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Numerical solution of Poisson partial differential equations in

high dimension using deep neural networks

Dus Mathias, Ehrlacher Virginie

May 5, 2023

Abstract

The aim of this article is to analyze numerical schemes using two-layer neural networks with
infinite width for the resolution of the high-dimensional Poisson-Neumann partial differential equa-
tions (PDEs) with Neumann boundary conditions. Using Barron’s representation of the solution
[1] with a measure of probability, the energy is minimized thanks to a gradient curve dynamic on
the 2 Wasserstein space of parameters defining the neural network. Inspired by the work from
Bach and Chizat [2, 3], we prove that if the gradient curve converges, then the represented function
is the solution of the elliptic equation considered. In contrast to the works [2, 3], the activation
function we use here is not assumed to be homogeneous to obtain global convergence of the flow.
Numerical experiments are given to show the potential of the method.

1 Introduction

1.1 Literature review

At the origin the building unit of a neural network ie the perceptron, was developed by a psychiatrist
F. Rosenblatt [4] who wanted to design a simple model of neural network. Computer scientists got
interested in his work and developed artificial neural networks [5] but the lack of computational power in
the 60s prevented serious applications. Interesting advances were made with backprop:agation [6] and
the use of convolutional neural networks for image processing [7] in the late 80’s but it did not focused
the attention credited today. The increasing availability of computational power and the efficiency
of parallel computing shed light into the true potential of neural networks with famous algorithms
: deepblue surpassing Kasparov or even AlexNet identifying cats and dogs on images. Now a lot of
research resources are devoted on applications of these algorithms to more and more scientific (or not)
fields as statistical physics or fluid dynamics. Nevertheless, the rigorous mathematical understanding
of neural networks is still lacking and the vast majority of papers are empirical proofs of concept. In
this context, it is of tremendous importance to understand why neural networks work so well in certain
contexts in order to improve its efficiency and get an insight of why a particular neural network should
be relevant to a specific task.

The first step towards a numerical theory of neural network is the identification of functional spaces
suited for neural network approximation. The first important result in this direction is the celebrated
theorem of approximation due to Cybenko [8] proving that two-layer neural networks can approximate
an arbitrary smooth function on a compact of Rd. However, this work does not give an estimation
of the number of neurons needed even if it is of utmost importance to hope for tractable numerical
methods. To answer this question, Yarotsky [9] gave bounds on the number of neurons necessary to
represent smooth functions. This theory mainly relies on classical techniques of Taylor expansions
and does not give computable architectures in the high dimensional regime. Another original point of
view was given by Barron [1] who used Monte Carlo techniques from Maurey-Jones-Barron to prove
that functions belonging to a certain metric space ie the Barron space, can be approximated by a

two-layer NN with precision O

(
1√
m

)
, m being the width of the first layer. Initially, Barron’s norm

was characterized using Fourier analysis reducing the theory to domain where Fourier decomposition
is available. Now other Barron type norms which does not suppose the existence of an harmonic
decomposition [10], are also available.
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In order to give a global idea of how this works, one can say that a Barron function fµ : Rd → R
can be represented by a measure µ with second order moments :

fµ(x) :=

∫
aσ(wx+ b)dµ(a, b, c)

where σ is an activation function and the Barron norm ‖fµ‖B is roughly speaking the second order
moments of µ. Intuitively, the law of large number says that the function fµ can be represented by
a sum of Dirac corresponding to a two-layer neural network whose width equals the number of Dirac
masses. The architecture of a two-layer neural network is recalled in Figure 1. Having said that, some
important questions arises :

• What is the size of the Barron space and the influence of the activation function on such size ?

Some works have been done in this direction for the ReLU activation function. In [11], it is

proven that Hs functions are Barron if s ≥ d

2
+ 2 and that fµ can be decomposed by an infinite

sum of fµi whose singularities are located on a k (k < d) affine subspace of Rd. For the moment,
no similar result seems to hold with more regular activation functions.

• One can add more and more layers and observe the influence on the corresponding space. In [12],
tree-like spaces WL (where L is the number of hidden layers) are introduced using an iterative
scheme starting from the Barron space. Of course, multi-layers neural networks naturally belong
to these spaces. Nevertheless for a function belonging to WL, it is not clear that a multilayer
neural network is more efficient than its two-layer counterpart for its approximation.

• Does solutions of classical PDEs belong to a Barron space ? In this case, there is a potential
to solve PDEs without suffering from the curse of dimension. Some important advances have
been made in this direction in [13] where authors considered the Poisson problem with Neumann
boundary conditions on the d dimensional cube. If the source term is Barron, then it is proved
that the solution is also Barron and there is hope for an approximation with a two-layer NN.

Using conclusions from [13], the object of this paper is to solve Poisson equation in the high
dimensional regime with Barron source. Inspired from [2], we immerse the problem on the space of
probability P2 with finite second order moments on the domain R2×SRd(1)×R. This corresponds to
finding a solution to the PDE thanks to infinitely wide two-layer neural networks. Then we interpret the
learning phase of the network as a gradient curve in the space of probability measure. Finally under
some hypothesis on the initial support, we prove that if the curve converges then it is necessarily
towards a measure corresponding to the solution of the PDE considered. Note that our argumentation
is different from [2] since the convergence proof is not based on topological degree. We rather use
an homotopy argument taken from algebraic topology and a clever choice of activation function to
prove that the dynamic of the support of the measure curve behaves nicely on the sphere. Numerical
experiments are conducted to confirm the potential of the method proposed.

In Section 1, the problem is presented in a more precise way and the link between probability and
Barron function is made clearly. In Section 3, the gradient curve is introduced; its well posedness and
convergence is proved. Finally, numerical experiments are exposed in Section 4.

Notation : The | · |i designates the i norm of a vector of arbitrary finite dimension with particular
attention to i = 2 (euclidean norm) for which the notation | · | is preferred.
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x ∈ Rd

σ(w1 · x+ b1) ∈ R

σ(w2 · x+ b2) ∈ R

· · ·

σ(wm · x+ bm) ∈ R

c+ a
∑
i

σ(wi · x+ bi)

Figure 1: A two-layer neural network of width m

2 Preliminaries

This section introduces the mathematical framework to understand how neural networks are able to
solve elliptic PDEs.

2.1 Problem setting

Poisson equation is considered on Ω := [0, 1]d (d ∈ N) with Neumann boundary conditions: find

u∗ ∈ H1(Ω) with

∫
Ω

u∗ = 0 solution to :

{
−∆u? = f on Ω,

∂nu
? = 0 on ∂Ω,

(1)

where f ∈ L2(Ω) with

∫
Ω

f = 0. Here (1) has to be understood in the variational sense, in the sense

that u∗ is equivalently the unique minimizer to:

u? = argmin
u∈H1(Ω)

E(u), (2)
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where

∀u ∈ H1(Ω), E(u) :=

∫
Ω

(
|∇u|2

2
− fu

)
dx+

1

2

(∫
Ω

udx
)2

.

This can indeed be easily checked by classic Lax-Milgram arguments. The functional E is strongly
convex and differentiable with derivative given by Lemma 1.

Lemma 1. The functional E : H1(Ω)→ R is continuous, differentiable and for all u ∈ H1(Ω), it holds
that

∀v ∈ H1(Ω), d E |u(v) =

∫
Ω

(∇u · ∇v − fv) dx+

∫
Ω

udx

∫
Ω

vdx.

It can be easily seen that points u where the differential is identically zero are solution to equation
(1).

Remark 1. The coercive symmetric bilinear form a involved in the definition of the energy writes :

a(u, v) :=

∫
Ω

∇u · ∇vdx+

∫
Ω

udx

∫
Ω

vdx.

The energy E can then be equivalently rewritten thanks to the bilinear form a :

E(u) =
1

2
a(u− u?, u− u?)− 1

2

∫
Ω

|∇u?|2dx.

The aim of the present work is to analyze a numerical method based on the use of infinite-width
two-layer neural networks for the resolution of (1) with a specific focus on the case when d is large.

2.2 Activation function

We introduce here the particular choice of activation function we consider in this work.

Let σ : R→ R be the classical Rectified Linear Unit (ReLU) function where :

∀y ∈ R, σ(y) := max(y, 0). (3)

Let ρ : R→ R be defined by Z exp

(
−

tan(π2 y)2

2

)
if |y| ≤ 1

0 otherwise.
(4)

where the constant Z ∈ R is defined such that the integral of ρ is equal to one. For all τ > 0, we then
define ρτ := τρ(τ ·) and στ : R→ R the function defined by

∀y ∈ R, στ (y) := (ρτ ? σ)(y). (5)

We then have the following lemma.

Lemma 2. For any τ > 0, it holds that

(i) στ ∈ C∞(R) is uniformly bounded as σ′τ ,

(ii) for all y < −1/τ , στ (y) = 0,

(iii) for all y > 1/τ , στ (y) = y,

(iv) there exists C > 0 such that for all τ > 0,

‖σ − στ‖H1(R) ≤
C√
τ
.
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Proof. The first item (i) is classic and left to the reader. For (ii), we have :

στ (y) =

∫ 1/τ

−1/τ

ρτ (y)σ(x− y)dy (6)

and if x < −1/τ then x− y < 0 for −1/τ < y < 1/τ and σ(x− y) = 0. This naturally gives :

στ (y) = 0.

For (iii), using again (6) and if x > 1/τ , then x− y > 0 for −1/τ < y < 1/τ and σ(x− y) = x− y.
As a consequence,

στ (y) =

∫ 1/τ

−1/τ

ρτ (y)(x− y)dy

=x.

where we have used the fact that

∫
R
ρτ (y)dy = 1 and

∫
R
yρτ (y)dy = 0 by symmetry of ρ.

For (iv), we have by (ii)− (iii):

‖σ − στ‖2L2(R) =

∫ 1/τ

−1/τ

(σ(x)− στ (x))2dx ≤ 8

τ2

where we used the fact that |σ(x)|, |στ (x)| ≤ 1/τ on [−1/τ, 1/τ ]. In a similar way,

‖σ′ − σ′τ‖2L2(R) =

∫ 1/τ

−1/τ

(σ′(x)− σ′τ (x))2dx ≤ 1

τ
.

The two last inequalities gives (iv).

In this work, we will rather use a hat version of the regularized ReLU activation function. More
precisely, we define:

∀y ∈ R, σH,τ (y) := στ (y + 1)− στ (2y) + στ (y − 1). (7)

We call hereafer this activation function the regularized HReLU (Hat ReLU) activation. When τ =
+∞, the following notation is proposed :

∀y ∈ R, σH(y) := σ(y + 1)− σ(2y) + σ(y − 1). (8)

The reasons why we use this activation is that it has a compact support and can be used to generate
an arbitrary piecewise constant function on [0, 1].

Figure 2: The hat activation function and its regularization (τ = 4)
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2.3 Spectral Barron space

The orthonormal basis in L2(Ω) composed of the eigenfunctions {φk}k∈Nd of the Laplacian operator
with Neumann boundary conditions, where

∀k = (k1, . . . , kd) ∈ Nd, ∀x := (x1, · · · , xd) ∈ Ω, φk(x1, . . . , xd) :=

d∏
i=1

cos(πkixi). (9)

Notice that {φk}k∈Nd is also an orthogonal basis of H1(Ω). Using this basis, we have the Fourier
representation formula for any function u ∈ L2(Ω):

u =
∑
k∈Nd

û(k)φk,

where for all k ∈ Nd, û(k) := 〈φk, u〉L2(Ω). This allows to define the (spectral) Barron space [13] as
follows :

Definition 1. For all s > 0, the Barron space Bs(Ω) is defined as : [] []

Bs(Ω) :=
{
u ∈ L1(Ω) :

∑
k∈Nd

(1 + πs|k|s1)|û(k)| < +∞
}

(10)

and the space B2(Ω) is denoted B(Ω). Moreover, the space Bs(Ω) is embedded with the norm :

‖u‖Bs(Ω) :=
∑
k∈Nd

(1 + πs|k|s1)|û(k)|. (11)

[]

By [13, Lemma 4.3], it is possible to relate the Barron space to traditional Sobolev spaces :

Lemma 3. The following continuous injections hold :

• B(Ω) ↪−→ H1(Ω),

• B0(Ω) ↪−→ L∞(Ω).

The space B(Ω) has interesting approximation properties related to neural networks schemes. We
introduce the following approximation space:

Definition 2. Let χ : R→ R be measurable, m ∈ N∗ and B > 0. The space Fχ,m(B) is defined as :

Fχ,m(B) :=
{
c+

m∑
i=1

aiχ(wi · x+ bi) : c, ai, bi ∈ R, wi ∈ Rd, |c| ≤ 2B, |wi| = 1, |bi| ≤ 1,

m∑
i=1

|ai| ≤ 4B
}

(12)

Now, we are able to state the main approximation theorem.

Theorem 1. For any u ∈ B(Ω), m ∈ N∗ :

(i) there exists um ∈ FσH ,m(‖u‖B(Ω)) such that :

‖u− um‖H1(Ω) ≤
C‖u‖B(Ω)√

m
,

(ii) there exists ũm ∈ FσH,m,m(‖u‖B(Ω)) such that :

‖u− ũm‖H1(Ω) ≤
C‖u‖B(Ω)√

m
. (13)

where C is a universal constant which does not depend on d neither on u. []
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Proof. Let B := ‖u‖B(Ω). We just give a sketch of the proof of (ii), (i) being derived from similar
arguments as in [13, Theorem 2.1][]

By (i), there exists um ∈ FσH ,m(B) such that

‖u− um‖H1(Ω) ≤
CB√
m
.

The function um can be written as :

um(x) = c+

m∑
i=1

aiσH(wi · x+ bi)

for some c, ai, bi ∈ R , wi ∈ Rd for i = 1, . . . ,m with |c| ≤ 2B, |wi| = 1, |bi| ≤ 1,

m∑
i=1

|ai| ≤ 4B.

By Lemma 2 (iv), there exists C > 0 such that for all τ > 0 ‖σH − σH,τ‖H1(R) ≤
C√
τ

, it is easy to

see that

‖ũm − um‖H1(Ω) ≤
CB√
m

where

ũm(x) = c+

m∑
i=1

aiσH,m(wi · x+ bi).

Consequently,

‖u− ũm‖H1(Ω) ≤
CB√
m

which yields the desired result.

Remark 2. With other words, a barron function can be approximated in H1(Ω) by a two-layer neural

network of width m with precision O

(
1√
m

)
when the activation function is the HReLU one.

In the sequel, for all r > 0, we denote by Kr := [−2r, 2r]× [−4r, 4r]× SRd(1)× [−1, 1].

Remark 3. Let m ∈ N∗, um ∈ Fχ,m(B) with B > 0 and χ : R→ R. Then, there exists c, ai, bi ∈ R ,

wi ∈ Rd for i = 1, . . . ,m with |c| ≤ 2B, |wi| = 1, |bi| ≤ 1,

m∑
i=1

|ai| ≤ 4B such that for all x ∈ Ω,

um(x) = c+

m∑
i=1

aiχ(wi · x+ bi)

=

m∑
i=1

c+

m∑
j=1

|aj |sign(ai)χ(wi · x+ bi)

 |ai|∑m
j=1 |aj |

=

∫
Θ

[c+ aχ(w · x+ b)]dµm(c, a, w, b),

where

• the space of parameters Θ is defined by Θ := R×R×SRd(1) × R with SRd(1) the unit sphere of
Rd;

• the measure µm is a probability measure on Θ given by :

µm :=

m∑
i=1

|ai|∑m
j=1 |aj |

δ(c,
∑m
j=1 |aj |sign(ai),wi,bi).
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Remark that µm has support in KB. Moreover, let P2(Θ) denote the set of probability measures on
Θ with finite second-order moments. Then, it holds that the sequence (µm)m∈N∗ is uniformly (wrt m)
bounded in P2(Θ).

For a general domain Ω which is not of the form Ω = [0, 1]d, the solution to equation (1) does not
necessarily belong to the Barron space even if the source term has finite Barron norm. Nevertheless
for our case (Ω = [0, 1]d), there is an explicit bound of the Barron norm of the solution compared with
the source one. This gives hope for a neural network approximation of the solution.

Theorem 2. [13] Let u∗ be the solution of the equation (1) with f ∈ B0(Ω), then u∗ ∈ B(Ω). Moreover,
the following estimate holds :

‖u∗‖B(Ω) ≤ d‖f‖B0(Ω).

2.4 Infinite width two-layer neural networks

In order to ease the notation for future computations, for all τ > 0, we introduce the function Φτ :
Θ× Ω→ R defined by

∀θ := (c, a, w, b) ∈ Θ, ∀x ∈ Ω, Φτ (θ;x) := c+ aσH,τ (w · x+ b) (14)

and Φ∞ : Θ× Ω→ R defined by such that:

∀θ := (c, a, w, b) ∈ Θ, ∀x ∈ Ω, Φ∞(θ;x) := c+ aσH(w · x+ b). (15)

The space P2(Θ) is embedded with the 2-Wasserstein distance :

∀µ, ν ∈ P2(Θ), W 2
2 (µ, ν) := inf

γ∈Γ(µ,ν)

∫
Θ2

d(θ, θ̃)2dγ(θ, θ̃),

where Γ(µ, ν) is the set of probability measures on Θ2 with marginals given respectively by µ and ν
and where d is the geodesic distance in Θ. For the interested reader, the geodesic distance between
θ, θ̃ ∈ Θ can be computed as :

d(θ, θ̃) =
√

(c− c̃)2 + (a− ã)2 + dSRd (1)(w, w̃) + (b− b̃)2.

For all τ, r > 0, we introduce the operator Pτ and the functional Eτ,r defined as follows:

Definition 3. The operator Pτ : P2(Θ)→ H1(Ω) is defined for all µ ∈ P2(Θ) as :

Pτ (µ) :=

∫
Θ

Φτ (θ;x)dµ(θ).

Additionally, we define the functional Eτ,r(µ) : P2(Θ)→ R as :

Eτ,r(µ) :=

{
E(Pτ (µ)) if µ(Kr) = 1

+∞ otherwise.

.

Proposition 1. For all 0 < τ, r <∞, the functional Eτ,r is weakly lower semicontinuous.

Proof. Let (µn)n∈N∗ be a sequence of elements of P2(Θ) which narrowly converges towards some
µ ∈ P2(Θ). Without loss of generality, we can assume that µn is supported in Kr for all n ∈ N∗.
Then, it holds that :

• the limit µ has support in Kr (by Portmanteau theorem);

• moreover, let un : Ω→ R be defined such that for all x ∈ Ω,

un(x) :=

∫
Θ

Φτ (θ;x)dµn(θ) =

∫
Kr

Φτ (θ;x) dµn(θ).
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Since for all x ∈ Ω, the function Kr 3 θ 7→ Φτ (θ;x) is continuous and bounded, it then holds
that, for all x ∈ Ω,

un(x) −→
n→∞

u(x) :=

∫
Kr

Φτ (θ;x)dµ(θ) =

∫
Θ

Φτ (θ;x)dµ(θ),

where the last equality comes from the fact that µ is supported in Kr.

• It actually holds that the sequence (un)n∈N∗ is uniformly bounded in C(Ω). Indeed, there exists
Cτ > 0 such that for all x ∈ Ω and n ∈ N∗, we have

un(x)2 =

(∫
Kr

Φτ (θ;x)dµn(θ)

)2

≤
∫
Kr

Φ2
τ (θ;x)dµn(θ)

≤ Cr4

where last inequality comes from the fact that Φτ is at most quadratic in the variable θ. As a con-
sequence of the Lebesgue dominated convergence theorem, the sequence (un)n∈N∗ strongly converges
towards u in L2(Ω). Reproducing the same argument as above for the sequence (∇un)n∈N∗ , one easily
proves that this strong convergence holds in fact in H1(Ω). The fact that the functional E : H1(Ω)→ R
is continuous allows us to conclude.

Remark 4. In P2(Θ), the weak convergence is metricized by the Wasserstein distance. Hence, Eτ is
lower semicontinuous as a functional from (P2(Θ),W2) to (R, | · |).

Finally, the lower semicontinuity of Eτ,r and the weak compactness of Kr allows to prove the
existence of at least one solution to the following minimization problem :

Problem 1. For 0 < τ <∞ and 0 < r < +∞, let µ?τ,r ∈ P2(Θ) be solution to

µ?τ,r∈ argmin
µ∈P2(Θ)

Eτ,r(µ). (16)

For large values of τ and r = d‖f‖B0(Ω), solutions of (16) enable to obtain accurate approximations
of the solution of (1). This result is stated in Theorem 3.

Theorem 3. There exists C > 0 such that for all m ∈ N∗ and any solution µ?m,d‖f‖B0(Ω)
to (16) with

τ = m and r = d‖f‖B0(Ω), it holds that:∥∥∥u? − ∫
Θ

Φm(θ;x)dµ?m,d‖f‖B0(Ω)
(θ)
∥∥∥
H1(Ω)

≤ Cd
‖f‖B0(Ω)√

m

where u? is the solution of the equation (1).

Proof. For all m ∈ N∗, let ũm ∈ FσH,m,m(‖u∗‖B) satisfying (13) for u = u∗ (using Theorem 1). Since
‖u∗‖B(Ω) ≤ d‖f‖B0(Ω) thanks to Theorem 2 and by Remark 3, ũm can be rewritten using a probability
measure µm with support in Kd‖f‖B0(Ω)

as :

∀x ∈ Ω, ũm(x) =

∫
Θ

Φm(θ;x) dµm(θ).

Let µ?m,d‖f‖B0(Ω)
be a minimizer of (16) with τ = m and r = d‖f‖B0(Ω). Then, it holds that:

Em,d‖f‖B0(Ω)

(
µ?m,d‖f‖B0(Ω)

)
≤ Em,d‖f‖B0(Ω)

(µm),

which by Remark 1, is equivalent to :

a(u?m − u?, u?m − u?) ≤ a(ũm − u?, ũm − u?).
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where for all x ∈ Ω,

u?m(x) :=

∫
Θ

Φm(θ;x) dµ?m,d‖f‖B0(Ω)
(θ).

Denoting by α and L respectively the coercivity and continuity constants of a, we obtain that

‖u?m − u?‖H1(Ω) ≤
L

α
‖ũm − u?‖H1(Ω) ≤ Cd

‖f‖B0(Ω)√
m

.

3 Gradient curve

In this section, we solve Problem 1 using gradient curve techniques. More particularly, we will define
and prove the existence of a gradient descent curve such that if the convergence is asserted, then it is
necessarily towards a global minimizer.

3.1 Well-posedness

3.1.1 Well-posedness with a condition on the support

Let us fix some values of r, τ > 0 in this section.

Let Γ be the set of constant speed geodesics of Θ ie the set of curves π : [0, 1] → Θ of geodesics.
For all s ∈ [0, 1], we define the application map es : Γ → Θ such that es(π) := π(s). Owing this,
McCann interpolation gives the fundamental characterization of constant speed geodesics in P2(Θ) :

Proposition 2. [14, Proposition 2.10] For all µ, ν ∈ P2(Θ) and any minimal geodesic (µt)t∈[0,1]

between them, there exists Π ∈ P2(Γ) such that :

∀t ∈ [0, 1], µt = et#Π.

Remark 5. As e0#Π = µ and e1#Π = ν, the support of Π is included in the set of geodesics
π : [0, 1]→ Θ such that π(0) belongs to the support of µ and π(1) belongs to the support of ν.

The next result states smoothness properties of geodesics on Θ which are direct consequences of
the smoothness properties of geodesics on the unit sphere of Rd. It is a classical result and its proof is
left to the reader.

Lemma 4. There exists C > 0 such that for all (θ, θ̃) in Θ2, all geodesic π : [0, 1] → Θ such that

π(0) = θ and π(1) = θ̃ and all 0 ≤ s ≤ t ≤ 1,

|π(t)− π(s)| ≤ d(π(t), π(s)) = (t− s)d(θ, θ̃) ≤ C(t− s)|θ̃ − θ|
and ∣∣∣∣ ddtπ(t)

∣∣∣∣ ≤ d(θ, θ̃) ≤ C|θ̃ − θ|.

In order to prove the well-posedness, it is necessary to get information about the smoothness of
Eτ,r.

Proposition 3. The functional Eτ,r is proper, coercive, differentiable on its domain D(Eτ,r). More-
over, for all µ, ν ∈ D(Eτ,r), γ ∈ Γ(µ, ν) :

Eτ,r(ν) = Eτ,r(µ) +

∫
K2
r

vτµ(θ) · (θ̃ − θ)dγ(θ, θ̃) +O(C2
2 (γ)) (17)

with
vτµ(θ) := ∇θφτµ(θ) µ-almost everywhere (18)

where for all θ ∈ Kr,

φτµ(θ) := 〈∇Pτ (µ),∇Φτ (θ; ·)〉L2(Ω) − 〈f,Φτ (θ; ·)〉L2(Ω) +

∫
Ω

Pτ (µ)(x)dx×
∫

Ω

Φτ (θ;x)dx

= d E |Pτ (µ)(Φτ (θ; ·)).
(19)
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The properness and coercivity are easy to prove and left to the reader.

Proof. First, we focus on the proof of (17)-(19). As Φτ and E are smooth, it holds that for all x ∈ Ω,

θ, θ̃ ∈ Θ, u, ũ ∈ H1(Ω),{
Φτ (θ̃;x) = Φτ (θ;x) +∇θΦτ (θ;x) · (θ̃ − θ) +Mτ (θ, θ̃;x)

E(ũ) = E(u) + d E |u(ũ− u) +N(ũ− u),

where N(u) := E(u) for all u ∈ H2(Ω) and Mτ (θ, θ̃;x) :=

∫ 1

0

(θ̃−θ)T∇2
θΦτ (θ+t(θ̃−θ);x)(θ̃−θ)(1−t)dt.

More precisely, 

∂Φτ (θ;x)

∂c
= 1

∂Φτ (θ;x)

∂a
= στ (w · x+ b)

∂Φτ (θ;x)

∂w
= axσ′τ (w · x+ b)

∂Φτ (θ;x)

∂b
= aσ′τ (w · x+ b)

(20)

and the non zero terms of the hessian matrix write :

∂2Φτ (θ;x)

∂a∂w
= σ′τ (w · x+ b)x

∂2Φτ (θ;x)

∂a∂b
= σ′τ (w · x+ b)

∂2Φτ (θ;x)

∂2w
= aσ′′τ (w · x+ b)xxT

∂2Φτ (θ;x)

∂w∂b
= aσ′′τ (w · x+ b)x

∂2Φτ (θ;x)

∂2b
= aσ′′τ (w · x+ b).

(21)

As |σ′τ | ≤ 1, |σ′′τ | ≤ τ, |σ′′′τ | ≤ τ2, it then holds that :

• ∀x ∈ Ω, θ ∈ Kr, |Mτ (θ, θ̃;x)| ≤ Crτ |θ − θ̃|2 (Ω is bounded),

• ∀x ∈ Ω, θ ∈ Kr, |∇Mτ (θ, θ̃;x)| ≤ Cr2τ2|θ − θ̃|2 (Ω is bounded).

Moreover, there exists a constant C > 0 such that for all u ∈ H1(Ω),

|N(u)| = | E(u)| ≤ C‖u‖2H1(Ω). (22)

Thus for µ, ν ∈ D(Eτ,r) then γ is supported in K2
r and :

Eτ,r(ν) = E
(∫

Kr

Φτ (θ̃; ·)dν(θ̃)
)

= E
(∫

K2
r

Φτ (θ̃; ·)dγ(θ, θ̃)
)

= E
(∫

K2
r

Φτ (θ; ·) +∇θΦτ (θ; ·) · (θ̃ − θ) +Mτ (θ, θ̃; ·)dγ(θ, θ̃)
)

= Eτ,r(µ) + d E |Pτ (µ)

(∫
K2
r

∇θΦτ (θ; ·) · (θ̃ − θ)dγ
)

+N
(∫

K2
r

Mτ (θ, θ̃; ·)dγ
)
.

The remainder term is of order two since :
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∥∥∥ ∫
K2
r

Mτ (θ, θ̃; ·)dγ
∥∥∥2

H1(Ω)
=
∥∥∥∫

K2
r

Mτ (θ, θ̃; ·)dγ
∥∥∥2

L2(Ω)
+
∥∥∥∫

K2
r

∇Mτ (θ, θ̃; ·)dγ
∥∥∥2

L2(Ω)

≤
∫
K2
r

‖Mτ (θ, θ̃; ·)‖2L2(Ω)dγ +

∫
K2
r

‖∇Mτ (θ, θ̃; ·)‖2L2(Ω)dγ

≤ C(rτ + r2τ2)

∫
Θ2

|θ̃ − θ|2dγ

≤ C(rτ + r2τ2)C2
2 (γ),

where C2
2 (γ) :=

∫
Θ2

|θ̃ − θ|2dγ and where we used Jensen inequality to get the first inequality and

Lemma 4 to get the last inequality. Hence, with previous bound and (22)

Eτ,r(ν) = Eτ,r(µ) + d EPτ (µ)

(∫
K2
r

∇θΦτ (θ; ·) · (θ̃ − θ)dγ
)

+O(C2
2 (γ)). (23)

Now we focus on the first order term and by Fubini :

d EPτ (µ)

(∫
K2
r

∇θΦτ (θ; ·) · (θ̃ − θ)dγ
)

= 〈∇Pτ (µ),∇
∫
K2
r

∇θΦτ (θ; ·) · (θ̃ − θ)dγ〉L2(Ω)

− 〈f,
∫
K2
r

∇θΦτ (θ; ·) · (θ̃ − θ)dγ〉L2(Ω)

+

∫
Ω

Pτ (µ)dx×
∫

Ω

∫
K2
r

∇θΦτ (θ; ·) · (θ̃ − θ)dγdx

=

∫
K2
r

〈∇Pτ (µ),∇∇θΦτ (θ; ·) · (θ̃ − θ)〉L2(Ω)dγ

−
∫
K2
r

∇θ〈f,Φτ (θ; ·)〉L2(Ω) · (θ̃ − θ)dγ

+

∫
K2
r

∫
Ω

Pτ (µ)dx×
∫

Ω

∇θΦτ (θ; ·) · (θ̃ − θ)dxdγ

=

∫
K2
r

vµ(θ) · (θ̃ − θ)dγ.

where :

vµ(θ) := ∇θφµ(θ) γ ae (24)

with

φµ(θ) := 〈∇Pτ (µ),∇Φτ (θ; ·)〉L2(Ω) − 〈f,Φτ (θ; ·)〉L2(Ω) +

∫
Ω

Pτ (µ)dx×
∫

Ω

Φτ (θ; ·)dx.

Note that (24) is equivalent to

vµ(θ) := ∇θφµ(θ) µ ae

as vµ depends only on θ.

To prove a well-posedness result, some convexity is needed. More precisely, one should be certain
that Eτ,r is convex along geodesics.

Proposition 4. There exists λτ,r > 0 such that for all µ, ν ∈ D(Eτ,r) with associated geodesic µ(t) :=

et#Π given by Proposition 2, the functional t→ d Eτ,r
dt

(µt) is λτ,r Lipschitz.
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Proof. First of all, one has to prove that for all t ∈ [0, 1], µt ∈ D(Eτ,r). This is a direct consequence of
the fact that µ, ν are supported in Kr, Remark 5 and that Kr is convex (in the geodesic sense). This
proves that for all 0 ≤ t ≤ 1, µt ∈ D(Eτ,r).

Let t, s ∈ [0, 1] and take αt,s := (et, es)#Π ∈ Γ(µt, µs). By (23), it holds :

Eτ,r(µs) = Eτ,r(µt) +

∫
Θ2

d EPτ (µt)

(
∇θΦτ (θ; ·) · (θ̃ − θ)

)
dαt,s +O(C2

2 (αt,s))

equivalent to :

Eτ,r(µs)− Eτ,r(µt)
s− t

=

∫
Γ

d EPτ (µt)

(
∇θΦτ (π(t); ·) ·

(π(s)− π(t)

s− t

))
dΠ(π) +O((t− s)C2

2 (γ))

Taking the limit as s goes to t, one concludes that t→ EP (µt) is differentiable with derivative equals
to :

h(t) :=
dEτ,r(µt)

dt
=

∫
Γ

d EPτ (µt)

(
∇θΦτ (π(t); ·) ·

( d
dt
π(t)

))
dΠ(π).

To conclude, one has the decomposition :

|h(t)− h(s)| ≤
∣∣∣ ∫

Γ

d EPτ (µt)

(
(∇θΦτ (π(t); ·)−∇θΦτ (π(s); ·)) ·

( d
dt
π(t)

))
dΠ(π)

∣∣∣
+
∣∣∣ ∫

Γ

(d EPτ (µt)−d EPτ (µs))
(
∇θΦτ (π(s); ·) ·

( d
dt
π(t)

))
dΠ(π)

∣∣∣
+
∣∣∣ ∫

Γ

d EPτ (µs)

(
∇θΦτ (π(s); ·) ·

( d
dt
π(t)− d

dt
π(s)

))
dΠ(π)

∣∣∣.
(25)

Next we use the lemma of regularity stated below.

Lemma 5. The following regularity estimates hold :

• For all u, v ∈ H1(Ω),

‖d Eu−d Ev ‖L(H1(Ω)) ≤ C‖u− v‖H1(Ω)

• For all τ, r > 0, there exists C(τ, r) > 0 such that for all θ1, θ2 in Kr{
‖∇θΦτ (θ1; ·)‖H1(Ω) ≤ C(τ, r)|θ1|,

‖∇θΦτ (θ1; ·)−∇θΦτ (θ2; ·)‖H1(Ω) ≤ C(τ, r)|θ1 − θ2|.

• For all r > 0, µ, ν ∈ D(Eτ,r) :

‖Pτ (µ)‖2H1(Ω) ≤ C(τ)

∫
Θ

|θ|2dµ(θ). (26)

and

‖Pτ (µ)− Pτ (ν)‖2H1(Ω) ≤ C(τ, r)W 2
2 (µ, ν).

Proof. The proof of the first item is elementary and left to the reader. For the second one take θ̃ ∈ Θ
and remark that :

∇Φτ (θ;x) = awσ′τ (w · x+ b) (27)

and finally,
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

∇∂Φτ (θ;x)

∂c
= 0

∇∂Φτ (θ;x)

∂a
= wσ′τ (w · x+ b)

∇∂Φτ (θ;x)

∂w
= aσ′τ (w · x+ b)Id + axwTσ′′τ (w · x+ b)

∇∂Φτ (θ;x)

∂b
= awσ′′τ (w · x+ b).

(28)

By (20),

|∇θΦτ (θ1;x)−∇θΦτ (θ2;x)| ≤ C(τ) max(|θ1|, |θ2|)|θ2 − θ1|.

This is mainly because σ′τ is Lipschitz and bounded and Ω is bounded. Whereas, by (28)

|∇(∇θΦτ (θ1;x)−∇θΦτ (θ2;x))| ≤ C(τ) max(|θ1|, |θ2|)‖θ2 − θ1|.

This is mainly because σ′τ , σ
′′
τ is Lipschitz and bounded and Ω is bounded. Hence, if θ1, θ2 ∈ Kr

‖∇θΦτ (θ1; ·)−∇θΦτ (θ2; ·)‖H1(Ω) ≤ C(τ, r)|θ1 − θ2|.

The bound on ‖∇θΦτ (θ1; ·)‖H1(Ω) is obtained in a similar way. For the third item, by Jensen’s in-
equality

‖Pτ (µ)‖2H1(Ω) =

∫
Ω

(∫
θ

Φτ (θ;x)dµ(θ)

)2

dx+

∫
Ω

∣∣∣∣∫
θ

∇Φτ (θ;x)dµ(θ)

∣∣∣∣2 dx
≤
∫

Ω

∫
θ

Φ2
τ (θ;x)dµ(θ)dx+

∫
Ω

∫
θ

|∇Φτ (θ;x)|2dµ(θ)dx

≤ C(τ)

∫
Θ

|θ|2dµ(θ)

where we used the fact that Φτ ,∇Φτ are sublinear and Ω is bounded in the second inequality. The
bound for the difference term Pτ (µ)− Pτ (ν) can be proven in a similar way using Lemma 4.

Recalling (25), denoting γ := (e0, e1)#Π and by previous lemma :

|h(t)− h(s)| ≤ C(τ, r)
(
‖Pτ (µt)‖H1(Ω)

∫
Γ

|π(t)− π(s)|
∣∣∣ d
dt
π(t)

∣∣∣dΠ(π)

+ ‖Pτ (µt)− Pτ (µs)‖H1(Ω)

∫
Γ

|π(s)|
∣∣∣ d
dt
π(t)

∣∣∣dΠ(π)

+ ‖Pτ (µs)‖H1(Ω)

∫
Γ

|π(s)|
∣∣∣ d
dt
π(t)− d

dt
π(s)

∣∣∣dΠ(π)
)

≤ C(τ, r)
(
|t− s|‖Pτ (µt)‖H1(Ω)

∫
Γ

|π(1)− π(0)|2dΠ(π)

+ ‖Pτ (µt)− Pτ (µs)‖H1(Ω)

∫
Γ

sup
u
|π(u)||π(1)− π(0)|dΠ(π)

+ |t− s|‖Pτ (µs)‖H1(Ω)

∫
Γ

sup
u
|π(u)| sup

u

∣∣∣∣d2π(u)

dt2

∣∣∣∣ dΠ(π)
)

≤ C(τ, r)

(
|t− s|

(√∫
Θ2

|θ|2dµt(θ) +

√∫
Θ2

|θ|2dµs(θ)

)
(1 + C2

2 (γ)) +W2(µt, µs)C
2
2 (γ)

)

where we have used Lemma 4 to get the second inequality and the fact that sup
u

∣∣∣∣d2π(u)

dt2

∣∣∣∣ is uniformly

bounded (the curvature of Θ is bounded) to get the last one. Owing that :
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• By Remark 5 and the convexity of Kr (in the geodesic sense), for all 0 ≤ t ≤ 1 :∫
Θ

|θ|2dµt(θ) =

∫
Θ2

|π(t)|2dΠ(π) ≤ C(1 + r2).

• The natural estimate holds :

W 2
2 (µt, µs) ≤

∫
Θ2

d(θ, θ̃)2dαt,s

≤
∫

Γ

d(π(t), π(s))2dΠ(π)

= |t− s|
∫

Γ

d(π(1), π(0))2dΠ(π)

= |t− s|
∫

Θ2

d(θ, θ̃)2dγ(θ, θ̃).

This allows us to conclude that :

|h(t)− h(s)| ≤ C(τ, r)(1 + C2
2 (γ))|t− s|.

As the plan γ is supported in K2
r , we get :

|h(t)− h(s)| ≤ λτ,r|t− s|.

for some λτ,r > 0 and this finishes the proof.

The characterization of the velocity field allows to get a bound on its amplitude. This is given by
the next corollary which will be useful later in the paper.

Corollary 1. For all µ ∈ D(Eτ,r) and θ ∈ Θ:

|vµ(θ)| ≤ C(τ)r|θ|.

Proof. This can be proved combining (26), (20) and (28). The rest is just basic computations and left
to the reader.

An important consequence of last proposition is that EP is convex along geodesics. Before going
into the main result of this section, we recall the basic definition of local slope [15].

Definition 4. At every µ ∈ D(Eτ,r), the local slope writes :

|∇− Eτ,r |(µ) := lim sup
ν→µ

(f(µ)− f(ν))+

W2(µ, ν)

which may be infinite.

To understand the upcoming result, the careful reader should read appendix A which introduces
the concept of gradient curve.

Theorem 4. For all µ̃0 ∈ D(Eτ,r), there exists a unique locally Lipschitz gradient curve (µt)t which
is also a curve of maximal slope with respect to the upper gradient |∇− Eτ,r |. Moreover, there exists a
vector field vt such that for almost all t ≥ 0 :∫

Θ

v2
t dµt = ‖vt‖2L2(Θ;dµt)

< +∞ (29)

and :  ∂tµt + div(vtµt) = 0
µ0 = µ̃0

µt ∈ D(Eτ,r).
(30)
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Proof. The functional Eτ,r is lower semicontinuous by Remark 4 and it is−λτ,r convex along generalized
geodesics. Moreover, the space Θ has a curvature bounded from below which ensures that it is an
Alexandrov space of curvature bounded from below. We apply [16, Theorem 5.9, 5.11] to get the
existence and the uniqueness of a gradient curve in the sense of [16, Definition 5.8]. Being a gradient
curve, it is also a curve maximal slope in the sense of [15, Definition 1.3.2].

The existence of the vector field vt is given by the absolute continuity of the curve (µt)t (because
it is a gradient curve) and by [17, Proposition 2.5].

The work is not done here since we do not have any knowledge about the velocity field vt and the
well-posedness result is proved only for Eτ,r with r <∞.

3.1.2 Identification of the vector field vt

To pursue our reasoning, the operators G,Sh for 0 ≤ h ≤ 1 are introduced as follows :

G :=

{
Γ → TΘ
π 7→ (π(0), π̇(0))

and :

Sh :=

{
TΘ → TΘ

(θ, v) 7→
(
θ,
v

h

)
.

Furthermore, next lemma gives the local behavior of couplings along (µt)t :

Lemma 6. If µt is solution to (30) and h → γh = (e0, e1)#Πh ∈ Γo(µt, µt+h) (Πh defined in Propo-
sition 2) then for almost all t :

lim
h→0

(Sh ◦G)#Πh = (i× vt)#µt in P2(TΘ).

Moreover,

lim
h→0

W 2
2 (µt+h, exp(hvt)#µt)

h2
= 0.

Proof. Let φ be in C∞c (Θ). The continuity equation gives :∫
R+

η′(t)

∫
Θ

φdµtdt = −
∫
R+

η(t)

∫
Θ

∇θφ · vtdµtdt

for η smooth compactly supported in R+. Taking η as an approximation of the characteristic function
of [t, t+ h] and passing to the limit, one gets :

µt(φ)− µt+h(φ) = −
∫ t+h

t

∫
Θ

∇θφ · vtdµtdt.

Passing to the limit in h, one gets the differentiability almost everywhere of t→ µt(φ) with (29) and :

lim
h→0

µt+h(φ)− µt(φ)

h
=

∫
Θ

∇θφ · vtdµt.

Let νh := (Sh ◦ G)#Πh and take a limit point ν0 of (νh)h wrt the narrow convergence on P2(TΘ).
Then,
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µt+h(φ)− µt(φ)

h
=

1

h

∫
Θ2

(φ(θ̃)− φ(θ))dγh

=
1

h

∫
Γ

(φ(π(1))− φ(π(0)))dΠh(π)

=
1

h

∫
TΘ

(φ(expθ(v))− φ(θ))dG#Πh(θ, v)

=
1

h

∫
TΘ

(φ(expθ(hv))− φ(θ))d(Sh ◦G)#Πh(θ, v)

=

∫
TΘ

∇φ(θ) · vd(Sh ◦G)#Πh(θ, v)

+

∫
TΘ

R(h, θ, v)dνh(θ, v)

→
∫
TΘ

∇φ(θ) · vdν0(θ, v)

where R(h, θ, v) =
φ(expθ(hv))− φ(θ)

h
− ∇φ(θ) · v is bounded by C(φ)|v|2h (φ ∈ C∞c (Θ) and the

euclidean curvature in Θ is uniformly bounded; see [18, Chapter 8] for the definition of euclidean
curvature). In fact to get the last limit, we need a bit of work detailed below :

• For the first term :∫
TΘ

|∇φ(θ) · v|d(Sh ◦G)#Πh(θ, v) =

∫
TΘ

1

h2
|∇φ(π(0)) · π̇(0)|dΠh(π)

≤
∫
TΘ

C(φ)

h2
d(π(1), φ(0))dΠh(π)

≤ C(φ)

h2

∫
TΘ

d(π(1), π(0))2dΠh(π)

≤ C(φ)
W 2

2 (µt, µt+h)

h2

where we used the fact that φ ∈ C∞c (Θ) in the first inequality. As (µt)t is locally Lipschitz by
Theorem 4, |∇φ(θ) · v| is uniformly integrable wrt ((Sh ◦G)#Πh)h and the passage to the limit
is allowed.

• For the second one, ∫
TΘ

|R(h, θ, v)|dνh(θ, v) ≤ C(φ)h

∫
TΘ

|v|2dνh(θ, v)

= C(φ)h
W 2

2 (µt, µt+h)

h2

and using again the local Lipschitz property, we can pass to the limit which is zero.

As a consequence, ∫
TΘ

∇θφ(θ) · vdν0(θ, v) =

∫
Θ

∇θφ(θ) · vt(θ)dµt(θ)

which is no more than (by disintegration) :∫
Θ

∇θφ(θ) ·
∫
TθΘ

vdν0,θ(v)dµt(θ) =

∫
Θ

∇θφ(θ) · vt(θ)dµt(θ).

Noting ṽt(θ) :=

∫
TθΘ

vdν0,θ(v), last equation is equivalent to :

div((ṽt − vt)µt) = 0.
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Aside that, as (θ, v)→ |v|2 is positive and lower semicontinuous and for t ≥ 0 such that lim
h→0

W2(µt, µt+h)

h
= |µ′t|(t) (this is a dense set of R+ as (µt)t is locally Lipschitz) :∫

Θ

∫
TθΘ

|v|2dν0,θ(v)dµt(θ) ≤ lim inf
h→0

∫
TΘ

|v|2dνh(θ, v)

= lim inf
h→0

1

h2

∫
TΘ

|v|2dG#Πh(θ, v)

= lim inf
h→0

1

h2

∫
TΘ

|π̇(0)|2dΠh(π)

= lim inf
h→0

1

h2

∫
Θ2

d(θ, θ̃)2dγh(θ, θ̃)

= lim inf
h→0

W 2
2 (µt, µt+h)

h2

= |µ′t|2(t).

(31)

As a consequence and by Jensen inequality,

‖ṽt‖2L2(Θ;dµt)
≤
∫

Θ

∫
Tθθ

|v|2dν0,θ(v)dµt(θ) ≤ |µ′t|2(t) = ‖vt‖2L2(Θ;dµt)
. (32)

By [17, Lemma 2.4], one gets ṽt = vt. Reconsidering (32), one gets the equality case in Jensen
inequality ie : ∫

Θ

|ṽt(θ)|2 dµt(θ) =

∫
Θ

∫
TθΘ

|v|2dνh,θ(v)dµt(θ)

and as a consequence ν0,θ = δvt(θ) µt almost everywhere. And

lim
h→0

(Sh ◦G)#Πh = (i× vt)#µt

in the sense of the narrow convergence. The convergence of the v moment is given by (31)-(32) where
inequalities can be replaced by equalities (as ṽt = vt) and the lim inf can be replaced by a lim as

lim
h→0

W2(µt, µt+h)

h
= |µ′t|(t) exists :∫

Θ

∫
TθΘ

|v|2dν0,θ(v)dµt(θ) = lim
h→0

∫
TΘ

|v|2dνh(θ, v). (33)

For the θ moment, it is more obvious as for all h > 0 :∫
TΘ

|θ|2dνh(θ, v) =

∫
Θ

|θ|2dµt(θ)

and ∫
TΘ

|θ|2dν0(θ, v) =

∫
TΘ

|θ|2d(i× vt)#µt(θ) =

∫
Θ

|θ|2dµt(θ).

Consequently, ∫
TΘ

|θ|2dν0(θ, v) = lim
h→0

∫
TΘ

|θ|2dνh(θ, v). (34)

With (33)-(34), the convergence of moments is asserted. The narrow convergence combined with
the convergence of moments gives the convergence in P2(Θ) and the proof of the first part of the lemma
is finished.

For the second part, one has (exp(hvt)× i)#γh belongs to Γ(exp(hvt)#µt, µt+h)
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W 2
2 (µt+h, exp(hvt)#µt)

h2
≤ 1

h2

∫
Θ2

d(θ, θ̃)2d(exp(hvt)× i)#γh

≤ 1

h2

∫
Θ2

d(expθ(hvt(θ)), θ̃)
2dγh

≤ 1

h2

∫
Θ2

d(expθ(hvt(θ)), expθ(hv))2dνh

≤ C
∫

Θ2

|vt(θ)− v|2dνh

→h→0 0

where we have used the boundedness of the euclidean curvature of the manifold Θ in last inequality
and the fact that dνh → (i× vt)#µt proved earlier to get the limit.

We introduce the operator of projection on the manifold Θ :

Definition 5. For all θ in Θ, the projection on the tangent space of Θ is given by the operator
Πθ : Rd+3 → TθΘ. The operator Π denotes the corresponding projection on vector fields ie (ΠX)(θ) :=
ΠθX(θ) for any vector field X and any θ in Θ.

Now we are able to identify the velocity field given in Theorem 4 under a support hypothesis.

Proposition 5. Let t ≥ 0. If there exists δ > 0 such that supp(µt) ⊂ ˙Kr−δ then for µt almost
everywhere, the velocity vt in (30) is equal to −Πvµt .

Proof. On the one hand, for γh := (e0, e1)#Πh ∈ Γo(µt, µt+h), by Proposition 3 and the fact that for
all t ≥ 0, µt ∈ D(Eτ,r) :

Eτ,r(µt+h)− Eτ,r(µt) =

∫
Θ2

vµt(θ) · (θ̃ − θ)dγh(θ, θ̃) + o(W2(µt, µt+h))

which is equivalent to

Eτ,r(µt+h)− Eτ,r(µt)
h

=

∫
TΘ

vµt(θ) ·
expθ(hv)− θ

h
d(Sh ◦G)#Πh(θ, v) +

1

h
o(W2(µt, µt+h)).

Then, one can use the decomposition :

∫
TΘ

vµt(θ) ·
expθ(hv)− θ

h
d(Sh ◦G)#Πh(θ, v) =

∫
TΘ

vµt(θ) · vd(Sh ◦G)#Πh(θ, v)

+

∫
TΘ

vµt(θ) ·R(h, θ, v)d(Sh ◦G)#Πh(θ, v)

where R(h, θ, v) :=
expθ(hv)− θ

h
−v is bounded by Ch|v|2 due to the uniform boundedness of euclidean

curvature in Θ. Passing to the limit as h goes to zero and using Lemma 6, one gets the differentiability
of t→ Eτ,r(µt) almost everywhere and for almost all t ≥ 0 :

d Eτ,r(µt)
dt

=

∫
TΘ

vµt(θ) · vt(θ)dµt(θ, v).

Note that to pass to the limit to obtain last equation, we need the two following points :

• First that v · vµt(θ) is at most quadratic in (θ, v) which is given by Corollary 1.

• |vµt(θ) ·R(h, θ, v)| ≤ Cr|θ|h|v|2 by Corollary 1 and thus uniformly integrable wrt ((Sh ◦G)#Πh)h
as it is supported in Kr in the θ variable and :∫

TΘ

|v|2d(Sh ◦G)#Πh(θ, v) =
W 2

2 (µt, µt+h)

h2

which is bounded by the local Lipschitz property of (µt)t.
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Next as Πvt = vt, it holds :

d Eτ,r(µt)
dt

=

∫
Θ2

Πvµt(θ) · vt(θ)dµt(θ). (35)

On the other hand, consider the curve t→ µ̃h satisfying :

µ̃h := exp(−hΠvµt)#µt.

As supp(µt) ⊂ Kr−δ, there exists a small time interval around zero such that (µ̃h)h is in D(Eτ,r).
So with γh = (i× exp(−hΠvµt))#µt ∈ Γ(µt, µ̃h) :

Eτ,r(µ̃h)− Eτ,r(µt) =

∫
Θ2

Πvµt(θ) · (θ̃ − θ)dγh(θ, θ̃) + o(W2(µt, µ̃h))

= h

∫
Θ2

Πvµt(θ) ·
expθ(−hΠvµt(θ))− θ

h
dµt(θ) + o(W2(µt, µ̃h))

Hence,

Eτ,r(µ̃h)− Eτ,r(µt)
W2(µ̃h, µt)

=
h

W2(µ̃h, µt)

∫
Θ2

Πvµt(θ) ·
expθ(−hΠvµt(θ))− θ

h
dµt(θ) + o(1)

and getting the limsup as h goes to zero (proceeding in the similar way as above to get the limit of the

first term on the right hand side) and owing the fact that lim sup
h→0

W2(µ̃h, µt)

h
≤ ‖Πvµt‖L2(Θ;dµt) (left

to the reader) :

|∇− Eτ,r |(µt) ≥ ‖Πvµt‖L2(Θ;dµt). (36)

As t→ µt is a curve of maximal slope with respect to the upper gradient |∇− Eτ,r | of Eτ,r, one has :

d Eτ,r(µt)
dt

=

∫
Θ

Πvµt(θ) · vt(θ)dµt(θ) ≤ −
1

2
‖vt‖L2(Θ;dµt) −

1

2
|∇− Eτ,r |2(µt)

≤ −1

2
‖vt‖2L2(Θ;dµt)

− 1

2
‖Πvµt‖2L2(Θ;dµt)

where we have used (36). As a consequence,∫
Θ

(
1

2
(Πvµt)

2(θ) +
1

2
v2
t (θ)−Πvµt(θ) · vt(θ)

)
dµt(θ) ≤ 0

and

vt = −Πvµt µt a.e.

The identification of the velocity field when the support condition is satisfied allows to give an
explicit formula for the gradient curve. It is given by the characteristics :

Proposition 6. Let χt be the flow associated to the velocity field −Πvµt :
∂χt
∂t

(θ) = −Πvµt(θ)

χt(θ) = θ.

Then χ is uniquely defined, continuous, Lipschitz on Kr. Moreover, as long as supp(µt) ⊂ Kr−δ for
some δ > 0 :

µt = χt#µ0.

Proof. This is a direct consequence of the fact that vt = −Πvµt = −Π∇θφµt is C∞.
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Next lemma ensures that the curve h → exp(hvt)#µt is a geodesic. This will be useful later to
prove that the velocity field characterizes the gradient curve.

Lemma 7. For µ ∈ P2(Θ) with supp(µ) ⊂ Kr−δ for some δ > 0, the map νh : h→ exp(−hΠvµ/‖Πvµ‖L2(Θ;dµ))#µ
is differentiable at h = 0 and moreover :

ν′0 = ∇− Eτ,r(µ)/|∇− Eτ,r |(µ).

Proof. First, we claim that |∇− Eτ,r(µ)| = ‖Πvµ(θ)‖L2(Θ;dµ). In order to prove it, take an arbitrary
unit speed geodesic s → (es)#Π starting at µ for which there exists a time interval around zero such
that (es)#Π belongs to D(Eτ,r). Note that normally, we should write a unit speed geodesic as (eδs)#Π
with δ > 0 a scaling factor but for simplicity here, we take δ = 1. As a consequence, one can write for
all s > 0 sufficiently small :

Eτ,r((es)#Π) = Eτ,r(µ) +

∫
Θ2

vµ(θ) · (θ̃ − θ)d(e0, es)#Π(θ, θ̃) + o(W2(µ, (es)#Π))

= Eτ,r(µ) +

∫
TΘ

vµ(θ) · (expθ(sv)− θ)dG#Π(θ, v) + o(W2(µ, (es)#Π)).

Dividing by s and passing to the limit as s goes to zero, one obtains :

d

ds
Eτ,r((es)#Π) =

∫
TΘ

vµ(θ) · vdG#Π(θ, v).

Note to get the last equation, we need to prove that η : s → vµ(θ) · expθ(sv)− θ
s

is uniformly

integrable wrt G#Π. In fact, this is given by Corollary 1 and the uniform curvature bound on Θ giving
|η(s)| ≤ Csr|θ||v|2. As the term Cr|θ||v|2 is integrable wrt measure G#Π (recall that it is P2 and
supported in Kr in the θ variable), we have the desired uniform integrability.

Moreover, by Cauchy-Schwartz :

d

ds
Eτ,r((es)#Π) ≥ −‖Πvµ(θ)‖L2(Θ;dµ)

√∫
TΘ

v2dG#Π(θ, v)

= −‖Πvµ(θ)‖L2(Θ;dµ)

where last equality comes from :∫
TΘ

v2dG#Π(θ, v) =

∫
Γ

π̇(0)2dΠ(π)

=

∫
Γ

d(π(0), π(1))2dΠ(π)

= W 2
2 ((e0)#Π, (e1)#Π)

= 1.

The last equality is derived from the fact that s → (es)#Π is a unit speed geodesic. To conclude, we
have proved that for all unit speed geodesic (α, 1) ∈ Cµ(D(Eτ,r))

Dµ Eτ,r((α, 1)) ≥ −‖Πvµ(θ)‖L2(Θ;dµ)

which by [16, Lemma 4.3], asserts that :

|∇− Eτ,r |(µ) ≤ ‖Πvµ(θ)‖L2(Θ;dµ). (37)

Aside that, let h > 0 :

W 2
2 (νh, ν0) ≤

∫
Θ

d2(expθ(−hΠvµ(θ)/‖Πvµ(θ)‖L2(Θ;dµ)), θ)dµ(θ)

≤ h2

∫
Θ

d2(expθ(−Πvµ(θ)/‖Πvµ(θ)‖L2(Θ;dµ)), θ)dµ(θ)

= h2

21



and :

lim sup
h→0

W2(νh, ν0)

h
≤ 1. (38)

Moreover as supp(µ) ⊂ Kr−δ, vµ is bounded in L∞ and for a small time interval around zero
νh ∈ D(Eτ,r). Consequently :

Eτ,r(νh)− Eτ,r(µ) =

∫
Θ2

vµ(θ) · (θ̃ − θ)d(i× exp(−hΠvµ/‖Πvµ(θ)‖L2(Θ;dµ)))#µ(θ)

+ o

(∫
Θ

d(θ, exp(−hΠvµ(θ)/‖Πvµ(θ)‖L2(Θ;dµ))dµ(θ)

)
=

∫
Θ

vµ(θ) · (exp(−hΠvµ(θ)/‖Πvµ(θ)‖L2(Θ;dµ))− θ)dµ(θ) + o(h).

Dividing by h and passing to the limit as h goes to zero (justifying the passage to the limit as above),
it holds :

lim
h→0

Eτ,r(νh)− Eτ,r(µ)

h
= −‖Πvµ(θ)‖L2(Θ;dµ). (39)

Additionally, with (38) :

lim sup
h→0

Eτ,r(νh)− Eτ,r(µ)

W2(νh, ν0)
≤ −‖Πvµ(θ)‖L2(Θ;dµ). (40)

To conclude :

• With (40) and (37), the claim is proved :

|∇− Eτ,r |(µ) = ‖Πvµ(θ)‖L2(Θ;dµ).

• Owing this, (38) and (40) the curve h→ νh is differentiable at h = 0 by [16, Proof of (ii) Lemma
5.4] and :

ν′0 = ∇− Eτ,r(µ)/|∇− Eτ,r |(µ).

This finishes the proof of the lemma.

3.1.3 Existence with no support limitation

Note that for the moment the domain of Eτ,r is reduced to measures supported in Kr. Using a
bootstrapping argument, the existence theorem 5 holds for the energy Eτ,+∞.

Theorem 5. For all µ0 compactly supported, there exists a curve (µt)t such that :{
∂tµt + div((−Πvµt)µt) = 0

µt=0 = µ0

(41)

and for almost all t : ∫
Θ

|Πvµt |2dµt = ‖Πvµt‖2L2(Θ;dµt)
< +∞.

Moreover, the solution satisfies :

∀t ≥ 0, µt = χt#µ0

with : 
∂χt
∂t

(θ) = −Πvµt(θ)

χ0(θ) = θ.
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Proof. Let :

• r0 be such that supp(µ0) ⊂ Kr0 ,

• denote (µrt )t the gradient curve associated to Eτ,r for r > r0.

By Corollary 1, |vµ(θ)| ≤ Cr|θ| . Hence characteristics χt starting from Kr0 verifies |χt| ≤ r0e
Crt

and for time t in

[
0, Tr :=

1

Cr
log

(
r + r0

2r0

)]
, supp(µrt ) ⊂ K(r+r0)/2 ⊂ Kr. By the definition of the

gradient curve :

∀t ∈ [0, Tr], (µrt )
′ = ∇− Eτ,r(µrt ) = (h→ exp

(
−Πvµrth

)
)′(0) (42)

by Lemma 7. Note that the right hand side of last equation does not depend explicitly on r but on µr· .
We construct the curve (µt)t for all time imposing :

∀t ∈ [0, Tr], r > r0 µt := µrt .

This is well-defined since by uniqueness of the gradient curve wrt Eτ,r, µr1t = µr2t on [0,min(Tr1 , Tr2)]
for r0 < r1 ≤ r2. Defining the sequence :

rn := (n+ 1)r0,

we can build inductively a gradient curve on

[
0,

1

Cr0

n∑
i=1

1

(i+ 1)
log

(
i+ 2

2(i+ 1)

)]
. As the width of this

interval is diverging, it is possible to construct a gradient curve on R+.
All the properties given by the theorem comes from the properties of (µrt )t derived in Theorem 4

and Proposition 6.

Remark 6. Two important remarks to make :

• We did not prove the existence of a gradient curve wrt Eτ,∞ because this functional is not convex
along geodesics and it is impossible to define gradients without such assumption.

• The uniqueness of a solution to (41) is out of the scope of this article. To prove it, one should link
(41) and the support condition to prove that locally in time, a solution to (41) coincide with the
gradient curve of Eτ,r for some r > 0 large enough. Nevertheless, this link seems to be difficult
to prove and we discard it for our purposes.

3.2 Link with backpropagation in neural network

Let m > 0 be an integer. A two-layer neural network u with σ as activation function can always be
written as :

u =
1

m

m∑
i=1

Φτ (θi, )̇ (43)

with θi ∈ Θ. Then, we differentiate the functional F : (θ1, · · · , θm)→ E

(
1

m

m∑
i=1

Φτ (θi, ·)

)
:

dFθ1,··· ,θm(dθ1, · · · , dθm) = d Eu

(
1

m

m∑
i=1

∇θΦτ (θi, ·) · dθi

)
.

Consequently, the gradient of F is given by

∇θi F(θ1, · · · , θm) =
1

m
∇θ(d Eu(Φτ (θ, ·)))θi

=
1

m
∇θφµ(θ)θi

where :
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µ :=
1

m

m∑
i=1

δθi ∈ P2(Θ). (44)

As a consequence, a gradient descent of F in the sense that :
d

dt
(θ1(t), · · · , θm(t)) = −m∇F(θ1(t), · · · , θm(t))

(θ1(0), · · · , θm(0)) = (θ1,0, · · · , θm,0)

is equivalent to the gradient curve of Eτ,+∞ where µ(0) :=
1

m

m∑
i=1

δθi,0 .

Theorem 6. Let µ0 ∈ P2(Ω) compactly supported, (µ0,m)m be such that lim
m→+∞

W2(µ0,m, µ0) = 0 and

composed by a finite number of Dirac masses located in the support of µ0. Then for all T > 0, the
associated gradient curves constructed in Theorem 5 converge in C([0, T ],P2(Ω)).

Proof. Returning back to the proof of Theorem 5 and for all time T > 0, one can find r > 0 large
enough such that µt, µt,m coincide with gradient curves on [0, T ] wrt Eτ,r. As gradient curves wrt Eτ,r
verifies the following semigroup property [16, Theorem 5.11]

∀t ∈ [0, T ], W2(µt, µt,m) ≤ eλτ,rtW2(µ0, µ0,m),

the expected convergence on C([0, T ],P2(Ω)) holds by the convergence of initial measures.

3.3 Convergence to optimum

In this section, a LaSalle’s principle argument is invoked in order to prove that the gradient curve
converges to a global minimizer of Eτ,∞. for simplicity, we note Eτ := Eτ,∞ for 0 < τ < +∞.

3.3.1 Characterization of optima

In this part, we focus on a characterization of global optima. For convenience, we extend the operator
Eτ to signed finite measures.

Lemma 8. For all µ ∈M(Θ), there exists a probability measure µp such that Eτ (µ) = Eτ (µp).

Proof. Let us first consider a positive signed measure µ ∈ M+(Θ). If µ(Θ) = 0, Φ(θ, .) = 0 µ almost
everywhere and Eτ (µ) = 0. Take µp := δ(0,0,w,b) with w, b taken arbitrary to prove the result. Now if

µ(Θ) 6= 0, consider µp := T#

(
µ

µ(Θ)

)
where T : (c, a, w, b)→ (cµ(Θ), aµ(Θ), w, b). In this case :∫

Θ

Φ(θ; ·)dµ =

∫
Θ

µ(Θ)Φ(θ; ·)dµ(θ)

µ(Θ)

=

∫
Θ

Φ(Tθ; ·)dµ(θ)

µ(Θ)

=

∫
Θ

Φ(θ; ·)dµp(θ)

where we have used the form of Φ (14)-(15) to get the last inequality.
Now take an arbitrary signed measure µ ∈M(Θ). By Hahn/Jordan decomposition theorem, there

exists P,N measurable sets (for µ) such that P ∪N = Θ and µ is respectively positive (negative) on
P(N). The signed measure µ can be written as :

µ = µP − µN
where µP , µN ∈M+(Θ). Consider following map :

G(c, a, w, b) :=

{
(−c,−a,w, b) if (a, b, w, c) ∈ N

(c, a, w, b) if (a, b, w, c) ∈ P
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and the measure :

µG := G#(µP + µN ) ∈M+(Θ).

By construction, we have Pτ

(
T#

(
µG

µG(Θ)

))
= Pτ (µ) and consequently, Eτ (µ) = Eτ

(
T#

(
µG

µG(Θ)

))
.

Lemma 9. The measure µ ∈ P2(Θ) is optimal for Problem 1 iff φµ = 0 everywhere.

Proof. Suppose µ ∈ P2(Θ) optimal then for all ν := fµ + ν⊥ ∈ M(Θ) (Lebesgue decomposition of ν
wrt µ with f ∈ L1(Θ;µ)) and owing Lemma 8 :

Eτ (µ+ tν) = E(Pτ (µ) + tPτ (ν))

= Eτ (µ) + td EPτ (µ)(Pτ (ν)) + o(t).

Hence as µ is optimal

0 =
d Eτ (µ+ tν)

dt
= d EPτ (µ)(Pτ (ν))

=

∫
Θ

d EPτ (µ)(Φτ (θ; ·))dν(θ)

=

∫
Θ

φµ(θ)dν(θ)

=

∫
Θ

φµ(θ)f(θ)dµ(θ) +

∫
Θ

φµ(θ)dν⊥(θ).

As this is true for all f ∈ L1(Θ, µ), one gets:

φµ = 0 µ ae , φµ = 0 ν⊥ ae (45)

for all ν⊥ ⊥ µ. As φµ is continuous this is equivalent to φµ = 0 everywhere. Indeed, suppose (45) for
all ν⊥ ⊥ µ. Take θ ∈ Ω, then if θ belongs to supp(µ) then by definition of the support µ(B(θ, ε)) > 0
for all ε > 0. Thus, one can take θε ∈ B(θ, ε) with φµ(θε) = 0. As θε →ε→0 θ and by the continuity
of φµ, φµ(θ) = 0. If θ 6∈ supp(µ), then δθ ⊥ µ and necessarily, φµ(θ) = 0. The reverse implication is
trivial.

Conversely suppose φµ = 0 everywhere and take ν ∈ P2(Θ), then by previous computations and
the convexity of E (slopes are increasing)

0 =
d E(µ+ t(µ− ν))

dt
=
d E(Pτ (µ) + tPτ (µ− ν))

dt
≤ E(Pτ (ν))− E(Pτ (µ))

which implies that
Eτ (µ) ≤ Eτ (ν)

and µ is optimal.

3.3.2 Escape from critical points

In this section, we use the notation :

θ = (a, c, w, b) =: (a, c, ω)

to make the difference between ”linear” variables and ”nonlinear” ones.

Lemma 10. For all µ, ν in P2(Θ) :

∀θ ∈ Θ, |φµ(θ)− φν(θ)| ≤ C
(∫

Θ

|θ1|2dµ+

∫
Θ

|θ2|2dν
)
W 2

2 (µ, ν)(1 + |θ|2)

∀θ ∈ Θ, |vµ(θ)− vν(θ)| ≤ C
(∫

Θ

|θ1|2dµ+

∫
Θ

|θ2|2dν
)
W 2

2 (µ, ν)(1 + |θ|2)
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Proof. Here we focus on vµ, the proof for φµ being very similar. Considering (18)-(19), one can
decompose vµ as

vµ =: vµ,1 + v2 + vµ,3.

By standard computations and for γ ∈ Γo(µ, ν)

vµ,1 − vν,1 =

∫
Θ2

∫
Ω

∇θ∇Φτ (θ;x)(∇Φτ (θ1;x)−∇Φτ (θ2;x))dxdγ(θ1, θ2).

Owing (27)-(28), one gets

|vµ,1(θ)− vν,1(θ)| ≤ C(τ)

∫
Θ2

max(|θ1|, |θ2|)|θ1 − θ1||θ|2dxdγ(θ1, θ2)

≤ C(τ)

(∫
Θ

|θ1|2dµ+

∫
Θ

|θ2|2dν
)
W 2

2 (µ, ν)|θ|2

where we used the Cauchy-Schwartz inequality. For vµ,3, one has :

vµ,3 − vν,3 =

∫
Θ2

∫
Ω

Φτ (θ1; ·)− Φτ (θ2; ·)dxdγ ×
∫

Ω

∇θΦτ (θ; ·)dx.

Owing (20), one gets :

|vµ,3(θ)− vν,3(θ)| ≤ C(τ)

∫
Θ2

∫
Ω

max(|θ1, θ2|)|θ1 − θ1|dxdγ(θ1, θ2)|θ|

≤ C(τ)

(∫
Θ

|θ1|2dµ+

∫
Θ

|θ2|2dν
)
W 2

2 (µ, ν)|θ|

where we used again the Cauchy-Schwartz inequality.

Proposition 7. Let µ ∈ P2(Θ) such that φµ 6= 0 somewhere. Then there exist a set A ⊂ Θ and
ε > 0 such that if there exists t0 > 0 with W2(µt0 , µ) ≤ ε and µt0(A) > 0, then there exists a time
0 < t0 < t1 < +∞ such that W2(µt1 , µ) > ε.

Proof. As φµ is linear in a and c, it can be written as :

φµ(θ) =: aφ̃µ(ω) + crµ.

By hypothesis, the set
A0 := {θ ∈ Θ | φµ(θ) 6= 0}

is a non empty (open set). This is equivalent to say that either φ̃µ(ω) or rµ is non zero somewhere.

Suppose that φ̃µ is non zero somewhere, the case for rµ being similar. Note{
A+

0 = φ̃−1
µ (]0,+∞[),

A−0 = φ̃−1
µ (]−∞, 0[).

Additionally, Ãα designates the α sub-level set of φ̃µ. Now we focus on A−0 and suppose that this set
is non empty. The case where A+

0 is non empty is similar to handle and left to the reader.
By Lemma 11 and the regular value theorem, there exists η > 0 such that ∂Ã−η = φ̃−1

µ ({−η}) is a

(d+ 1)−orientable manifold on which ∇θ̃φ̃µ is non zero. With our choice of activation function σH,τ ,

it is easy to prove that Ã−η is a bounded set. Indeed, if b is large enough then x→ σH,τ (w · x+ b) is

zero on Ω and φ̃µ(w, b) is zero.

On ∂Ã−η, the gradient ∇φ̃µ is pointing outward Ã−η and on ∂Ã−η the outward component |∇θ̃φ̃µ ·
nout| > β for some β > 0 since it is non zero on a compact set. Hence, defining :

A := {(a, c, ω) | ω ∈ Ã−η}

and owing that vµ,a = φ̃µ(ω), vµ,ω = a∇ωφ̃µ(ω), it holds :

26



{
vµ,a < η on A

vµ,ω · nout > β on ∂Ã−η.
(46)

By contradiction, suppose that µt0 has non zero mass on A and that W2(µ, µt) ≤ ε (with ε fixed
later) for all time t ≥ t0. Then using Lemma 10, one has :

|vµt(θ)− vµ(θ)| ≤ C(τ, µ)(1 + |θ|2)ε (47)

and
|φµt(θ)− φµ(θ)| ≤ C(τ, µ)(1 + |θ|2)ε.

One takes ε :=
η

2C(τ, µ)r
where r is a solution of :

(r − 1)µt0(A) >

∫
|θ|2dµ+

η

2C(τ, µ)r

which exists since µt0(A) > 0 by hypothesis. On the set {θ ∈ A | 1 + |θ|2 ≤ r} and by (47), we have :

|vµt(θ)− vµ(θ)| ≤ η

2

and so by (46) and the fact that vt = −vµt :{
vt,a > η/2 on A

vt,ω · nout < −β/2 on ∂Ã−η.

The general picture is given by Figure 3. As a consequence, there exists a time t1 such that the
set {θ ∈ A | 1 + |θ|2 ≤ r} has no mass and∫

|θ|2dµt(θ) ≥ (r − 1)µt(A) ≥ (r − 1)µt0(A).

At the same time, as W2(µ, µt) ≤ ε :∫
|θ|2dµt(θ) ≤

∫
|θ|2dµ(θ) + ε =

∫
|θ|2dµ(θ) +

η

2C(τ, µ)

and this a contradiction with the definition of r.

Remark 7. The set A constructed in the proof of previous lemma is of the form :

A := {(a, c, ω) | ω ∈ Ã−η1} ∪ {(a, c, ω) | ω ∈ Ãcη2
} (48)

where η1, η2 are strictly positive.

Lemma 11. For all µ ∈ P2(Θ), if φ̃µ < 0 somewhere, there exists a strictly negative regular value −η
(η > 0) of φ̃µ.

Proof. As φ̃µ < 0 somewhere and by continuity, there exists a non empty open O ⊂]−∞, 0[ such that

O ⊂ range(φ̃µ). Next, we use the Sard-Morse theorem recalled below :

Theorem 7 (Sard-Morse). Let M be a differentiable manifold and f :M→ R of class Cn, then the
image of the critical points of f (where the gradient is zero) is Lebesgue negligible in R.

This result applies to φ̃µ and the image of critical points of φ̃µ is Lebesgue negligible. As a

consequence, there exists a point o ∈ O which is a regular value of φ̃µ. As o ∈ O, it is strictly negative
and this finishes the proof of the lemma.
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a

ω

•

•

A
vt,ω

vt,ω

vt,a

Figure 3: The escape of mass towards large values of a

3.3.3 Convergence

The proof of convergence is based on the following hypothesis on the initial measure µ0 :

Hypothesis 1. The support of the measure µ0 verifies :

{0} × {0} × SRd(1)× [−
√
d− 2,

√
d+ 2] ⊂ supp(µ0)

This preliminary lemma gives an insight of why Hypothesis 1 is useful :

Lemma 12. For all µ ∈ P2(Θ), θ /∈ R2×SRd(1)×]−
√
d− 2,

√
d+ 2[, τ > 1, the potential writes :

φµ(θ) = crµ

where rµ is a constant that depends on µ. In particular, φµ(θ) does not depend on a,w, b.

Proof. For all x ∈ Ω, |b| >
√
d+ 2, τ > 1 :

|w · x+ b| ≥ |b| − |x|∞|w|1 > 2

and
σH,τ (w · x+ b) = 0.

This implies that for |b| ≥
√
d + 2, µ ∈ P2(Θ), the potential φµ writes φµ = crµ where rµ is a

constant.

In fact Hypothesis 1 is verified by the gradient curve (µt)t for all time. This is proved in the next
lemma.

Lemma 13. If µ0 satisfies Hypothesis 1 then for all t ≥ 0 and all open set O ⊂ SRd(1) × [−
√
d −

2,
√
d+ 2],

µt(R2×O) > 0

The arguments of the proof of last lemma are based on fine tools of algebraic topology. One can
find a nice introduction to the topic in the reference book [19]. With simple words, we enjoy the
homotopy properties on the sphere to prove that the measure µt keeps a large enough support.
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Proof. As µt = (χt)#µ0, we have [2, Lemma C.8] :

supp(µt) = χt(supp(µ0)). (49)

Now let ξt(w, b) := (PSRd (1)×R ◦ χt)((0, 0, w, b)) where PSRd (1)×R is the projection on SRd(1)× R (w, b
variables). We claim that the choice of the function of activation lets the extremal spheres invariant

ie ξt(w,±(
√
d+ 2)) = (w,±(

√
d+ 2)). Indeed, by Lemma 12 for θ = (c, a, w,±(

√
d+ 2)), φµ(θ) = crµ

giving : {
vµ,w(θ) = 0,
vµ,b(θ) = 0

and the claim is proven. Consequently by Lemma 14, the continuous map ξt is surjective.
Now let O ⊂ SRd(1) × [−

√
d − 2,

√
d + 2] be an open set. By what precedes, the exists a point

ω ∈ SRd(1)× [−
√
d− 2,

√
d+ 2] such that ξt(ω) ∈ O and χt((0, 0, ω)) ∈ R2×O. As (0, 0, ω) belongs to

the support of µ0 by hypothesis then χt((0, 0, ω)) belongs to the support of µt by (49) and :

µt(R2×O) > 0

which finishes the proof of the lemma.

Lemma 14 gives conditions for the surjectivity of a continuous map on a cylinder.

Lemma 14. Let f be a continuous map f : SRd(1) × [0, 1] → SRd(1) × [0, 1] =: C, homotopic to the
identity such that :

∀w ∈ SRd(1),

{
f(w, 0) =(w, 0),

f(w, 1) =(w, 1).

Then f is surjective.

Proof. Suppose that f misses a point p, then necessarily p = (w, t) with 0 < t < 1. We can write :

g : C → C \ {p}

the restriction of f on its image. The induced homomorphism on homology groups writes :

g? : Hd−1(C)→ Hd−1(C \ {p}).

Aside that, we have the classic information on homology groups of C and C \ {p} :{
Hd−1(C) = Hd−1(SRd(1)) ' Z,

Hd−1(C \ {p}) = Hd−1(SRd(1) ∨ SRd(1)) ' Z2

where ∨ designates the wedge sum. Thus, the homomorphism g? can be written as :

g? : Z→ Z2.

As g lets the two spheres w → (w, 0), w → (w, 1) invariant, we have :

g?(1) = (1, 1).

Now we note i : C \ {p} → C the canonical inclusion map. For all (a, b) ∈ Z2,

i?(a, b) = a+ b.

By hypothesis, f is homotopic to the identity so f? = I? and f?(1) = 1 but at the same time :

f?(1) = i?g?(1) = i?((1, 1)) = 2

which gives a contradiction.
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It allows to conclude on the convergence,

Theorem 8. If µ0 satisfies Hypothesis 1 and (µt)t converges towards µ? ∈ P2(Θ) then µ? is optimal
for Problem 1.

Proof. By contradiction, suppose µ? is not optimal. Then by Lemma 9, φµ? 6= 0 somewhere. Reusing
the separation of variables (see the proof of Proposition 7), φµ? writes :

φµ?(θ) = aφ̃µ(w, b) + crµ.

Hence either :

• rµ is not zero and vµ,c 6= 0 and one can prove that some mass escapes at c =∞ as in the proof
of Proposition 7.

• φ̃µ is not identically zero and the set A defined in (48) is not empty and verifies :

A ⊂ R2×SRd(1) × [−
√
d− 2,

√
d+ 2] (50)

by Lemma 12.

We focus on the last item. By Proposition 7, there exists ε > 0 such that if W2(µt0 , µ
?) ≤ ε for

some t0 and µt0(A) > 0 then there exists a further time t1 with W2(µt0 , µ
?) > ε. As (µt)t converges

towards µ?, there exists t0 such that :

∀t ≥ t0, W2(µt0 , µ
?) ≤ ε.

But by Lemma 13 and (50), for all time µt(A) > 0 and consequently there exists a time t1 > t0 with :

W2(µt0 , µ
?) > ε

which gives the contradiction.

4 Numerical experiments

In this section we will conduct numerical experiments to evaluate, in a concrete way, the potential of
the method proposed.

4.1 The effect of frequency

First, the influence of the frequency on the approximation is investigated. To do so, we consider d = 1
and the following source term for which the solution is a cosinus mode :

fk(x) := π2|k|2 cos(πk · x).

In higher dimension, we use the corresponding source term which is a tensor product of its one dimen-
sional counterpart :

fk(x1, · · · , xd) := π2|k|2l2 cos(πk1 · x1) · · · cos(πkd · xd).

The code is written using python supplemented with Keras/Tensorflow framework. One should
remember the following implementation facts :

• The neural network represents the numerical approximation taking values of x ∈ Ω as input and
giving a real as output.

• The loss function is approximated with a Monte Carlo sampling for the integrals where the
measure is uniform on Ω. For each training phase, we use batches of size 102 obtained from a
dataset of 105 samples, the number of epochs is calculated to have a time of optimization equals
to 2 (learning rate × number steps = 2). Note that the dataset is shuffled at each epoch.
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• The derivative involved in the loss is computed thanks to automatic differentiation.

• The training routine is given by the algorithm of backpropagation coupled with a gradient descent

optimizer for which the learning rate ζ :=
1

2nm
where n is the batch size and m is the width of

the neural network involved. This choice will be explained later in the analysis.

• In all the plots, the reader will see the mean curve and a shaded zone representing the interval
whose width is two times the standards deviation. Each simulation is run 4 times to calculate
these statistical parameters.

For d = 1 and a width m = 1000, the simulations are reported in Figure 4 for which very satisfactory
results for k = 1, 3 are observed, the same conclusions hold for d = 2.

(a) The case d = 1 and k = (1) (b) The case d = 1 and k = (3)

(c) The case d = 1 and k = (5)

Figure 4: The effect of frequency on the approximation when d = 1 and m = 1000
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(a) The case d = 1 and k = (1) (b) The case d = 1 and k = (3)

(c) The case d = 1 and k = (5)

Figure 5: The numerical solutions when d = 1 and m = 1000

(a) The case d = 2 and k = (1, 1) (b) The case d = 2 and k = (3, 1)

(c) The case d = 2 and k = (5, 1)

Figure 6: The effect of frequency on the approximation when d = 2

Remark 8. In this remark, we expose not rigorous heuristic arguments for the scaling related to the
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learning rate :

ξ :=
1

2nm
.

It is possible to write the learning scheme as follows :

θt+1 − θt
dt

= −∇θφnµmt (θt) (51)

where :

φnµmt (θ) :=
1

nm

∑
i,j

∇Φ(θj , xi) · ∇Φ(θ, xi)− f(xi)Φ(θ, xi) +

 1

nm

∑
i,j

Φ(θ, xi)

2

(52)

with (xi)i are n samples taken uniformly on the d dimensional cube.
By analogy, equations (51)-(52) can be interpreted as an explicit finite element scheme for the heat

equation where the space discretization parameter is h :=
1√
nm

. This gives the CFL condition :

2dt ≤ h2

which is equivalent to :

dt ≤ 1

2nm
.

In practice, one can observe that if one takes dt > O

(
1

nm

)
then the scheme diverges in the same way

as a classic finite elements scheme.
The CFL condition is bad news since it prevents the use of large batch sizes necessary to get a good

precision. In practice, the maximum on can do with a standard personal computer is n,m = 102.

4.2 The effect of dimension

To evaluate the effect of dimension on performance, we consider frequencies of the form k = (k̄, 0, · · · , 0)
where k̄ is an integer, and plot the L2 error as a function of the dimension for different k̄. This is done
in Figure 7 where several observations can be made :

• For low frequency, the precision is not affected by dimension.

• At high frequency, performance are deteriorated as dimension increases.

• Having a larger neural network captures better high frequency modes up to a certain dimension.

• Variance increases with frequency but not with dimension.
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(a) m = 10 (b) m = 100

(c) m = 1000

Figure 7: The effect of dimension for different frequencies and width

For completeness we plot in Figure 8 a high dimensional example where d = 10, k = (1, 1, 0, · · · , 0)
to show that the proposed method works well in the high dimensional/low frequency regime. The
contour plot shows the function’s values on the slice (x1, x2, 0.5, · · · , 0.5).

Figure 8: The case d = 10, k = (1, 1, 0, · · · , 0) and m = 1000

Finally we show an example where a lot of low frequencies are involved in the high dimensional
regime :

f(x) = 2π2
d−1∑
k=1

cos(π · xk) cos(π · xk+1)

whose solution is :
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u?(x) =

d−1∑
k=1

cos(π · xk) cos(π · xk+1).

For d = 6, m = 1000 and all other parameters being identical to previous cases, one gets conver-
gence of the solution on Figure 9 where the contour plot still shows the function’s values on the slice
(x1, x2, 0.5, · · · , 0.5).

(a) The loss and the L2 error (b) The numerical solution

Figure 9: The mixed mode solution

5 Conclusion

In this article, the ability of two layers neural networks to solve Poisson equation is investigated.
First the PDE problem commonly understood in the Sobolev sense, is reinterpreted in the perspective
of probability measures by writing the energy functional as a function over probabilities. Then, we
propose to solve the obtained minimization problem thanks to gradient curves for which an existence
result is shown. To justify this choice of method, the convergence towards an optimal measure is proved
assuming the convergence of the gradient curve. Finally, numerical illustrations with a detailed analysis
of the effects of dimension and frequency are presented. With this work, it becomes clear that neural
networks is a viable method to solve Poisson equation even in the high dimensional regime; something
out of reach for classical methods. Nonetheless, some questions and extensions deserve more detailed
developments. First, the main remark to observe is that the convergence is not proved theoretically
even if it is observed in practice. Additionally, the domain considered is very peculiar Ω = [0, 1]d

and it is not obvious that one could generalize such theory on domain where sin/cosine decomposition
is not available. In numerical illustrations, integrals involved in the cost were not computed exactly
but approximated by uniform sampling. It should be interesting to study the convergence of gradient
curves with respect to the number of samples.

A The differential structure of Wasserstein spaces over com-
pact Alexandrov spaces

The aim of this section is to get acquainted of the differential structure of P2(Θ). All the results
presented here are not rigorously proved and we rather give a didactic introduction to the topic, the
main reference being [16].

A.1 The differential structure of Alexandrov spaces

An Alexandrov space (A, d) is a geodesic space embedded with its distance d having a nice concave
property on triangles. With big words, Alexandrov spaces are space where the curvature is bounded
from below by a uniform constant. Before going further, we need to introduce some notation :
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Definition 6. Let α be a unit speed geodesic with α(0) = a ∈ A and s ≥ 0, then we introduce the
notation :

(α, s) := t→ α(st)

the associated geodesic of velocity s. The space of directions is the space unit speed geodesics α and it
is denoted Σa(A). The tangent cone ie the set of geodesics departing from a at speed s, of the form
(α, s) is denoted Ca(A). We make the following correspondence :

“(α, 1) = α”

for α in Σa(A).

It is not so important to focus on a rigorous definition of such spaces but one should remember the
following fundamental property of existence of a tangential cone structure :

Theorem 9. Let α, β be two unit speed geodesics and s, t ≥ 0 with α(0) = β(0) =: a ∈ A. Then the
limit :

σa((α, s), (β, t)) := lim
ε→0

1

ε
d(α(sε), β(tε))

exists. Moreover,

1

2st

(
s2 + t2 − σa((α, s), (β, t))

)
(53)

does not depend on s, t.

Previous theorem is very important as it introduces a notion angle and scalar product :

Corollary 2. One can define the local angle between (α, s), (β, t) by :

cos(∠a((α, s), (β, t))) :=
1

2st

(
s2 + t2 − σa((α, s), (β, t))

)
and a local scalar product :

〈(α, s), (β, t))〉a := st cos(∠a((α, s), (β, t))).

Remark 9. In fact, the space of directions Σa(A) is the completion of :

{(α, 1) | α unit speed geodesic departing from a }

quotiented by the relation σa = 0 wrt to the distance σa. The same is true for the tangent cone Ca(A).

A major result from [16] is that if the underlying space A is Alexandrov then the space over
probabibilty P2(A) is also an Alexandrov space and all the differential structure presented above is
available. The proof of this result is based on MCann interpolation which allows to make the link
between probability geodesics and geodesics of the underlying space.

Moreover, it is possible to define a notion of differentiation ;

Definition 7. For a curve (at)t of A, it is said to be differentiable at t = 0 if there exists (α, τ) ∈ Ca(A)
such that for all αi ∈ Σa(A), ti ≥ 0 with lim

i→∞
ti = 0, linking a0 and ati then :

lim
i→∞

(αi, d(a0, ati)/ti) = (α, t)

where the convergence has to be understood in the sense of the distance σa. Moreover, the derivative
of the curve at t = 0 writes :

a′0 := (α, t).
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A.2 The notion of gradient

Now an energy E : A→ R is introduced with the following property of convexity.

Definition 8. We say that E is convex along geodesics if there exists K ∈ R such that for all rescaled
geodesics α : [0, 1]→ A :

E(α(λ)) ≤ (1− λ) E(α(0)) + λ E(α(1))− K

2
λ(1− λ)d(α(0), α(1)).

Assuming such convexity, it is possible to define the gradient’s direction of E using the differential
structure of A (see [16, Lemma 4.3]). Before doing this, it is necessary to introduce the directional
derivative :

Definition 9. For a ∈ A and (α, s) ∈ Ca(A), one defines :

Da E((α, s)) := lim
ε→0

E(α(sε))− E(α(0))

ε
.

One can prove that the limit above exists using the convexity assumption of E . Owing this, there
exists a direction for which the local slope (see Definition 4) is attained in the sense defined below.

Theorem 10. For all a ∈ D(E) such that |∇− E |(a) <∞, there exists a unique direction α ∈ Σa(A)
such that :

Da E((α, 1)) = −|∇− E |(a).

This direction α is denoted :

∇− E(a)

|∇− E |(a)

which means that :

Da E((α, |∇− E |(a))) := −|∇− E |2(a).

With this, it is straightforward to define the notion of gradient curve.

Definition 10. A Lipschitz curve (at)t is said to be a gradient curve wrt E if it is differentiable for
all t ≥ 0 and :

∀t ≥ 0, a′t =

(
∇− E(at)

|∇− E |(at)
, |∇− E |(at)

)
∈ Cat(A).

In [16], results about existence and uniqueness of gradient curve on P2(A) are given.
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