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Abstract We present two methods for the numerical solution of an overde-
termined symmetric hyperbolic and thermodynamically compatible (SHTC)
model of compressible two-phase flows which has the peculiar feature that it
is endowed with two entropy inequalities as primary evolution equations. The
total energy conservation law is an extra conservation law and is obtained via
suitable linear combination of all other equations based on the Godunov vari-
ables (main field). In the stiff relaxation limit the SHTC model tends to an
asymptotically reduced Baer-Nunziato-type (BN) limit system with a unique
choice for the interface velocity and the interface pressure, including parabolic
heat conduction terms and additional lift forces that are not present in stan-
dard BN models. Both numerical schemes directly discretize the two entropy
inequalities, including the entropy production terms, and obtain total energy
conservation as a consequence. The first method is of the finite volume type
and makes use of a thermodynamically compatible flux recently introduced
by Abgrall et al. that allows to fulfill an additional extra conservation law
exactly at the discrete level. The scheme satisfies both entropy inequalities by
construction and can be proven to be nonlinearly stable in the energy norm.
The second scheme is a general purpose discontinuous Galerkin method that
achieves thermodynamic compatibility merely via the direct solution of the
underlying viscous regularization of the governing equations. We show com-
putational results for several benchmark problems in one and two space dimen-
sions, comparing the two methods with each other and with numerical results
obtained for the asymptotically reduced BN limit system. We also investigate
the influence of the lift forces.
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1 Introduction

Compressible two-phase flows are of fundamental importance in science and
engineering. Potential applications range from geophysical multi-phase flows of
solid-gas mixtures in avalanches and pyroclastic flows after volcano explosions
to industrially relevant flows, from the injection of fuel droplets in internal
combustion engines as well as turbo- and rocket engines in aerospace engi-
neering over flows of gas-liquid and multi-fluid mixtures in food and paper
industry up to multi-phase flows in nuclear power plants. At present, there is
no universally accepted mathematical model for such flows and several differ-
ent formulations can be found in the literature. Some of the most well-known
models based on the diffuse interface approach, which does not require an
explicit tracking of the material interface and its changing topology, include
the Baer-Nunziato (BN) system of compressible multi-phase flows [13] and
its stiff relaxation limit, the so-called Kapila model [52]. This kind of mod-
els have been extensively studied and applied, for example, in [11,12,73,70,6,
61,31,4,44,57,45,72,62,28,27]. The drawback of BN-type models is the pres-
ence of non-conservative terms, whose discretization may be non-trivial, see
e.g. [55,24,59,40,25,5] for possible solutions and related problems. Two com-
pletely different mathematical descriptions of compressible multi-fluid flows
are the Scannapieco-Cheng model [71], which is fully conservative, as well
as the discrete equation model of Abgrall and Saurel [10], in which the dis-
cretization of non-conservative products can be avoided. We also would like
to mention Navier-Stokes-Korteweg-type systems for the description of com-
pressible multi-phase flows with phase transition, see e.g. [34,58,26,51,32,33].
Yet another class of diffuse interface models for compressible multi-phase flows
can be found in recent work of Romenski et al. [68,67,66,53,65]. It is based
on the theory of symmetric hyperbolic and thermodynamically compatible
(SHTC) systems introduced by Godunov and Romenski [48,64,50] and was
recently studied analytically and numerically for the barotropic case in [74,
54]. In the more general non-barotropic case, the SHTC model is based on two
entropy inequalities as primary evolution equations and one scalar extra con-
servation law, which is the total energy conservation equation for the mixture.
From a numerical point of view, the non-batropic SHTC model poses a very
interesting and extremely challenging problem. Usually, in numerical methods
for hyperbolic conservation laws with applications to single phase flows, the
scalar entropy balance law is simply replaced by the scalar total energy con-
servation law, which is then directly solved by the numerical scheme instead of
the entropy balance. However, in models with two or more entropy inequalities
opposing only one scalar energy conservation law, this is no longer possible,
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since the arising multiple entropy inequalities cannot be substituted by one
single scalar equation inside the numerical scheme.

To the best knowledge of the authors, the full non-barotropic SHTC model
of compressible two-fluid flow proposed in [67,66,65] has never been solved
numerically before since there are currently no numerical schemes available
that are able to solve overdetermined hyperbolic systems with more than one
entropy inequality. It is therefore the main objective of this paper to develop
such schemes for the first time.

The rest of this paper is organized as follows. In Section 2 we present the
SHTC model of compressible two-phase flow of Romenski et al. as well as the
associated Baer-Nunziato limit system, which is obtained in certain stiff re-
laxation limits of the full SHTC model. A new thermodynamically compatible
finite volume scheme based on the general framework of Abgrall et al. [2,7,8,
3,18] is presented in Section 3. It solves the two entropy inequalities directly,
thus satisfying both of them by construction. It furthermore achieves total
energy conservation as a consequence of the thermodynamically compatible
discretization of all other equations. This ensures nonlinear stability of the
scheme in the energy norm. A high order accurate general purpose discontin-
uous Galerkin scheme is presented in Section 4. This method also discretizes
the two entropy inequalities directly and achieves thermodynamic compatibil-
ity merely by directly solving the smooth vanishing viscosity regularization
of the equations. Numerical experiments validating the theoretical results are
presented in Section 5. A comparison between the two schemes is performed
as well as the behavior of the SHTC model in the stiff thermal relaxation limit
with respect to the BN type system is illustrated. The paper closes with some
concluding remarks and an outlook to future research given in Section 6.

2 Governing equations

In this paper we study the compressible two-fluid model of Romenski et al. [67,
66] with two entropy inequalities. Furthermore, it contains two velocities, two
pressures and two temperatures. To express the equations we use upper indices
to denote the phase number and lower indices to indicate the tensor and vector
indices. Throughout this paper we assume the Einstein summation convention
over two repeated indices. Accordingly α1 denotes the volume fraction of phase
one and α2 the volume fraction of phase two under the condition α1+α2 = 1.
Each phase l = 1, 2 is associated with a density ρl, a velocity field vl =
(vl1, v

l
2, v

l
3), a field of thermal impulses jl = (jl1, j

l
2, j

l
3) and is equipped with an

equation of state (EOS) which constitutes the relation between phase entropies
sl, specific internal energies el = el(ρl, jl, sl), phase pressures pl = pl(ρl, sl) and
temperatures T l = T l(ρl, sl) are given. In particular the following relations
hold,

pl = (ρl)2
∂el

∂ρl
and T l =

∂el

∂sl
. (1)
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In the following, we consider an ideal gas law with

el(ρl, jl, sl) =
1

γl − 1
(ρl)γ

l−1 exp

(
sl

clv

)
+

Al

2
jlkj

l
k (2)

where the contribution of the thermal impulses to the internal energy is mod-
elled by Al = ρlκl/τ . Therein κl denotes the thermal conductivity coeffi-
cient and τ the heat flux relaxation time. From the phase state variables
(αl, ρl,vl, jl, sl), the mixture quantities are defined as the mixture density
ρ = α1ρ1 + α2ρ2, the phase concentrations cl = αlρl/ρ, the averaged velocity
v = c1v1+c2v2, the relative velocity w = v1−v2 and the total entropy of the
mixture S = c1s1 + c2s2. The governing equations for two-phase flows based
on the ideal gas EOS (2) consist of flux terms (black), source terms (green)
and vanishing viscosity regularization terms (blue). They read

∂tα
1 + vk∂kα

1 − ∂mϵ∂mα1 = 0 (3a)

∂t(α
1ρ1) + ∂k

(
α1ρ1v1k

)
− ∂mϵ∂mα1ρ1 = 0 (3b)

∂t(α
2ρ2) + ∂k

(
α2ρ2v2k

)
− ∂mϵ∂mα2ρ2 = 0 (3c)

∂t(ρvi) + ∂k (ρvivk + p δik + ρwiEwk
)− ∂mϵ∂mρvi = 0 (3d)

∂twk + ∂k (vmwm + Ec1) + vi (∂iwk − ∂kwi)− ∂mϵ∂mwk = −λ0
k

ρ
(3e)

∂t(ρj
1
i ) + ∂k

(
ρj1i vk + δikT

1
)
− ∂mϵ∂mρj1i = −λ1

k (3f)

∂t(ρj
2
i ) + ∂k

(
ρj2i vk + δikT

2
)
− ∂mϵ∂mρj2i = −λ2

k (3g)

∂t(α
1ρ1s1) + ∂k

(
α1ρ1s1 vk +A1j1k

)
− ∂mϵ∂mα1ρ1s1 = Π1 + π1 ≥ 0 (3h)

∂t(α
2ρ2s2) + ∂k

(
α2ρ2s2 vk +A2j2k

)
− ∂mϵ∂mα2ρ2s2 = Π2 + π2 ≥ 0 (3i)

where E denotes the specific total energy of the system given by the sum of the
specific internal energy, the kinetic energy of relative motion and the kinetic
energy

E = clel(ρl, jl, sl) + c1c2
wkwk

2
+

vkvk
2

. (4)

The partial derivatives of E in the above given momentum and relative velocity
equations in order of appearance can be obtained from (4) and are given by

Ewk
= c1c2wk, Ec1 = µ1 − µ2 + (1− 2c1)

wkwk

2
, (5)

where µl denote the chemical potentials or Gibbs free energies

µl = el +
pl

ρl
− slT l. (6)

In addition to the governing equations (3) above, we obtain the total energy
conservation law with E = ρE as an extra conservation law via a linear com-
bination of all other equations (3). It reads
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∂tE + ∂k

(
vk(E + p) + ρviwiEwk

+ ρEcEwk
+ Ej1k

T 1 + Ej2k
T 2

)
− ∂mϵ∂mE = 0. (7)

Note, that the energy conservation law is obtained as a consequence and the
two-fluid system (3) with (7) is overdetermined in the sense that it contains
one extra conservation law, which is the energy equation (7). Despite being
overdetermined, the system is compatible, since the energy equation is somehow
redundant and does not contradict the other equations, but it can instead
be obtained via a suitable linear combination of all other equations. This is
why we call such systems overdetermined and thermodynamically compatible
hyperbolic systems.

Throughout this paper we will denote by

q = (α1, α1ρ1, α2ρ2, ρvi, wk, ρj
1
i , ρj

2
i , α

1ρ1s1, α2ρ2s2)T

the state vector or vector of conserved quantities, while p = ∂qE is the vector of
thermodynamic dual variables or main field, [69]. The main field p is obtained
via the partial derivatives of the energy density E with respect to the state
vector q.

In the parabolic vanishing viscosity regularization terms (blue), the diffu-
sion parameter ϵ is assumed to be non-negative. The individual phase entropy
production terms that arise as a consequence of the parabolic vanishing vis-
cosity regularization must be compatible with total energy conservation and
are defined as

Πl = ϵ
cl

T l

∂qi
∂xm

∂2
qiqjE

∂qj
∂xm

≥ 0, (8)

with qi the components of the state vector q. They are non-negative, since the
mass fractions cl ≥ 0 and the phase temperatures T l > 0 are all non-negative.
Moreover, we also assume the Hessian of the total energy potential ∂2

qiqjE to
be at least positive semi-definite.

To complete the description of the governing equations (3), we turn towards
the source terms (green). They concern friction ζ and relaxation processes
based on thermal conductivity and act on the relative velocity equations (3e),
the thermal impulses (3f),(3g) and the entropies (3h), (3i). They are given by

λ0
k = χ0c1c2wk + χlclAljlk, λl

k = χlc1c2wk +
1

clκl
clAljlk (9)

for relative velocity and thermal impulses. The phase entropy source terms πl

are non-negative and contribute to the entropy production as

πl =
χl

T l

∑
k

(
clAljlk +

χl

clκl
c1c2wk

)2

+
cl

T l

(
χ0 − (χ1)2

c1κ1
− (χ2)2

c2κ2

)∑
k

(c1c2wk)
2 ≥ 0.

(10)
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To simplify notation, we use therein the auxiliary variables

χl = (−1)l
ρsl

clκl
, χ0 = ζ + (χ1)2(c1κ1) + (χ2)2(c2κ2). (11)

Note that model (3) also allows for a pressure relaxation source term in the
evolution equation of the volume fraction (3a) as well as phase exchange terms
in the partial density equations (3b),(3c), for details see [67,66]. They have
been neglected in the description of the governing equations (3) since the
work presented here focuses on the derivation of the numerical schemes for
the flux terms (black) and the comparison of the two-fluid model with the
asymptotically reduced BN-type model in the stiff relaxation limit κl → 0
which is described in the next section.

2.1 Stiff relaxation limit: a Baer-Nunziato-Fourier-type system

In the stiff relaxation limit when κl → 0 and for vanishing viscosity ϵ → 0
under zero inter-phase friction, the model can be shown to reduce to the
following non-conservative parabolically regularized two-temperature Baer-
Nunziato-type limit system

∂tα
1 + vk∂kα

1 = 0 (12a)

∂tα
1ρ1 + ∂k

(
α1ρ1v1k

)
= 0 (12b)

∂tα
2ρ2 + ∂k

(
α2ρ2v2k

)
= 0 (12c)

∂tα
1ρ1v1i + ∂k

(
α1ρ1v1i v

1
k + α1p1 δik

)
+ pI∂iα

1 − fi = 0 (12d)

∂tα
2ρ2v2i + ∂k

(
α2ρ2v2i v

2
k + α2p2 δik

)
+ pI∂iα

2 + fi = 0 (12e)

∂tα
1ρ1E1+ ∂k

(
v1k(α

1ρ1E1+α1p1)−c1κ1T 1∂kT
1
)
+β1

k∂kα
1−v1kfk = 0 (12f)

∂tα
2ρ2E2+ ∂k

(
v2k(α

2ρ2E2+α2p2)−c2κ2T 2∂kT
2
)
+β2

k∂kα
2+v2kfk = 0 (12g)

with the specific phase energies

El = el +
ul
iu

l
i

2
. (13)

The interface quantities pI and uI are a consequence of the stiff heat relaxation
limit κl → 0 and cannot be chosen arbitrarily. They are given by

pI = c1p2 + c2p1, vIk = c1v1k + c2v2k = vk. (14)

For details concerning their derivation, see [67,66]. Moreover, we have

βm
k = −pmvIk − (pI − pm)vmk . (15)

A substantial difference between the SHTC model (3) and standard BN sys-
tems arises due to the appearance of the lift forces in multiple space dimensions

fi = ρc1c2wk

(
c1

(
∂v2i
∂xk

− ∂v2k
∂xi

)
+ c2

(
∂u1

i

∂xk
− ∂u1

k

∂xi

))
. (16)



Thermodynamically compatible schemes for compressible two-fluid flow 7

These terms appear as additional non-conservative terms in the limit BN sys-
tem, due to the rotational term in the relative velocity equation of the SHTC
model (3).

2.2 General formulation of the governing PDE system

Since the two fluid model (3) given above is just one example of a more gen-
eral class of symmetric hyperbolic and thermodynamically compatible (SHTC)
systems, see e.g. [64,50], we will employ a more general framework for the de-
velopment of the numerical discretization. Examples are continuum mechanics,
magnetohydrodynamics or the turbulent shallow water model of Gavrilyuk et
al. [42,49,47,20]. They take the following general form

∂tq+ ∂kfk(q) +Bk(q)∂kq− ∂m (ϵ∂mq) = P(q,∇q) + S(q), (17)

with the extra conservation law for the total energy density

∂E

∂t
+ ∂kFk − ∂m (ϵ∂mE) = 0. (18)

Therein, q is the state vector, the flux tensor is denoted by fk(q) andBk(q)∂kq
contains the non-conservative terms. The vanishing viscosity terms are given
by ∂m (ϵ∂mq) with the associated entropy production term P. If present in
the model, the relaxation source terms are contained in S(q). In the extra
conservation law (18) the total energy flux is denoted by Fk = Fk(q).

The main field or thermodynamic dual variables are defined as p = ∂qE
and therefore it holds by chain rule p · ∂tq = ∂tE. Thus, to guarantee ther-
modynamic compatibility of the full system (17) with the energy conservation
(18), the following identity must hold

p · ∂kfk(q) + p ·Bk(q)∂kq = ∂kFk. (19)

Moreover, we also have to ensure the compatibility of the dissipation terms
with the production term P given by

p ·P+ p · ∂m (ϵ∂mq) = ∂m (ϵ∂mE) , (20)

and the compatibility of the algebraic source terms

p · S(q) = 0. (21)

These considerations lay the basis for the hyperbolic thermodynamically com-
patible (HTC) finite volume scheme described in the subsequent section.
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3 Thermodynamically compatible finite volume scheme

In the following we assume that the two-dimensional computational domain
Ω ⊂ R2 is paved by a set of orthogonal control volumes Ωℓ. The common edge
between two neighboring control volumes Ωℓ and Ωr is denoted by ∂Ωℓr, Nℓ is
the set of neighbors of Ωℓ and the associated unit normal vector pointing from
element Ωℓ to Ωr is nℓr, hence nrℓ = −nℓr. A semi-discrete finite volume dis-
cretization in multiple space dimensions for the general form of the governing
PDE system (17) with extra conservation law (18) reads

∂qℓ

∂t
= −

∑
r∈Nℓ

∣∣∂Ωℓr
∣∣

|Ωℓ|
(
Fℓr · nℓr +D

(
qℓ,qr

)
· nℓr

)
+

∑
r∈Nℓ

∣∣∂Ωℓr
∣∣

|Ωℓ|
(
G
(
qℓ,qr

)
· nℓr +P

(
qℓ,qr

))
+ S(qℓ). (22)

The numerical flux Fℓr · nℓr, the fluctuations D
(
qℓ,qr

)
· nℓr, the dissipative

terms G
(
qℓ,qr

)
·nℓr with the related entropy production terms P

(
qℓ,qr

)
and

the algebraic source S(qℓ) must verify the compatibility conditions

pℓ ·
(
Fℓr · nℓr − f ℓk n

ℓr
k

)
+ pr ·

(
f rk n

ℓr
k −Fℓr · nℓr

)
+pℓ ·D

(
qℓ,qr

)
· nℓr + pr ·D

(
qr,qℓ

)
· nrℓ =

(
F r
k − F ℓ

k

)
nℓr
k , (23)

pℓ · S
(
qℓ
)
= 0. (24)

One furthermore has the usual condition Frℓ ·nrℓ = −Fℓr ·nℓr on the numerical
flux. The compatibility condition on the source term (24) is automatically sat-
isfied pointwise since the source term in PDE (17) must satisfy p ·S = 0 due to
(21). Imposing the remaining condition (23) the resulting thermodynamically
compatible Abgrall flux [2,3,18] reads

Fℓr · nℓr = Fℓr
(
qℓ,qr

)
· nℓr = F̃ℓr · nℓr − αℓr · nℓr

(
pr − pℓ

)
, (25)

with the scalar correction factor at the interface αℓr, which is the key ingredient
of the Abgrall flux and which will be determined later. Here, we have used
simple central approximations for the flux

F̃ℓr · nℓr = F̃ℓr
(
qℓ,qr

)
· nℓr =

1

2

(
f ℓk + f rk

)
nℓr
k (26)

and for the nonconservative product

D
(
qℓ,qr

)
· nℓr =

1

2
Bk(q̄)n

ℓr
k

(
qr − qℓ

)
, q̄ =

1

2

(
qr + qℓ

)
. (27)

The scalar correction factor αℓr in the Abgrall flux (25), which allows to sat-
isfy the discrete compatibility condition (23) by construction, is then simply
obtained by inserting (25) in (23), see also [18]. It reads

αℓr =

(
F r
k − F ℓ

k

)
nℓr
k +

(
F̃ℓr · nℓr

)
·
(
pr − pℓ

)
−

(
pr · f rk − pℓ · f ℓk

)
nℓr
k

(pr − pℓ)
2
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−
(
pr + pℓ

)
·D

(
qℓ,qr

)
· nℓr

(pr − pℓ)
2 . (28)

A thermodynamically compatible numerical viscosity is given by

G
(
qℓ,qr

)
= ϵℓr

qr − qℓ

δℓr
= ϵℓr

∆qℓr

δℓr
, δℓr =

∥∥xr − xℓ
∥∥ , (29)

with the viscosity coefficient at the interface given, for example, by

ϵℓr =
1

2
δℓrsℓrmax, sℓrmax = max

(∣∣λ(qℓ)
∣∣ , |λ(qr)|

)
, (30)

with sℓrmax the maximum signal speed at the interface, see e.g. [20,21,19,3,18].
This choice of ϵℓr corresponds to a numerical dissipation of the Rusanov-type
which vanishes when the mesh size tends to zero. The numerical dissipation
can further be reduced by applying a flux-limiter to (30), see e.g. [21,19,3], or
a viscosity coefficient based on the scalar correction factor αℓr, see e.g. [18].
It is, of course, also possible to simply choose a constant numerical viscosity.
The related entropy production terms read

P
(
qℓ,qr

)
=

(
0, 0, 0,0,0,0,0, Πℓr

1 , Πℓr
2

)T
, (31)

with the only non-vanishing contributions in the two entropy balance laws

Πℓr
k =

1

2
ϵℓr

ck,ℓ

T k,ℓ
∆qℓr ∂2

qqẼ
ℓr∆qℓr

δℓr
≥ 0, (32)

with k ∈ {1, 2} and the phase temperatures T ℓ
k computed from the equation

of state of each phase. We furthermore need to define the Roe matrix of the
Hessian of the energy potential, which allows us to write the numerical dissi-
pation as usual in terms of jumps in the q variables rather than in terms of
the main field variables p. The Roe matrix appears in the production term
(32) and reads

∂2
qqẼ

ℓr =

1∫
0

∂2
qqE

(
ψ̃(s)

)
ds =:

(
∂2
ppL̃

ℓr
)−1

. (33)

Inspired by the path-conservative schemes [59,24] and following previous work
on HTC schemes [20,21,19,3,18] we employ a simple straight line segment path
in the q variables in order to compute the path integral, i.e. we use

ψ̃(s) = qℓ + s
(
qr − qℓ

)
, 0 ≤ s ≤ 1. (34)

The Roe matrix ∂2
qqẼ

ℓr computed in this manner satisfies the Roe property

∂2
qqẼ

ℓr ·
(
qr − qℓ

)
=

(
pr − pℓ

)
(35)

by construction, allowing thus to rewrite jumps in the state variables q in terms
of jumps in the dual Godunov variables (main field) p. As in [20,21,19,3,18]
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the path integral appearing in (33) is approximated numerically via classical
Gauss-Legendre quadrature. In practical calculation we use three quadrature
points, but for the theoretical analysis of the scheme presented later we al-
ways assume that the quadrature is exact. The discrete algebraic source terms
present in the SHTC model of compressible two-fluid flow simply reads S

(
qℓ
)
,

i.e. it corresponds to a pointwise evaluation of the source at the state qℓ in
cell Ωℓ.

Theorem 1 (Cell entropy inequalities) The HTC FV scheme (22) satis-
fies the following two cell entropy inequalities for both phases:

∂
(
αρsk

)ℓ
∂t

+
∑
r∈Nℓ

∣∣Ωℓr
∣∣

|Ωℓ|
(
F(αρsk)

(
qℓ,qr

)
· nℓr −G(αρsk)

(
qℓ,qr

)
· nℓr

)
≥ 0,

(36)
with k ∈ {1, 2}.

Proof The two discrete entropy evolution equations from (22) contain only
conservative fluxes. Using (25), (26), (27) and (28) leads to

∂
(
αρsk

)ℓ
∂t

+
1

|Ωℓ|
∑
r∈Nℓ

∣∣∂Ωℓr
∣∣ (F(αρsk)

(
qℓ,qr

)
· nℓr −G(αρsk)

(
qℓ,qr

)
· nℓr

)
=

1

|Ωℓ|
∑
r∈Nℓ

∣∣∂Ωℓr
∣∣ 1
2
ϵℓr

ck,ℓ

T k,ℓ
∆qℓr · ∂2

qqẼ
ℓr∆qℓr

δℓr
+ πℓ

k ≥ 0,

where the positivity of the right hand side is obtained thanks to πℓ
k ≥ 0 and

Πℓr
k ≥ 0 due to ck ≥ 0, T k > 0 and the assumed positive semi-definiteness of

the Hessian ∂2
qqE ≥ 0.

Theorem 2 (Nonlinear stability in the energy norm) The finite volume
method (22) based on the Abgrall flux (25) in combination with (26), (27), (28)
and with the source terms, the viscous flux and the discrete entropy production
terms defined in (29) and (32) is nonlinearly stable in the energy norm in the
sense that, for vanishing boundary fluxes, one has∫

Ω

∂E

∂t
dx = 0. (37)

Proof First, a semi-discrete total energy conservation law is derived by taking
the dot product of the discrete Godunov variables pℓ with the finite volume
scheme (22):

pℓ · ∂q
ℓ

∂t
= − 1

|Ωℓ|
∑
r∈Nℓ

∣∣∂Ωℓr
∣∣ (pℓ ·

(
Fℓr · nℓr

)
+ pℓ ·

(
D

(
qℓ,qr

)
· nℓr

))
+

1

|Ωℓ|
∑
r∈Nℓ

∣∣∂Ωℓr
∣∣ (pℓ ·

(
G
(
qℓ,qr

)
· nℓr

)
+ pℓ ·P

(
qℓ,qr

))
+ pℓ · S(qℓ).
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The contribution of the algebraic source terms pℓ · S(qℓ) immediately cancels
due to (24). Adding and subtracting 1

2p
r ·D

(
qr,qℓ

)
· nrℓ, 1

2p
r ·Fℓr · nℓr and

1
2p

r ·G
(
qℓ,qr

)
· nℓr leads to

∂Eℓ

∂t
= − 1

|Ωℓ|
∑
r∈Nℓ

∣∣∂Ωℓr
∣∣ (1

2

(
pℓ + pr

)
·Fℓr · nℓr

)

− 1

|Ωℓ|
∑
r∈Nℓ

∣∣∂Ωℓr
∣∣ (1

2

(
pℓ − pr

)
·Fℓr · nℓr

)

− 1

|Ωℓ|
∑
r∈Nℓ

∣∣∂Ωℓr
∣∣ (1

2
pℓ ·D

(
qℓ,qr

)
· nℓr +

1

2
pr ·D

(
qr,qℓ

)
· nrℓ

)

− 1

|Ωℓ|
∑
r∈Nℓ

∣∣∂Ωℓr
∣∣ (1

2
pℓ ·D

(
qℓ,qr

)
· nℓr − 1

2
pr ·D

(
qr,qℓ

)
· nrℓ

)

+
1

|Ωℓ|
∑
r∈Nℓ

∣∣∂Ωℓr
∣∣ (1

2

(
pℓ + pr

)
·G

(
qℓ,qr

)
· nℓr

)

+
1

|Ωℓ|
∑
r∈Nℓ

∣∣∂Ωℓr
∣∣ (1

2

(
pℓ − pr

)
·G

(
qℓ,qr

)
· nℓr + pℓ ·P

(
qℓ,qr

))
.

Using nrℓ = −nℓr together with the compatibility condition (23) yields

∂Eℓ

∂t
= − 1

|Ωℓ|
∑
r∈Nℓ

∣∣∂Ωℓr
∣∣ 1
2

(
F r
k − F ℓ

k

)
nℓr
k

− 1

2 |Ωℓ|
∑
r∈Nℓ

∣∣∂Ωℓr
∣∣ (pℓ · f ℓk − pr · f rk

)
nℓr
k

− 1

2 |Ωℓ|
∑
r∈Nℓ

∣∣∂Ωℓr
∣∣ (pℓ + pr

)
·Fℓr · nℓr

− 1

2 |Ωℓ|
∑
r∈Nℓ

∣∣∂Ωℓr
∣∣ (pℓ ·D

(
qℓ,qr

)
+ pr ·D

(
qr,qℓ

))
· nℓr

+
1

|Ωℓ|
∑
r∈Nℓ

∣∣∂Ωℓr
∣∣ (1

2

(
pℓ + pr

)
·G

(
qℓ,qr

)
· nℓr

)

+
1

|Ωℓ|
∑
r∈Nℓ

∣∣∂Ωℓr
∣∣ (1

2

(
pℓ − pr

)
·G

(
qℓ,qr

)
· nℓr + pℓ ·P

(
qℓ,qr

))
.

Furthermore, the following identity holds∑
r∈Nℓ

∣∣∂Ωℓr
∣∣nℓr = 0, (38)

since the integral of the normal vector over a closed surface vanishes. Adding
pℓ · f ℓk + F ℓ

k multiplied by (38) and using (29) and (32), we get

∂Eℓ

∂t
= − 1

|Ωℓ|
∑
r∈Nℓ

∣∣∂Ωℓr
∣∣ 1
2

(
F r
k + F ℓ

k

)
nℓr
k
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+
1

2 |Ωℓ|
∑
r∈Nℓ

∣∣∂Ωℓr
∣∣ (pr · f rk + pℓ · f ℓk

)
nℓr
k

− 1

2 |Ωℓ|
∑
r∈Nℓ

∣∣∂Ωℓr
∣∣ (pℓ + pr

)
·Fℓr · nℓr

− 1

2 |Ωℓ|
∑
r∈Nℓ

∣∣∂Ωℓr
∣∣ (pℓ ·D

(
qℓ,qr

)
+ pr ·D

(
qr,qℓ

))
· nℓr

+
1

|Ωℓ|
∑
r∈Nℓ

∣∣∂Ωℓr
∣∣ (1

2

(
pℓ + pr

)
·G

(
qℓ,qr

)
· nℓr

)

+
1

|Ωℓ|
∑
r∈Nℓ

∣∣∂Ωℓr
∣∣ (1

2

(
pℓ − pr

)
· ϵℓr∆qℓr

δℓr
+

1

2
ϵℓr∆qℓr · ∂2

qqẼ
ℓr∆qℓr

δℓr

)
.

Thanks to the Roe property (35) the last two terms cancel. This leads finally
to the following semi-discrete total energy conservation law with numerical
total energy flux in normal direction F ℓr

k nℓr
k :

∂Eℓ

∂t
= − 1

|Ωℓ|
∑
r∈Nℓ

∣∣∂Ωℓr
∣∣F ℓr

k nℓr
k = − 1

|Ωℓ|
∑
r∈Nℓ

∣∣∂Ωℓr
∣∣ 1
2

(
F r
k + F ℓ

k

)
nℓr
k

− 1

|Ωℓ|
∑
r∈Nℓ

∣∣∂Ωℓr
∣∣ 1
2

(
pr · (Fℓr · nℓr − f rk n

ℓr
k ) + pℓ · (Fℓr · nℓr − f ℓk n

ℓr
k )

)
+

1

|Ωℓ|
∑
r∈Nℓ

∣∣∂Ωℓr
∣∣ 1
2

(
pℓ + pr

)
·
(
G
(
qℓ,qr

)
· nℓr

)
− 1

2 |Ωℓ|
∑
r∈Nℓ

∣∣∂Ωℓr
∣∣ (pℓ ·D

(
qℓ,qr

)
+ pr ·D

(
qr,qℓ

))
· nℓr. (39)

Summing up (39) over all elements and assuming that all fluxes and fluctua-
tions vanish at the domain boundary and since the sum of the numerical total
energy fluxes F ℓr

k nℓr
k at the internal interfaces cancels we obtain the sought

nonlinear stability in the energy norm as∫
Ω

∂E

∂t
dx =

∑
ℓ

∣∣Ωℓ
∣∣ ∂Eℓ

∂t
= 0.

4 High order ADER discontinuous Galerkin finite element scheme
with a posteriori subcell finite volume limiter

In order to compare and validate the results obtained with the HTC scheme
introduced in the previous section, we now briefly recall the high order ADER
discontinuous Galerkin (DG) finite element scheme with a posteriori subcell
finite volume limiter [43], that was already successfully used in [20] to simulate
thermodynamically compatible hyperbolic systems. Here, we will apply it to
the parabolic vanishing viscosity regularization with two entropy inequalities,
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as well as to the asymptotically reduced Baer-Nunziato limit system, which
can both be written in the general formulation of the PDE system (17).

4.1 Unlimited ADER DG schemes

As in the previous section we assume that the two-dimensional domain Ω ∈ R2

is partitioned via a rectangular grid with elements

ΩI =

[
xi −

∆x

2
, xi +

∆x

2

]
×
[
yj −

∆y

2
, yj +

∆y

2

]
, (40)

whose barycenters are given by xI = (xi, yj) and the grid sizes are ∆x and ∆y
in x- and y-direction, respectively. We seek the numerical solution uh(x, t

n)
at time n in the space of piecewise polynomials of degree N , which for each
element ΩI can be expanded in terms of basis functions φl(x) that are ten-
sor products of one-dimensional basis functions φlm(χ) on the unit reference
element Ωref = [0, 1]. The mapping from a position inside the reference el-
ement ξ, η ∈ Ωref onto the cell ΩI is given by x = xi − 1

2∆x + ξ∆x and
y = yj− 1

2∆y+η∆y. The basis functions on the reference element are defined as
the Lagrange interpolation polynomials passing through the Gauss-Legendre
quadrature nodes of a Gaussian quadrature formula with N + 1 quadrature
nodes. This leads to an orthogonal nodal basis by construction and we finally
obtain

uh(x, t
n) = φl(x)û

n
l,I , x ∈ ΩI , (41)

where the coefficients ûn
l,I are constant within ΩI . Multiplying the PDE system

(17) by a test function φl and integrating over the space time control volume
ΩI × [tn, tn+1] leads to∫ tn+1

tn

∫
ΩI

φl (∂tq+∇ · f(q) +B(q) · ∇q−∇ · (ϵ∇q)) dx dt

=

∫ tn+1

tn

∫
ΩI

φl (P(q,∇q) + S(q)) dx dt.

Note that according to the Galerkin approach, the test functions are chosen
identical to the basis functions. Replacing q in the first term by the numerical
solution uh as given in (41) and by the element-local space-time predictor qh

described later in all remaining terms, we obtain via integration by parts

(φlφk)
(
ûn+1
k,I − ûn

k,I

)
+

∫ tn+1

tn

∫
∂ΩI

φl

(
F

(
q−
h ,q

+
h

)
+D

(
q−
h ,q

+
h

))
· n dS dt

−
∫ tn+1

tn

∫
∂ΩI

φlG
(
q−
h ,q

+
h

)
· n dS dt

−
∫ tn+1

tn

∫
ΩI

∇φl · f(qh) dx dt+

∫ tn+1

tn

∫
Ω◦

I

φlB(qh) · ∇qh dx dt
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+

∫ tn+1

tn

∫
ΩI

∇φl · ϵ∇qh dx dt

=

∫ tn+1

tn

∫
ΩI

φl (P(qh,∇qh) + S(qh)) dx dt, (42)

where n denotes the outward-pointing unit normal vector at the cell boundary
∂ΩI . For the numerical flux in normal direction F ·n at the cell interfaces we
use the Rusanov flux as approximate Riemann solver,

F
(
q−
h ,q

+
h

)
· n =

1

2

(
f(q+

h ) + f(q−
h )

)
· n− 1

2
smax I (q+

h − q−
h ), (43)

with the maximum signal speed at the interface smax = max
(
|λl(q

−
h )|, |λl(q

+
h )|

)
and I the identity matrix. For further choices see e.g. [77]. For the dissipative
terms we set

G
(
q−
h ,q

+
h

)
· n = ϵ

2N + 1

∆x
I
(
q+
h − q−

h

)
, (44)

see also [46], and for the non-conservative product, a path conservative method
as forwarded by Castro, Parés and collaborators [23,24,56,59], which is based
on the theoretical background outlined by Dal Maso, Le Floch and Murat in
[55]. We employ a simple linear segment path

Ψ(s,q−
h ,q

+
h ) = q−

h + s(q+
h − q−

h ) for s ∈ [0, 1], (45)

yielding

D(q−
h ,q

+
h )·n =

1

2
B̃·

(
q+
h − q−

h

)
with B̃ =

∫ 1

0

B(Ψ(s,q−
h ,q

+
h ))·n ds. (46)

The arising integral for B̃ is approximated numerically with a Gauss quadra-
ture rule of sufficient order of accuracy.

Note that to obtain the polynomial coefficients at the new time ûn+1
k,I from

(42), the space-time predictor qh and the boundary extrapolated values q−
h

and q+
h between two neighboring cells ΩI and ΩJ have to be known. Following

[17,37,39,43] , the space-time predictor qh(x, t) is obtained using the weak
formulation of (17) in space-time, thus avoiding the Cauchy-Kovalewskaya
procedure on which standard ADER schemes are based, see e.g. [75,76,78,22].
In a similar fashion than in the definition of uh(x, t) we set

q(x, t) = θl(x, t)q̂
n
l,I , on ΩI × [tn, tn+1], (47)

where the space-time basis functions θl(x, t) are now tensor products of the
one-dimensional basis functions φlm and a temporal basis function, given by

θl(x, t) = φl0(τ)φl1(ξ)φl2(η), t = tn + τ∆t, τ, ξ, η ∈ [0, 1]. (48)

Multiplying (17) now by the space-time test function θl and integrating over
ΩI × [tn, tn+1] yields∫ tn+1

tn

∫
ΩI

θl (∂tq+∇ · f(q) +B(q) · ∇q−∇ · (ϵ∇q)) dx dt
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=

∫ tn+1

tn

∫
ΩI

θl (P(q,∇q) + S(q)) dx dt.

After integration by parts of the term containing the time derivative and taking
into account the known initial condition of the element-local Cauchy problem
given by uh at time tn, we obtain∫

ΩI

θl(x, t
n+1)qh(x, t

n+1) dx−
∫
ΩI

θ(x, tn)uh(x, t
n) dx

−
∫ tn+1

tn

∫
ΩI

(∂tθl)qh(x, t) dx dt

+

∫ tn+1

tn

∫
ΩI

θl (∇ · f(qh) +B(qh) · ∇qh −∇ · (ϵ∇qh)) dx dt

=

∫ tn+1

tn

∫
ΩI

θl (P(qh,∇qh) + S(qh)) dx dt. (49)

Using (47), equation (49) can be reformulated in a non-linear element-local
algebraic system for the coefficients q̂n

l,I , which is solved by an iterative solver
whose convergence was proven in [17] for the case of hyperbolic conservation
laws without non-conservative products. Once the space-time predictor qh is
determined for all elements, the polynomial coefficients ûn+1 are obtained from
(42).

4.2 A posteriori subcell finite volume limiter

The unlimited ADER-DG scheme presented in the previous section is high
order accurate, but linear in the sense of Godunov, which means that it will
generate spurious oscillations near shock waves and discontinuities, according
to the well-known Godunov theorem. To avoid exactly these non-physical ar-
tifacts, a new a posteriori subcell limiter was introduced in [43,79,41,15] for
ADER-DG schemes based on the MOOD framework for finite volume schemes
[29,35,30].

First, a so-called candidate solution u∗
h(x, t

n+1) is computed with the un-
limited ADER-DG scheme described in the previous section. Then, a posteri-
ori, the candidate solution is checked against several numerical and physical
detection criteria, like the positivity of the density and the pressure and the
absence of floating point errors. Furthermore, we require that a discrete max-
imum principle is fulfilled [43] for all conservative variables. If any of these
numerical or physical detection criteria is violated inside a DG element, it
is marked as troubled cell and is scheduled for the a posteriori subcell FV
limiting. All flagged cells ΩI are split into (2N + 1)2 FV subcells Ωs

I with
ΩI =

⋃
s Ω

s
I . This process does not reduce the time step of the DG scheme,

since the CFL number of an explicit DG scheme scales with 1/(2N +1), while
the CFL condition of FV methods is bounded from above by one. As standard
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in the FV framework, the solution on the subcells Ωs
I is approximated via

piecewise constant cell averages

ūn
I,s =

1

|Ωs
I |

∫
Ωs

I

uh(x, t
n) dx (50)

obtained from the high order DG polynomials uh(x, t
n). Then the subcell

averages are either evolved in time with a second order MUSCL-Hancock-type
TVD FV scheme with minmod limiter or a third order ADER-WENO FV
scheme, see [43]. Both schemes are predictor-corrector methods as the ADER-
DG scheme itself, and can be written in the DG framework by employing a
unity test function thus reducing the method to solving

|Ωs
I |
(
ūn+1
I,s − ūn

I,s

)
+

∫ tn+1

tn

∫
∂Ωs

I

(
F

(
q−
h ,q

+
h

)
+D

(
q−
h ,q

+
h

)
−G

(
q−
h ,q

+
h

))
· n dS dt

+

∫ tn+1

tn

∫
Ωs,◦

I

B(qh) · ∇qh dx dt

=

∫ tn+1

tn

∫
Ωs

I

(P(qh,∇qh) + S(qh)) dx dt. (51)

Once the cell averages ūn+1
I,s of all subcells in ΩI are obtained, the limited

DG polynomials u′
h(x, t

n+1) at the new time are obtained via a constrained
least squares reconstruction requiring the conservation of the solution on the
subcells Cs

I
1

|ΩI,s|

∫
ΩI,s

u′
h(x, t

n+1) dx = ūn+1
I,s (52)

and the conservation of the solution within the element ΩI∫
ΩI

u′
h(x, t

n+1) dx =
∑

∀Ωs
I⊂ΩI

|Ωs
I |ūn+1

I,s . (53)

Since it is very likely that a cell is also flagged as a troubled cell also in the
subsequent time step, for instance close to a discontinuity, the FV subcell
averages ūn+1

I,s are kept in memory, to be used as initial condition for the
limiting processes in the next time step. For further details, see also [43,41,
80]. This concludes the description of the ADER-DG scheme with a posteriori
subcell FV limiting.

5 Numerical results

In this section, we present several numerical test cases aiming at assessing
the proposed new semi-discrete HTC scheme for the two-fluid model with two
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entropy inequalities. As time integrator the classical fourth order Runge-Kutta
method is used for all test problems shown below. Besides, the time step is set
according to the CFL-type condition

∆t =
CFL

2N + 1

1
|λmax|

h + 2 ϵ 2N+1
h2

(54)

with h = min(∆x,∆y) the characteristic mesh spacing, |λmax| the maximum
absolute value of the eigenvalues in the domain and CFL < 1/d, where d is
the number of space dimensions.

5.1 Numerical convergence study

To verify the numerical convergence of the new HTC scheme and the ADER-
DG in the vanishing viscosity approach, we construct a smooth solution of the
full two-fluid model (3) given by a stationary vortex with zero radial velocities
and and constant movement in angular direction. Therefore we consider the
polar coordinate representation (66) given in Appendix A and set

vr = 0, wr = 0, j1r = 0, j2r = 0,
∂

∂t
(·) = 0,

∂

∂θ
(·) = 0. (55)

Equations (66) reduce then to solving

∂p

∂r
=

α1ρ1(v1θ)
2 + α2ρ2(v2θ)

2

r
, (56a)

∂

∂r

(
(v1θ)

2 − (v2θ)
2

2
+ µ1 − µ2

)
− vθ

(
1

r

∂

∂r
(rwθ)

)
= 0 (56b)

∂T 1

∂r
=

ρj1θvθ
r

, (56c)

∂T 2

∂r
=

ρj2θvθ
r

, (56d)

with p = α1p1 + α2p2, wθ = v1θ − v2θ , vθ = c1v1θ + c2v2θ .
We give the profiles of the phase velocities and thermal impulses as

vlθ = rvla exp(ν
l
v(1− r2)), jlθ = rjla exp(ν

l
j(1− r2))

and the profile for the volume fraction as

α1 = cα + αc exp(να(1− r2)).

The four unknowns ρl and T l can be determined via the following system of
ordinary differential equations (ODEs) based on the EOS (2)
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α1 ∂p
1

∂ρ1
α2 ∂p

2

∂ρ2
α1 ∂p

1

∂T 1
α2 ∂p

2

∂T 2

∂µ1

∂ρ1
−∂µ2

∂ρ2
∂µ1

∂T 1
− ∂µ2

∂T 2

0 0 1 0

0 0 0 1





∂ρ1

∂r

∂ρ2

∂r

∂T 1

∂r

∂T 2

∂r


=



α1ρ1(v1θ)
2 + α2ρ2(v2θ)

2

r
− p1

∂α1

∂r
+ p2

∂α1

∂r

− ∂

∂r

(
(v1θ)

2 − (v2θ)
2

2

)
+ vθ

(
1

r

∂

∂r
(rwθ)

)
−A1j1θ

∂j1θ
∂r

+A2j2θ
∂j2θ
∂r

ρj1θvθ
r

ρj2θvθ
r


(57)

with

∂p1

∂ρ1
= (γ1 − 1)c1vT

1,
∂p2

∂ρ2
= (γ2 − 1)c2vT

2 (58a)

∂p1

∂T 1
= (γ1 − 1)c1vρ

1,
∂p2

∂T 2
= (γ2 − 1)c2vρ

2 (58b)

∂µ1

∂ρ1
=

(γ1 − 1)c1vT
1

ρ1
,

∂µ2

∂ρ2
=

(γ2 − 1)c2vT
2

ρ2
(58c)

∂µ1

∂T 1
= (γ1 − 1)c1v − s1,

∂µ1

∂T 1
= (γ2 − 1)c2v − s2. (58d)

We set the following parameters in the initial condition

γ1 = 1.4, γ2 = 2, c1v = 1, c2v = 2,

v1a = 1, v2a = 1.5, ν1v = 1, ν2v = 1.2,

j1a = 0.1, j2a = 0.1, ν1j = 1, ν2j = 1.2,

cα = 0.4, αc = 0.1, νa = 0.5, A1 = 10, A2 = 10.

The initial values for the ODE system (57) are given by ρ1 = 1.5, ρ2 = 1, T 1 =
4, T 2 = 2 and the vortex solution in polar coordinates is obtained numerically
with a classical fourth order Runge-Kutta scheme. The computational domain
for the vortex in Cartesian coordinates is given by [−5, 5]× [−5, 5] with peri-
odic boundary conditions and the vortex is run up to a final time Tf = 0.1. In
Tables 1 to 5 the L2 error at the final time and experimental order of conver-
gence (EOC) of the new HTC scheme with two entropy inequalities and the
ADER-DG scheme with N = 2, . . . , 5 are given. We obtain the expected EOC
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32 64 128 256 512

α1 1.92E-03 — 4.65E-04 2.0 1.18E-04 2.0 3.02E-05 2.0 7.59E-06 2.0

ρ1 5.01E-02 — 1.28E-02 2.0 3.22E-03 2.0 8.07E-04 2.0 2.02E-04 2.0

ρ2 2.16E-02 — 5.37E-03 2.0 1.33E-03 2.0 3.31E-04 2.0 8.27E-05 2.0

v11 1.99E-02 — 5.51E-03 1.9 1.42E-03 2.0 3.57E-04 2.0 8.94E-05 2.0

v12 1.99E-02 — 5.51E-03 1.9 1.42E-03 2.0 3.57E-04 2.0 8.94E-05 2.0

v21 2.59E-02 — 7.24E-03 1.8 1.87E-03 2.0 4.70E-04 2.0 1.18E-04 2.0

v22 2.59E-02 — 7.24E-03 1.8 1.87E-03 2.0 4.70E-04 2.0 1.18E-04 2.0

j11 2.40E-03 — 6.79E-04 1.8 1.78E-04 1.9 4.52E-05 2.0 1.13E-05 2.0

j12 2.40E-03 — 6.79E-04 1.8 1.78E-04 1.9 4.52E-05 2.0 1.13E-05 2.0

j21 2.05E-03 — 6.09E-04 1.7 1.66E-04 1.9 4.26E-05 2.0 1.07E-05 2.0

j22 2.05E-03 — 6.09E-04 1.7 1.66E-04 1.9 4.26E-05 2.0 1.07E-05 2.0

p1 1.41E-01 — 3.57E-02 2.0 8.95E-03 2.0 2.24E-03 2.0 5.60E-04 2.0

p2 1.58E-01 — 3.84E-02 2.0 9.56E-03 2.0 2.39E-03 2.0 5.98E-04 2.0

ρE 2.40E-01 — 6.15E-02 2.0 1.54E-03 2.0 3.87E-03 2.0 9.69E-04 2.0

Table 1 Twofluid stationary vortex: L2 error and EOC for the new HTC scheme.

of 2 for the HTC FV scheme and the corresponding higher order convergence
for the ADER-DG scheme. However, we observe that for several quantities
and especially for even order approximation polynomial degree N the exper-
imental order of convergence of the DG scheme seems to be only N , and not
the expected N + 1. There are two possible explanations for this fact. i) the
reference solution is not analytical, but it has only been obtained numerically
at the aid of a standard fourth order Runge-Kutta scheme, which unavoidably
introduces numerical errors and requires interpolation; ii) the chosen equilib-
rium vortex may not have enough regularity to obtain optimal convergence
rates for all variables. Further investigations concerning this behaviour need
to be carried out in the future.

5.2 1D Riemann problems

Next, we consider two Riemann Problems (RP) on the computational domain
[−1, 1] for the twofluid model (3) without relaxation processes (green terms),
thus we set ζ = 0 and formally τ = ∞. Further we set as in the previous test
case γ1 = 1.4, γ2 = 2 under the ideal gas law (2). We assume a moderate in-
fluence of the thermal impulses on the internal energy setting A1 = 1, A2 = 1,
where the initial thermal impulses are set to zero j1 = 0, j2 = 0. For the
remaining phase variables the initial configurations of left and right states
separated by a discontinuity placed at x = 0 are given in Table 6. The first
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16 32 64 128 256

α1 5.45E-04 — 1.03E-04 2.4 2.06E-05 2.3 3.93E-06 2.4 6.97E-07 2.5

ρ1 3.01E-02 — 7.25E-03 2.1 1.30E-03 2.5 2.00E-04 2.7 2.93E-05 2.8

ρ2 1.28E-02 — 2.87E-03 2.2 5.42E-04 2.4 8.56E-05 2.7 1.25E-05 2.8

v11 1.46E-02 — 3.63E-03 2.0 8.21E-04 2.1 1.68E-04 2.3 3.12E-05 2.4

v12 1.46E-02 — 3.63E-03 2.0 8.21E-04 2.1 1.68E-04 2.3 3.12E-05 2.4

v21 2.45E-02 — 5.31E-03 2.2 1.09E-03 2.3 2.03E-04 2.4 3.57E-05 2.5

v22 2.45E-02 — 5.31E-03 2.2 1.09E-03 2.3 2.03E-04 2.4 3.57E-05 2.5

j11 1.85E-03 — 3.44E-04 2.4 6.76E-05 2.3 1.37E-05 2.3 2.57E-06 2.4

j12 1.85E-03 — 3.44E-04 2.4 6.76E-05 2.3 1.37E-05 2.3 2.57E-06 2.4

j21 1.72E-03 — 4.86E-04 1.8 1.27E-04 1.9 2.40E-05 2.4 4.43E-06 2.4

j22 1.72E-03 — 4.86E-04 1.8 1.27E-04 1.9 2.40E-05 2.4 4.43E-06 2.4

p1 6.55E-02 — 1.43E-02 2.2 2.44E-03 2.6 3.66E-04 2.7 5.37E-05 2.8

p2 1.03E-01 — 2.50E-02 2.0 4.53E-03 2.5 7.13E-04 2.7 1.03E-04 2.8

ρE 1.49E-01 — 3.37E-02 2.1 6.14E-03 2.5 1.03E-03 2.6 1.66E-04 2.6

Table 2 Twofluid stationary vortex: L2 error and EOC for ADER-DG with N = 2.

16 24 32 48 64

α1 2.84E-05 — 5.56E-06 4.0 1.36E-06 4.9 1.71E-07 5.1 4.13E-08 4.9

ρ1 5.56E-03 — 2.31E-03 2.2 4.18E-04 5.9 7.28E-05 4.3 1.66E-05 5.1

ρ2 3.83E-03 — 5.27E-04 4.9 1.33E-04 4.8 1.69E-05 5.1 4.44E-06 4.7

v11 8.73E-03 — 2.04E-03 3.6 3.95E-04 5.7 5.27E-05 5.0 1.17E-05 5.2

v12 8.73E-03 — 2.04E-03 3.6 3.95E-04 5.7 5.27E-05 5.0 1.17E-05 5.2

v21 7.01E-03 — 1.77E-03 3.4 3.73E-04 5.4 4.90E-05 5.0 1.11E-05 5.2

v22 7.01E-03 — 1.77E-03 3.4 3.73E-04 5.4 4.90E-05 5.0 1.11E-05 5.2

j11 8.31E-04 — 1.83E-04 3.7 4.63E-05 4.8 7.47E-06 4.5 1.92E-06 4.7

j12 8.31E-04 — 1.83E-04 3.7 4.63E-05 4.8 7.47E-06 4.5 1.92E-06 4.7

j21 7.98E-04 — 2.28E-04 3.1 4.52E-05 5.6 6.58E-06 4.7 1.41E-06 5.4

j22 7.98E-04 — 2.28E-04 3.1 4.52E-05 5.6 6.58E-06 4.7 1.41E-06 5.4

p1 1.06E-02 — 4.17E-03 2.3 8.09E-04 5.7 1.30E-04 4.5 3.18E-05 4.9

p2 2.73E-02 — 4.00E-03 4.7 1.12E-03 4.4 1.25E-04 5.4 3.43E-05 4.5

ρE 3.08E-02 — 1.11E-02 2.5 2.21E-03 5.6 3.39E-04 4.6 8.21E-05 4.9

Table 3 Twofluid stationary vortex: L2 error and EOC for ADER-DG with N = 3.
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16 24 32 48 64

α1 2.61E-06 — 5.85E-07 3.7 1.84E-07 4.0 3.45E-08 4.1 9.86E-09 4.4

ρ1 6.55E-04 — 1.00E-04 4.6 4.03E-05 3.2 7.96E-06 4.0 2.43E-06 4.1

ρ2 1.45E-04 — 4.01E-05 3.2 1.13E-05 4.4 2.16E-06 4.1 6.06E-07 4.4

v11 4.25E-04 — 1.01E-04 3.5 3.28E-05 3.9 7.02E-06 3.8 2.22E-06 4.0

v12 4.25E-04 — 1.01E-04 3.5 3.28E-05 3.9 7.02E-06 3.8 2.22E-06 4.0

v21 4.29E-04 — 9.72E-05 3.7 2.99E-05 4.1 6.24E-06 3.9 1.97E-06 4.0

v22 4.29E-04 — 9.72E-05 3.7 2.99E-05 4.1 6.24E-06 3.9 1.97E-06 4.0

j11 1.09E-04 — 1.79E-05 4.4 4.19E-06 5.1 7.38E-07 4.3 2.20E-07 4.2

j12 1.09E-04 — 1.79E-05 4.4 4.19E-06 5.1 7.38E-07 4.3 2.20E-07 4.2

j21 5.36E-05 — 1.25E-05 3.6 3.79E-06 4.2 7.76E-07 3.9 2.42E-07 4.0

j22 5.36E-05 — 1.25E-05 3.6 3.79E-06 4.2 7.76E-07 3.9 2.42E-07 4.0

p1 1.33E-03 — 2.01E-04 4.7 7.08E-05 3.6 1.31E-05 4.2 3.91E-06 4.2

p2 1.20E-03 — 3.08E-04 3.4 8.53E-05 4.5 1.58E-05 4.2 4.53E-06 4.3

ρE 3.00E-03 — 4.81E-04 4.5 1.85E-04 3.3 3.70E-05 4.0 1.15E-05 4.1

Table 4 Twofluid stationary vortex: L2 error and EOC for ADER-DG with N = 4.

8 16 24 32 48

α1 2.20E-05 — 9.14E-07 4.6 1.12E-07 5.2 1.26E-08 7.6 7.65E-10 6.9

ρ1 9.21E-03 — 2.14E-04 5.4 4.56E-05 3.8 3.83E-06 8.6 5.10E-07 5.0

ρ2 2.13E-03 — 1.27E-04 4.1 7.64E-06 6.9 1.92E-06 4.8 9.93E-08 7.3

v11 5.77E-03 — 3.33E-04 4.1 3.82E-05 5.3 3.54E-06 8.3 3.25E-07 5.9

v12 5.77E-03 — 3.33E-04 4.1 3.82E-05 5.3 3.54E-06 8.3 3.25E-07 5.9

v21 6.41E-03 — 2.86E-04 4.5 3.54E-05 5.2 3.84E-06 7.7 3.40E-07 6.0

v22 6.41E-03 — 2.86E-04 4.5 3.54E-05 5.2 3.84E-06 7.7 3.40E-07 6.0

j11 6.75E-04 — 3.51E-05 4.3 3.96E-06 5.4 5.88E-07 6.6 4.94E-08 6.1

j12 6.75E-04 — 3.51E-05 4.3 3.96E-06 5.4 5.88E-07 6.6 4.94E-08 6.1

j21 7.87E-04 — 3.69E-05 4.4 4.94E-06 5.0 4.35E-07 8.4 4.72E-08 5.5

j22 7.87E-04 — 3.69E-05 4.4 4.94E-06 5.0 4.35E-07 8.4 4.72E-08 5.5

p1 1.64E-02 — 3.65E-04 5.5 7.27E-05 4.0 7.53E-06 7.9 8.18E-07 5.5

p2 1.82E-02 — 7.94E-04 4.5 4.85E-05 6.9 1.36E-05 4.4 6.39E-07 7.5

ρE 4.45E-02 — 9.92E-04 5.5 2.02E-04 3.9 2.10E-05 7.9 2.03E-06 5.8

Table 5 Twofluid stationary vortex: L2 error and EOC for ADER-DG with N = 5.
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Test Tf state α1 ρ1 ρ2 v11 v21 p1 p2

RP1 0.3
left 0.8 1 0.2 0 0 1 0.3

right 0.3 1 1 0 0 1 1

RP2 0.3
left 0.7 1 2 -1 -1 1 1

right 0.3 1 2 1 1 1 1

Table 6 Initial condition for the 1D Riemann problems presented in Section 5.2 with γ1 =
1.4 and γ2 = 2.

Riemann problem (RP1) consists of a jump in the volume fraction, phase den-
sity 2 and pressure 2 with zero initial velocity resulting in a discontinuous
mixture density and pressure. The second Riemann problem (RP2) is a dou-
ble rarefaction test with constant initial phase densities and pressures, whereas
we have a jump in the volume fraction resulting in a discontinuous mixture
density and pressure. In Figures 1, we compare the HTC FV scheme with
4096 cells against the ADER-DG scheme with N = 3 and 512 elements in
the vanishing viscosity limit (VVL) with ϵ = 5 · 10−4 for the mixture density,
velocity, pressure and relative velocity of RP1. Since there are no heat and
shear processes present, the Riemann problem consists of 9 waves in total that
can be best observed in the relative velocity. We find a very good agreement
between the HTC FV scheme and the ADER-DG VVL where both graphs are
superimposed. The same applies to the rarefaction test case RP2 displayed in
Figure 2 which consists of 4 waves traveling to the boundaries of the domain
with a contact in the mixture density due to the initial jump of the volume
fraction. Even though the viscosity ϵ = 10−4 applied in the ADER-DG scheme
is still quite large, we find a very good match between the two schemes which
validates the new HTC approach with two entropy inequalities to yield the
correct shock speeds and amplitudes for both Riemann Problems.

Next, we verify numerically the stiff heat relaxation limit of the twofluid
model (3) with the limit Baer-Nunziato-Fourier type model (12). This is done
by comparing the HTC FV scheme and the ADER-DG VVL scheme applied
on the two-fluid model (3) with the ADER-DG scheme applied on the Baer-
Nunziato model (12) with the parabolic temperature terms in the phase en-
ergies. In order to do this comparison, we increase the influence of the ther-
mal impulses setting A1 = A2 = 400 and the thermal conductivity coeffients
κ1 = κ2 = 2 · 10−3 yielding a heat relaxation rate τ = O(10−6). The results
for RP1 and RP2 are displayed in Figures 3 and 4 respectively. Overall the re-
sults computed with the new HTC and the ADER-DG VVL scheme match the
Baer-Nunziato model in the stiff heat relaxation limit. Note that the ADER-
DG VVL method uses a viscosity of ϵ = 2 · 10−5 for RP1 and ϵ = 10−4 for
RP2. This, together with the chosen relaxation rate τ , explains the deviations
of the ADER-DG VVL approach from the solutions obtained with the Baer-
Nunziato model, taking into account the distance to the relaxation limit. Since
the HTC scheme does not need the additional viscosity ϵ, it captures accu-



Thermodynamically compatible schemes for compressible two-fluid flow 23

x

rh
o

­1 ­0.75 ­0.5 ­0.25 0 0.25 0.5 0.75 1
0.75

0.8

0.85

0.9

0.95

1

1.05

HTC FV scheme

ADER­DG P3 (VVL)

x

u

­1 ­0.75 ­0.5 ­0.25 0 0.25 0.5 0.75 1
­0.08

­0.06

­0.04

­0.02

0

0.02

0.04

HTC FV scheme

ADER­DG P3 (VVL)

x

p

­1 ­0.75 ­0.5 ­0.25 0 0.25 0.5 0.75 1
0.75

0.8

0.85

0.9

0.95

1

1.05

HTC FV scheme

ADER­DG P3 (VVL)

x

w
x

­1 ­0.75 ­0.5 ­0.25 0 0.25 0.5 0.75 1
­0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

HTC FV scheme

ADER­DG P3 (VVL)

Fig. 1 Numerical solutions obtained at time t = 0.3 for the homogeneous Riemann problem
RP1 without relaxation source terms using the new HTC finite volume scheme and the high
order ADER-DG scheme (N = 3) applied to the vanishing viscosity limit (VVL) of the
SHTC model (ϵ = 5 · 10−4). From top left to bottom right: Mixture density ρ, mixture
velocity v1, mixture pressure p and relative velocity w1.

rately the waves that are present in the Baer-Nunziato model and reproduces
the correct wave speeds for both considered Riemann problems.

5.3 Circular explosion problem

To complete the study of Riemann Problems for the two-fluid model (3), we

consider RP1 in a radial set up with radius r =
√
x2 + y2 on the computational

domain [−1, 1]2 where the left state is applied for r < r0 and the right state
for r ≥ r0 with the interface placed at r0 = 0.6. The difference to the one
dimensional RP1 in Section 5.2 consists of the presence of the lift forces in the
relative velocity equation of the SHTC two-fluid model (3) which reflect in the
appearance of the additional non-conservative terms (16) in the corresponding
Baer-Nunziato formulation (12). These lift forces are only triggered in the
multi-dimensional case and vanish in the one-dimensional set-up. In Figure 6
we compare the results of the new HTC scheme in the stiff relaxation limit
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Fig. 2 Numerical solutions obtained at time t = 0.3 for the homogeneous Riemann problem
RP2 without relaxation source terms using the new HTC finite volume scheme and the high
order ADER-DG scheme (N = 3) applied to the vanishing viscosity limit (VVL) of the
SHTC model (ϵ = 1 · 10−4). From top left to bottom right: Mixture density ρ, mixture
velocity v1, mixture pressure p and relative velocity w1.

with ε = 5·10−5 on a 1536×1536 mesh against the Baer-Nunziato limit system
solved with the ADER-DG scheme with N = 3 and 5122 elements. For ease of
comparison, we plot the cut along the x-axis on the domain [0, 1] since the test
results in symmetric wave propagation. As we can see, the results of the SHTC
model in the stiff relaxation limit obtained with the new HTC scheme match
with the solution of Baer-Nunziato limit system. As previously observed in
Figure 3, we can see marginal differences between the two graphs, which can
be again explained with the distance to the actual limit since τ = O(10−5)
and the viscosity of the HTC scheme. More importantly, both solutions match
in the wave speeds and positions and therefore the results obtained with the
HTC scheme based on the SHTC equations (3) show good agreement and
verify numerically the stiff heat relaxation limit given by the Baer-Nunziato
model (12).
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Fig. 3 Numerical solutions obtained at time t = 0.3 for the homogeneous Riemann problem
RP1 in the stiff relaxation limit (A1 = A2 = 400, κ1 = κ2 = 2 · 10−3) using the new HTC
finite volume scheme and the high order ADER-DG scheme (N = 3) applied to the vanishing
viscosity limit (VVL) of the SHTC model (ϵ = 2 · 10−5). From top left to bottom right:
Mixture density ρ, mixture velocity v1, mixture pressure p and relative velocity w1.

5.4 Two-fluid Kelvin-Helmholtz instabilities

The next test case regards the simulation of two-fluid Kelvin-Helmholtz in-
stabilities on a computational domain of [−0.5, 0.5] × [−1, 1] with periodic
boundary conditions in x- and y-direction. The initial set-up is an adaption of
the standard Kelvin-Helmholtz instability test case for the Euler equations in
a compressible regime to the two-fluid case where the jump in the densities at
the interface is modeled by a rapid change in the volume fraction given by

α1 =

{
0.5 + 0.25 tanh (25 (y + 0.5)) if y < 0

0.5− 0.25 tanh (25 (y − 0.5)) if y ≥ 0
. (59)

Therefore, the initial densities are constant on the whole domain and given
by ρ1 = 1 and ρ2 = 2. The two considered materials are described as in the
previous test cases by γ1 = 1.4 and γ2 = 2 where we set here c1v = c2v = 4. To
highlight the instabilities generated by the shear flow, the pressure for both
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Fig. 4 Numerical solutions obtained at time t = 0.3 for the homogeneous Riemann problem
RP2 in the stiff relaxation limit (A1 = A2 = 400, κ1 = κ2 = 2 · 10−3) using the new HTC
finite volume scheme and the high order ADER-DG scheme (N = 3) applied to the vanishing
viscosity limit (VVL) of the SHTC model (ϵ = 1 · 10−4). From top left to bottom right:
Mixture density ρ, mixture velocity v1, mixture pressure p and relative velocity w1.

phases coincides and is set to p1 = p2 = 100/γ1 which yields a reference Mach
number regime of O(10−1) for both phases. The thermal impulses are initially
set to zero, i.e. j1 = 0, j2 = 0 and we consider a moderate influence setting
A1 = A2 = 1 if no relation source terms are present. For the stiff relaxation
limit, we consider A1 = A2 = 100 and κ1 = κ2 = 2 · 10−3. The velocities of
both phases coincide initially and are set in the x component to

v11 = v12 =

{
+0.5 tanh (25 (y + 0.5)) if y < 0

−0.5 tanh (25 (y − 0.5)) if y ≥ 0
. (60)

To trigger the instablities, a small perturbation is applied in the y component
given by

v21 = v22 =

{
−10−2 sin (2πx) sin (2π(y + 0.5)) if y < 0

+10−2 sin (2πx) sin (2π(y − 0.5)) if y ≥ 0
. (61)

We first run the HTC FV scheme on the homogeneous SHTC model, i.e.
without algebraic relaxation source terms up to a final time t = 8 and ϵ =
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Fig. 5 Numerical solutions obtained at time t = 0.2 for the circular explosion problem based
on RP1 in the stiff relaxation limit of the SHTC model (A1 = A2 = 400, κ1 = κ2 = 2 ·10−3)
using the new HTC finite volume scheme and the high order ADER-DG scheme (N = 3)
applied to the parabolic Baer-Nunziato-type limit model. From top left to bottom right:
Mixture density ρ, mixture velocity v1, mixture pressure p and relative velocity w1.

Fig. 6 3D view of the mixture density profile obtained at time t = 0.2 for the circular
explosion problem. Left: new HTC finite volume scheme applied to the SHTC model. Right:
ADER-DG scheme (N = 3) applied to the parabolic Baer-Nunziato-type limit model (red
cells are troubled cells, where the a posteriori subcell FV limiter has been applied).
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2.5 · 10−5 on a 1024× 2048 mesh which ensures the same resolution in x- and
y-direction. The snapshots at times t ∈ {3, 4, 5, 6, 7, 8} for the volume fraction
α1 which is a passively transported quantity is depicted in Figure 8. We can
observe the formation of the characteristic instabilities at the interface between
the two phases and the subsequent mixing of the two considered agents. In
Figure 7 we display the results for the same set up in the stiff relaxation limit.
However, the presence of the heat related relaxation terms and the increased
influence of the thermal impulses on the internal energy only marginally affects
the evolution of the flow since, initially zero, they are generated by a change
of the temperatures, which are initially constant. We would like to emphasize
that in both cases, the new HTC scheme is able to produce well resolved
vortices with a good separation of the two phases.

5.5 Influence of the lift forces

One of the main differences between the SHTC two-fluid model (3) with the
standard Baer-Nunziato approach to describe two-fluid flows consists in the
lift forces (16). In the next test case we numerically study their influence on
the solution using the ADER-DG scheme. As they are terms involving the curl
of the relative velocity, they are present only when considering two or higher
dimensional problems. Therefore we consider the vortex introduced in Section
5.1 as initial condition and compare the solutions obtained with the SHTC
model (3) and the Baer-Nunziato model (12) with and without lift forces at
time Tf = 1 in the stiff heat relaxation limit using A1 = A2 = 1000 and
κ1 = κ2 = 10−3 resulting in τ = O(10−7). Since the vortex is smooth, we set
ϵ = 0. Therefore no additional viscosity is introduced by the ADER-DG VVL
approach and we solve the full SHTC system without the green viscosity terms
comparing directly the influence of the lift forces within the same numerical
scheme.

In Figure 9, the results are shown along the x-axis for the mixture density,
pressure, velocity and relative velocity, the latter two in the y-component. Note
that the vortex is almost an exact solution, since τ is very small, to both the
SHTC as well as the Baer-Nunziato system with lift forces thus the solution
of the SHTC and Baer-Nunziato with lift forces match perfectly. Switching
off the lift forces in the Baer-Nunziato model significantly affects the relative
velocity, as can be seen from Figure 9 as the lift forces directly act on the
phase velocities increasing v1 and decreasing v2, since the relative velocity
has a negative sign in this test case. Thus, the missing lift forces lead to a
decrease in the relative velocities.

6 Conclusion

In this paper we have introduced a new thermodynamically compatible finite
volume scheme for the symmetric hyperbolic and thermodynamically com-
pressible (SHTC) two-fluid model of Romenski et al. [67,66] that is endowed
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Fig. 7 Two-fluid Kelvin-Helmholtz instability: numerical solution obtained with the new
HTC finite volume scheme at times t ∈ {3, 4, 5, 6, 7, 8} for the homogeneous SHTC model
without algebraic relaxation source terms. The employed mesh resolution was 1024 × 2048
elements and the artificial viscosity coefficient was set to ϵ = 2 · 10−5.
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Fig. 8 Two-fluid Kelvin-Helmholtz instability: numerical solution obtained with the new
HTC finite volume scheme at times t ∈ {3, 4, 5, 6, 7, 8} for the SHTC model in the stiff
relaxation limit (A1 = A2 = 100, κ1 = κ2 = 2 · 10−3). The employed mesh resolution was
1024× 2048 elements and the artificial viscosity coefficient was set to ϵ = 2 · 10−5.
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Fig. 9 Numerical solution obtained at time t = 1.0 for the vortex problem solved in the
stiff relaxation limit of the SHTC model (A1 = A2 = 1000, κ1 = κ2 = 1 · 10−3) using the
high order ADER-DG scheme (N = 3) applied to the vanishing viscosity limit (VVL) of the
SHTC model (ϵ = 0). Comparison with the Baer-Nunziato limit system with and without
lift forces. From top left to bottom right: Mixture density ρ, mixture velocity v2, mixture
pressure p and relative velocity w2.

with two entropy inequalities. The new method is able to discretize the two
entropy inequalities directly and obtains total energy conservation as a mere
consequence of the thermodynamically compatible discretization of all other
equations. The thermodynamically compatible numerical flux is based on the
seminal ideas of Abgrall [2,9,8], which was subsequently generalized and ap-
plied to SHTC systems in [3,18]. Compared to previous thermodynamically
compatible finite volume schemes the new approach forwarded in this paper
does not require the computation of any path integral but is totally general
and can be applied to arbitrary overdetermined hyperbolic and thermodynam-
ically compatible systems of the form (17) that admit an extra conservation
law of the type (18). The proposed HTC FV schemes satisfy two discrete en-
tropy inequalities and are provably nonlinearly stable in the energy norm. In
this paper we furthermore consider arbitrary high order accurate discontin-
uous Galerkin (DG) schemes applied to the vanishing viscosity limit of the
overdetermined system. In this case, no particular care is taken to satisfy (18)
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exactly at the discrete level, apart from the mere resolution of all flow fea-
tures. In the numerical results section we have clearly shown that the schemes
proposed in this paper achieve their designed order of accuracy and that in
the stiff relaxation limit the numerical solution tends to the asymptotically
reduced Baer-Nunziato (BN) limit system with lift forces. The influence of
the lift forces has been studied separately, showing that their presence in the
BN limit is necessary to achieve a good agreement with the underlying SHTC
system.

Future work will concern the extension to more general multi-phase flows
with more than two phases [65], the development of asymptotic-preserving
semi-implicit all Mach number schemes [60,38,36,1,16,63,54] and the exten-
sion to HTC schemes that satisfy the non-homogeneous curl involution on the
relative velocity exactly at the discrete level, see e.g. [14,16,33].
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A Polar coordinate representation of the two-fluid model

We consider a continuous solution of the homogeneous (black) part of system (3). Let the
Cartesian coordinates in 2D be denoted by x = (x1.x2). Then we can define the polar
coordinates in terms of radius r and angle θ as

x1 = r cos(θ). x2 = r sin(θ). (62)

The velocity and thermal impuls vectors are defined by

v1 = vr cos(θ)− vθ sin(θ), v2 = vr cos(θ) + vθ sin(θ), (63a)

w1 = wr cos(θ)− wθ sin(θ), w2 = wr cos(θ) + wθ sin(θ), (63b)

j11 = j1r cos(θ)− j1θ sin(θ), j12 = j1r cos(θ) + j1θ sin(θ), (63c)

j21 = j2r cos(θ)− j2θ sin(θ), j22 = j2r cos(θ) + j2θ sin(θ). (63d)

Using
∂x1

∂r
= cos(θ),

∂x1

∂θ
= −

sin(θ)

r
,

∂x2

∂r
= sin(θ),

∂x1

∂θ
=

cos(θ)

r
, (64)

we obtain the following system in polar coordinates for

q = (α1, α1ρ1, α2ρ2, ρvr, ρvθ, ρwr, ρwθ, ρj
1
r , ρj

1
θ , ρj

2
r , ρj

2
θ , α

1ρ1s1, α2ρ2s2)T (65)

as follows

∂α1

∂t
+

vr

r

∂

∂r

(
rα1

)
+

vθ

r

∂

∂θ
α1 = 0, (66a)
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∂(α1ρ1)

∂t
+

1

r

∂

∂r

(
rα1ρ1v1r

)
+

1

r

∂

∂θ

(
α1ρ1v1θ

)
= 0, (66b)

∂(α2ρ2)

∂t
+

1

r

∂

∂r

(
rα2ρ2v2r

)
+

1

r

∂

∂θ

(
α2ρ2v2θ

)
= 0, (66c)

∂(ρvr)

∂t
+

1

r

∂

∂r

(
r
(
ρv2r + ρc1(1− c1)wrwr + p

))
+

1

r

∂

∂θ

(
ρvrvθ + ρc1c2wrwθ

)
=

ρv2θ + ρc1(1− c1)w2
θ + p

r
,

(66d)

∂(ρvθ)

∂t
+

1

r

∂

∂r

(
r
(
ρvrvθ + ρc1(1− c1)wrwθ

))
+

1

r

∂

∂θ

(
ρv2θ + p+ ρc1(1− c1)w2

θ

)
= −

ρvrvθ + ρc1c2wrwθ

r
,

(66e)

∂wr

∂t
+

∂

∂r

(
vrwr + vθwθ + (1− 2c1)

wrwr + wθwθ

2
+ µ1 − µ2

)
+ vθ

(
1

r

∂

∂θ
wr −

1

r

∂

∂r
(rwθ)

)
= 0

(66f)

∂wθ

∂t
+

1

r

∂

∂θ

(
vrwr + vθwθ + (1− 2c1)

wrwr + wθwθ

2
+ µ1 − µ2

)
+ vr

(
1

r

∂

∂r
(rwθ)−

1

r

∂

∂θ
wr

)
= 0

(66g)

∂(ρj1r )

∂t
+

1

r

∂

∂r

(
r
(
ρj1rvr + T 1

))
+

1

r

∂

∂θ

(
ρj1rvθ

)
=

ρj1θvθ + T 1

r
, (66h)

∂(ρj1θ )

∂t
+

1

r

∂

∂r

(
r
(
ρj1θvr

))
+

1

r

∂

∂θ

(
ρj1θvθ + T 1

)
= −

ρj1θvr

r
, (66i)

∂(ρj2r )

∂t
+

1

r

∂

∂r

(
r
(
ρj2rvr + T 2

))
+

1

r

∂

∂θ

(
ρj2rvθ

)
=

ρj2θvθ + T 2

r
, (66j)

∂(ρj2θ )

∂t
+

1

r

∂

∂r

(
r
(
ρj2θvr

))
+

1

r

∂

∂θ

(
ρj2θvθ + T 2

)
= −

ρj2θvr

r
, (66k)

∂(α1ρ1s1)

∂t
+

1

r

∂

∂r

(
r
(
α1ρ1s1vr +A1j1r

))
+

1

r

∂

∂θ

(
α1ρ1s1vθ +A1j1θ

)
= 0, (66l)

∂(α2ρ2s2)

∂t
+

1

r

∂

∂r

(
r
(
α2ρ2s2vr +A2j2r

))
+

1

r

∂

∂θ

(
α1ρ2s2vθ +A2j2θ

)
= 0. (66m)
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