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Abstract—Experimental link quality assessment of recent
Wi-Fi networks remains a challenge due to the rapid
development of the Wi-Fi technology, the lack of availability
of public datasets, and the difficulty to build such datasets.
This paper addresses all three issues by first providing
a publicly-available dataset using a custom-made Wi-Fi 5
experimental testbed. We then present an open-source
framework for estimating the Frame Delivery Ratio (FDR)
of a Wi-Fi link using the experimental data. The proposed
solution relies on a small number of input features to build
an estimation model of high accuracy, with an R2 coefficient
of 0.89 and a mean absolute error of 0.06.

I. INTRODUCTION

The Wi-Fi technology, based on the IEEE 802.11 stan-
dard, is constantly undergoing many changes (including
Wi-Fi 4, Wi-Fi 5, and Wi-Fi 6), and is now used in a
variety of contexts ranging from local networks (home,
universities, shopping malls, etc.) to fleets of UAVs
(Unmanned Aerial Vehicles), vehicular networks, or IoT
(Internet of Things). Wi-Fi performance is impacted by
many factors including its environment and potential
interferences (from Wi-Fi or other radio networks), or the
distance and antenna orientation between the communi-
cating devices. The performance can vary greatly, both
on short and long time scales. Some applications rely
on low-level performance metrics in order to properly
operate, a.k.a., the performance obtained at the physical
and data link layers. In this study, we focus on the Frame
Delivery Ratio (FDR) of a Wi-Fi link consisting of one
source node and one destination node. The FDR is also
an indicator of throughput and packet delay, as frame
losses imply frame retransmissions and thus delays in
the segment transmission times.

Monitoring the FDR is not an easy task. As far as
we know, there are currently no simple tools available
for the FDR monitoring during application run-time and
it requires either to modify the Wi-Fi driver to collect
statistics from the Wi-Fi interfaces or to deploy at least
one extra Wi-Fi interface configured in monitor mode,
in addition to the Wi-Fi interfaces of the source and

destination nodes. In monitor mode, a Wi-Fi interface
can collect all the frames it detects, regardless of their
destination, from which the FDR can be computed.
Both methods have the disadvantage of requiring the
modification of the system (at the hardware or software
level).

Overcoming these difficulties calls for developing an
FDR estimation tool that requires only on-line measure-
ments available at the source and/or destination nodes.
But, very few such tools exist for Wi-Fi devices and
they are based on datasets collected using old Wi-Fi
technologies not using all the features implemented since
Wi-Fi 4 which can have an impact on the FDR. In
addition, the authors are not aware of the existence of any
publicly-available datasets that use recent Wi-Fi versions
and provide the full physical and link layer headers. The
lack of such datasets makes it difficult to design the
needed estimation tools. To bridge this gap, the main
contributions presented in this paper can be summarized
as follows:

• Deployment of an experimental Wi-Fi platform, in
various environments, for the collection of physical
and data link layer headers as experimental data,
and providing an open-source FDR computation
method using that data (see Sec. III).

• Development of an open-source framework for FDR
analysis and estimation using Machine Learning
(ML) methods in Python (see Sec. IV).

• Publication of the obtained experimental datasets
for any future uses [1].

We provide a state of the art on the problem studied
in this paper in Sec. II and we conclude in Sec. V.

II. RELATED WORK

Network monitoring tools: Linux commands like ip
and iw, provide networking statistics (such as the num-
ber of transmitted and received packets) on a network
interface since the interface was set up. It is difficult to



use these commands to obtain statistics on a very short
time scale. Wavemon is a Linux tool that provides low-
level Wi-Fi parameters, e.g., the MCS index (Modulation
and Coding Scheme). However, these statistics are shown
in an ncurses window, making it difficult to extract
raw data. Monitoring tools, e.g., Wireshark, can capture
all the frames received and transmitted by a network
interface and provide the data included in all the headers
of the different TCP/IP layers. Unfortunately, to get
data from the physical and link layers of Wi-Fi frames,
the Wi-Fi interface has to been configured in monitor
mode preventing it from communicating in the moni-
tored network. This implies using a new interface solely
for monitoring purposes, and not for communication.
Finally, some Wi-Fi drivers may be modified in order
to get statistics on the FDR, however this approach
requires a modification of the driver, which is not always
straightforward or desirable.

FDR estimation tools: The survey of Gregor et al. [2]
lists the different Machine Learning (ML) solutions that
estimate a wireless link’s quality. The survey includes
only a few works relating to the Wi-Fi technology [3]–
[7] and, among them, only two estimate the FDR [3], [7].
Moreover, these works are based on old Wi-Fi versions
(the IEEE 802.11a/b/g standard amendments) which are
significantly different from Wi-Fi 4/5/6. Scanzio et al. [8]
study a Wi-Fi 4-based network, however their FDR
estimation method requires active-probing packets and
the addition of a specialized Software-Defined MAC for
managing the Wi-Fi interface.

Publicly available datasets and testbeds: Gregor et
al. [2] provide a list of open-source datasets that can be
used to estimate link quality metrics. Several datasets use
Wi-Fi networks [9]–[12], however none of them use re-
cent Wi-Fi devices. We found datasets using recent Wi-Fi
devices, but they do not provide the entire content of the
physical and link headers of the collected frames123 [13].
Concerning the publicly-available testbeds, some of them
implement the Wi-Fi technology, e.g., NICTA, w-iLabt,
NITOS, NTUA, federated within the Fed4FIRE, FIT
wireless, and ORBIT testbeds. Among them, only OR-
BIT implements Wi-Fi versions 4 or higher. Moreover,
these testbeds offer little control in terms of node loca-
tion and antenna orientation, and only a limited diversity
of environments.

1https://zenodo.org/record/5616432#.Y34opTOZOV4
2https://zenodo.org/record/814898#.Y34saTOZOV4
3https://zenodo.org/record/3952557#.Y3ID-76ZOV4

III. EXPERIMENTAL DATA COLLECTION

Our experiments are focused on estimating the quality
of a Wi-Fi link between a source and a destination.
The source emits a stream of data which the destination
receives over an imperfect radio medium whose quality
we wish to assess.

A. Platform

The experiments are performed using a homemade
platform, allowing us to have full flexibility in its con-
figuration and location. We use an IEEE 802.11ac (Wi-
Fi 5) network operating in the 5 GHz frequency band
with a maximum channel bandwidth of 80 MHz. All the
technical details on the used Wi-Fi interfaces and the
system can be found in [1].

In the interest of keeping a high degree of fidelity
to an operating IEEE 802.11 WLAN, the choice of
transmission parameters is left up to the default rate
adaptation algorithm of the Wi-Fi interface. We use
iPerf3 to generate UDP/CBR data flows, tshark to cap-
ture the exchanged frames, and Bash and awk scripts to
automate experiments, and to extract and format data.

We opted for the approach using a Wi-Fi interface
configured in monitor mode4 to collect the Wi-Fi phys-
ical and link layer headers. Therefore, our platform
consists of three nodes: a source, a destination, and a
monitor node. The monitor node acts as a sniffer that
simply collects all the frames exchanged in its vicinity,
but does not participate in any of the communications.
The monitor is placed close to the destination in the
effort to closely replicate its wireless environment and
the frames it receives. Since the monitor is simply an
intermediary for the destination, there is of course an
inherent measurement error.

B. Experimental setup and environment

One of the main goals in our data collection campaign
was to have a diverse set of measurements reflecting
the impact of various environments on the FDR. In this
section, we describe the different experimental setups, as
well as some of the boundaries of those setups. A single
experimental setup on our platform is described by:

1) the physical environment and Line of Sight (LoS);
2) the distance (in meters) between the source and the

destination and the position of the nodes’ antennas.
Each experimental setup with given values for the dif-
ferent parameters (physical environment, LoS, distance,
antennas’ position) is called a scenario. Every scenario
is replicated in three independent runs of 120 seconds.

4https://wiki.wireshark.org/CaptureSetup/WLAN
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1) Physical environment and LoS: The small size of
our experimental platform makes it easy to transport
in different environments. As a result, we performed
experiments in three different floors of our laboratory.
In the three environments, we ran experiments with and
without the presence of an obstacle obstructing the LoS
between the source and destination. Changing the LoS
creates diversity in the experiments at a minimal cost.

It should be noted that during all the experiments,
traffic from surrounding networks may exist. The 5GHz
band is seldom used in our laboratory, however a small
amount of traffic may come from other access points in
the building and it impacts the collected measurements.
In the interest of system fidelity, we decided to keep
the environment in its existing conditions and not try to
limit this traffic or the other perturbations created by the
movement of our colleagues.

The experiments are always conducted in a corridor,
however each floor has different characteristics:

• 1st floor: The corridor is slightly curved, and the
nodes are placed in a way that guarantees an LoS
between them when an obstacle is not present.

• 2nd floor: The corridor is straight and empty.
• 3rd floor: The corridor is also straight, but different

elements are present (e.g., tables along the walls).

2) Distance and antenna position: The distance be-
tween the source and the destination varies between
zero and 26 meters. The maximum distance that permits
successful communication depends on the chosen envi-
ronment and the position of the antennas. The antennas
can be in one of the four positions depicted in Figure 1.
It was our experience that different floors of our building
result in different propagation environments due to their
shape and construction.

The segment length is set to 1470 Bytes and the CBR
datarate is 1 Gbps, corresponding to a saturated flow.

C. Data extraction

At the end of every experimental run, the monitor
has collected a trace containing the traffic exchanged
between the source and destination nodes5. We extract
the following transmission parameters from every data
frame captured by the monitor:

• Modulation and Coding Scheme (MCS) index:
Higher MCS indexes offer higher datarates, how-
ever, they are less robust to a lossy channel.

5We recall that the monitor’s trace is merely an approximation of the
real stream of traffic exchanged between the source and destination.

• Number of Spatial Streams (NSS) used for the
frame transmission: Our nodes can use one, two,
or three antennas during a transmission.

• The channel Bandwidth (BW) chosen for the
frame transmission: Our nodes can use channels of
20MHz, 40MHz, or 80MHz.

• Datarate: The physical transmission rate at which
the frame payload is sent. The datarate is dependent
on the chosen MCS, BW, NSS, and several other
IEEE 802.11 parameters.

• Received Signal Strength Indicator (RSSI): Indi-
cates the quality of the signal (in dBm) with which
the frame was received.

We then also compute several metrics from the trace:
• Number of frames captured by the monitor, denoted

frames monitor.
• Number of frames not captured, but expected by the

monitor, denoted missing monitor.
• Number of frames acknowledged in the Block Ac-

knowledgements (BACKs), denoted frames ack.
• Number of frames reported as missing in the

BACKs, denoted missing ack.
• The link layer throughput computed based on the

average frame payload length, denoted as through-
put monitor.

These measured parameters and computed metrics
constitute our database. In our final database used for
building the FDR estimation model, each observation is
the average of 100ms of experimental data. Typically,
over 600 frames are exchanged during each interval,
ensuring that this averaged value is representative of the
behaviour during the interval.

D. Link quality metric

The performance metrics of interest in this paper is
the Frame Delivery Rate (FDR) defined as:

FDR =
Number of well received frames

Number of sent frames
. (1)

However, calculating the FDR from experimental data
is far from a straightforward task as both the number
of received and sent frames are difficult to accurately
compute from traces. Since the monitor acts as an
intermediary for the destination, we regularly observed
several undesired events:

• Frames are well received by the monitor, however
marked as missing in the BACKs sent by the
destination.

• Frames are not at all received by the monitor, but
they are acknowledged by the destination in the
BACKs.

3
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Fig. 1: Possible antenna positions.

• Frames in retransmission do not consistently have
the ”retry” flag set to True.

In an effort to minimize the effect of these events, we
decided to calculate two different FDRs: a first one based
on the frames that the monitor received from the source
node, and a second one based on the BACKs received
from the destination node.

Both FDR versions rely on a mechanism called the
Sequence Number (SN) 6. Every data frame has a single
SN that is constant during all retransmissions. A stream
of frames from the same flow will have increasing SNs.
The SN enables the destination to 1) properly reassemble
a stream of frames in case they arrive out of order and 2)
acknowledge only the well-received frames and indicate
the missing frames in the BACKs sent back to the source.
The source can then consult each individual BACK to
know which frames were not properly received and only
retransmit those frames.

Thus, we compute the FDR using two different ver-
sions of Eq. 1, one based on the BACK information:

FDRack = 1− Nb. missing frames in BACKs
Nb. appeared frames in BACKs

, (2)

and a second one based on data frames’ Sequence
Numbers (SN):

FDRseq = 1− Nb. missing SNs for monitor
Max received SN - Min received SN

. (3)

Equation 3 calculates the FDR based on the number
of missing sequence numbers in a series of data frames
captured by the monitor and the difference between the
maximum and minimum SNs received in that series.
Equation 2 calculated the FDR using the number of
frames missing and the total number of frames appearing
in the BACKs captured by the monitor.

IV. DATA ANALYSIS AND PROPOSED SOLUTION

This section introduces a novel framework for a trace-
driven performance evaluation of IEEE 802.11 networks,

6We only present a high-level explanation of this mechanism, for a
detailed review we refer the reader to the IEEE 802.11 standard [14]

developed in Python, making it fully open-ource and
available online [15].

We focus on 1) identifying the highest-impact fea-
tures, i.e., transmission parameters and computed met-
rics, 2) building an FDR estimation model based on
these features, 3) studying its accuracy, and 4) discussing
a posteriori insight we can obtain using the model.
The collected traces can be divided into six datasets:
experiments with LoS named First, Second, and Third
floor, and experiments with no LoS named Obstacle 1st,
Obstacle 2nd, and Obstacle 3rd.

A. Correlation study

We first study the Pearson’s correlation coefficient
between the linear and quadratic features and the FDR.
Fig. 2 shows these correlations for both versions of FDR
for the full dataset containing all six scenarios. FDRack

does not correlate strongly with any of the other features,
and this is true even when considering the different
scenarios separately. In the interest of brevity, for the
remainder of the paper we focus solely on FDRseq .

FDRseq is strongly correlated with through-
put monitor and frames monitor. All the Pearson’s
coefficients higher than 0.4 are a combination of at
least one of these features. Surprisingly, the FDRseq

is not as highly affected by the distance between the
nodes and the RSSI as one would expect. Many existing
works have considered the FDR to be a function of
these two features, and it is the authors’ opinion that
the complexity of MIMO has made the relationship
between these features highly unpredictable. We remove
the BW and NSS features, as they have almost constant
values and weak correlations to the FDR.

B. FDR estimation model

The estimation model we aim to develop needs to
be computationally simple so that it can be executed
on small Wi-Fi-enabled devices. To this effort, we first
limit the number of input features used to build the
estimation model. We then choose a model that reflects

4



Fig. 2: Pearson’s feature correlations for the FDRack and FDRseq .

the configuration of our dataset, i.e., a small number of
features and a large number of samples.

The model presented has the following characteristics:

• We minimize the number of input features by
selecting only the features that have a Pearson’s
correlation coefficient of at least 0.4 in at least one
of the datasets. These are the MCS index, RSSI,
throughput monitor, frames monitor, datarate, and
distance 7.

• We use Ridge linear regression that has a low
complexity in the number of samples, and (poten-
tially) high complexity in the number of features.
Ridge regressions also allow us to circumvent any
multicollinearity issues that are potentially present
in experimental Wi-Fi traces.

• We use five-fold cross validation on 80% of the
data, and use the remaining 20% as a test set.

• We use grid search to find the optimal α parameter
for the Ridge linear regression. We tested all values
in the interval [0, 1] with a step of 0.01 and found
an optimal α = 0.04.

• We use polynomial features, i.e., our input features
are a collection of linear features and all their
possible quadratic combinations.

• We make sure that each scenario is represented
with an equal number of samples in the complete
dataset8.

7We refer the reader to our Jupyter notebook for a complete
correlations heatmap [15].

8Our complete dataset contains 91494 samples with 13082 samples
per scenario.

Fig. 3: Estimated FDRseq vs. ground truth FDRseq .

A scatter-plot of the estimation vs. ground truth is
shown in Fig. 3. We notice that most of the points lie
closely to the ideal estimation, with a Mean Absolute
Error (MAE) of 0.06 across the datasets, and an R2 score
of 0.89. Given the simplicity of the proposed model and
its input features, we believe this accuracy level makes
it relevant for many Wi-Fi devices and applications.

C. A posteriori data knowledge

We look at the knowledge we can extract from the
models built using the different datasets separately. We

5



train one model per dataset and we only keep the features
that have a Pearson correlation coefficient larger than
0.4 in that particular dataset9. The MAE is shown in
Fig. 4, where the y-axis is the name of the dataset used
in training, and the x-axis is the name of the test dataset.

There are several key observations we can make:
1) The obstacle datasets are both harder to estimate

and less suited for the estimation of other datasets.
2) The datasets First floor and Third floor are the

best choice when it comes to estimating the FDR
of other datasets. Interestingly, these are also the
two simplest models, as they only contain only
frames monitor and throughput monitor.

3) As expected, the best choice when it comes to
overall estimation is to use the complete dataset
named here All Data.

Fig. 4: Mean Absolute Error (MAE) when using the y-
axis train dataset to estimate the x-axis test dataset.

V. CONCLUSION

In this work, we have set up a custom-built Wi-Fi 5
experimental platform that collects frames exchanged
between a source node and a destination node, with all
their headers including the physical and link headers. We
have carried out experiments in various environments,
distances between nodes, and antennas’ positions. We
made available a database of all the parameters acces-
sible in the physical and link layer headers, as well as
several computed metrics. Using this database, we have
provided two methods for computing the FDR and a
separate correlation study, from which we have built
a simple FDR estimation model. We have shown that

9Separate training and testing datasets are always used even when
working on a single scenario.

using the complete dataset and the proposed estimation
model, we can estimate the FDR obtained in different
environments with high accuracy.

As a future work, we plan to conduct additional
experiments in other environments (anechoic chamber,
in a fleet of UAVs) and with other traffic profiles (in
terms of stream datarate and segment size, and also with
TCP) in order to complement the database.
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