 13 (last two rows).

Although DepthNet still outperforms SFMLearner for most metrics, the estima-
tion accuracy is much lower. This can be explained by the fact that the university
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Fig. 11 University hall depth visualization, same structure as Figure 9

Method / Metric MAE MRE MLE SAE SLE P1.25 P1.252 P1.253

SFMLearner [10] 10.25 1.0225 0.5682 18.29 0.7798 0.3180 0.5461 0.6912
DepthNet [38] 5.890 0.5197 0.5056 10.612 0.726 0.3184 0.5982 0.7694

Table 4 Metric comparison between SFMLearner [10] and DepthNet [38] on the University hall dataset.
See metrics formulae in Table 2

hall is mostly composed of completely white walls, with many glass windows and
a somewhat reflective ground (by the way, specular surfaces are also responsible for
the ”holes” in the ground truth coming from the Lidar). This is a very challenging
use case for SFM based training and inference methods. These results indicate that
both SFMLearner and DepthNet are much more suited for outdoor scenarios, with
irregular textured surfaces, and that active sensing solutions like structured light or
time-of-flight are probably more effective for this dataset.

6 Discussion and conclusive remarks

This paper introduced Rigid Depth Constructor (RDC), a powerful tool for depth val-
idation dataset ground truth generation. It is very flexible with respect to available
budget and hardware. Its context of application can be as rudimentary as no-budget-
at-all, only using a handheld camera (e.g. the user’s phone camera), and still it lets
a user make the most of limited means, to have depth enabled videos with poten-
tially infinite range. The open access of RDC will allow to improve it by gradually
increasing the diversity of use cases.
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Fig. 12 Comparison of error distributions between SFMLearner [10] and DepthNet [38] on Manoir dataset
(left) and on University hall dataset (right). Top: H∆ (See Equation 3). Bottom: HD (See Equation 2).
For visualization purpose, the y scale is logarithmic. The curve shows the median value and the shaded
area represents the 50% confidence interval.

6.1 Limitations

RDC still suffers from some already known limitations:

– The first limitation is obviously the need for a rigid scene. Although this problem
can be mitigated in the case of a UAV flying, it can be particularly problematic
for in-car environment in a urban area where many people and other vehicles are
dynamic. It can also be a problem when Lidar scanning and video recording are
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Image Ground Truth DepthNet[21] SFMLearner [10]

Fig. 13 Vizualisation of some depth map prediction samples on Manoir and University hall data sets.
Colormap is OpenCV Rainbow, normalized to Ground truth.

not done at the same time, in a scene with rigid but movable objects. This was
the case in the University hall dataset, where some seats had been moved, thus
making some depth maps useless. A possible solution would be to combine a
dense high quality point cloud of a scene, scanned beforehand, and sparse point
cloud from a mobile Lidar. By characterizing possible dynamic elements, like
humans and other vehicles in a urban area, it becomes possible to segment the
movable objects from the rigid scene, in order to discard them for the depth map
(See for example [45, 46]) and replace it with the depth from the sparse mobile
Lidar.

– Although it does not require heavy hardware for data acquisition, the computer
used by this tool must be powerful (as with any photogrammetry task), and have
plenty of disk space, which mitigates the low budget argument. However, a regu-
lar gaming desktop computer is often enough, and is orders of magnitude cheaper
than a full Lidar and cam rig solution.

– Although it can be improved by using better registration algorithms than a simple
ICP, the registration part will often need a human eye to assess the registration
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quality. This part of the process lies in the middle of it, which makes the tool
not totally automatic. It is essential that it happens after the photogrammetry and
before ground truth generation, so there is no obvious solution yet. However, if it
is impossible for a human to evaluate the (absolute) quality of a depth map, it is
very easy to check the registration between images and depth map, notably using
the frontiers between foreground objects and the background scene.

– When the camera is located in a very sparse portion of the point cloud, the oc-
clusion depth will be of poor quality. It is possible that the end user will discover
after the whole dataset creation process that some scenes would need a better
scanning process. It would then be interesting to enter a warning before the end
of the process, as soon as the Lidar point cloud is registered, that some areas lack
data.

6.2 Further work

The next logical step is now to construct a more comprehensive dataset with this
tool, using different scenes and contexts in the same way ETH3D dataset was built,
but with much more frames. Aside from the multiplicity of contexts, the variety of
cameras and vision fields is also a challenge: panoramic cameras [47, 48], that are par-
ticularly interesting in mapping and navigation would also benefit much from more
validation datasets.

Another natural outcome of this paper will be to perform a comprehensive bench-
mark of a large collection of state-of-the-art depth prediction models, including GeoNet
[11], MonoDepth2 [12], SC-SFM [13], GLNet [14] and Struct2Depth and its descen-
dants [49], to get quantitative assessment of their performance on environments pos-
sibly much different from those they were evaluated on. In this respect, it will be
particularly interesting to evaluate techniques able to estimate uncertainty [50].

Additionally, a full evaluation suite would be very beneficial, as this initial version
only provides basic examples of histogram based algorithm quality assessment.

Finally, using the localization of video frames in a point cloud, the ground truth
generation can be extended to other tasks:

– From odometry and ground truth point cloud, ground truth optical flow can be
deduced.

– Semantic annotations on the Lidar point cloud can facilitate the construction of
ground truth semantic segmentation maps.
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