
HAL Id: hal-04089941
https://hal.science/hal-04089941

Submitted on 5 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SCAPE: HW-Aware Clustering of Dataflow Actors
for Tunable Scheduling Complexity

Ophélie Renaud, Dylan Gageot, Karol Desnos, Jean-François Nezan

To cite this version:
Ophélie Renaud, Dylan Gageot, Karol Desnos, Jean-François Nezan. SCAPE: HW-Aware Cluster-
ing of Dataflow Actors for Tunable Scheduling Complexity. DASIP 2023 - Workshop on Design
and Architectures for Signal and Image Processing, HiPEAC, Jan 2023, Toulouse, France. pp.3-14,
�10.1007/978-3-031-29970-4_1�. �hal-04089941�

https://hal.science/hal-04089941
https://hal.archives-ouvertes.fr

SCAPE: HW-Aware Clustering of Dataflow
Actors for Tunable Scheduling Complexity ⋆

Ophélie Renaud1, Dylan Gageot2, Karol Desnos1[0000−0003−1527−9668], and
Jean-François Nezan1[0000−0002−0609−4592]

1 Univ Rennes, INSA Rennes, CNRS, IETR - UMR 6164, Rennes, France
first.last@insa-rennes.fr

2 Yubik, Rennes, France
dgageot@yubik.io

Abstract. This paper introduces a fast method to generate high per-
formance parallelized code from a dataflow specification of an applica-
tion. Dataflow Models of Computation (MoCs) are efficient program-
ming paradigms for expressing the parallelism of an application. Tra-
ditionally, mapping and scheduling methods for dataflow MoCs rely on
complex graph transformations to explicit their parallelism which can re-
sult in complex graph for embarrassingly parallel applications. For such
applications, state-of-the-art mapping and scheduling techniques are pro-
hibitively complex, while the exposed parallelism often exceeds the paral-
lel processing capabilities of the target architecture. We propose SCAPE,
an automated method to control the complexity of the pre-scheduling
graph transformation by using information from the architecture and
application models. By decreasing the complexity of the graph, the map-
ping scheduling task is accelerated at the potential expense of the pro-
duced schedule. Our method offers a limited and controlled decrease of
the schedule quality while enabling mapping and scheduling execution
time between 1 and 2 orders of magnitude faster than state-of-the-art
techniques.

Keywords: Dataflow model· Hierarchy · Granularity · Clustering

1 Introduction

Digital signal processing technology emerged in the 1960s and has grown rapidly,
becoming more complex over the years, particularly with the arrival of machine
learning applications a decade ago. To meet the ever-increasing need for comput-
ing power and speed of execution of these applications, developers first sought to
increase the frequency of individual Processing Elements (PEs) and then turned
to heterogeneous multicore embedded systems.

Exploiting in an optimized way the maximum parallelism of such multicore
target architectures is very challenging. The development of parallel code is
tedious and is not adapted to manage hardware and software upgrades during

⋆ This work was supported by DARK-ERA (ANR-20-CE46-0001-01).

2 O. Renaud et al.

the exploitation phase of the project. Tools such as Simulink [6] and Xilinx AI
Engine Technology [1] are then investigated to automate the rapid deployment of
new algorithms on the computing system. Both tools are based on the dataflow
approach consisting in the modeling of the algorithms by a graph in which nodes,
called actors, represent the calculations and directed arcs, called First In First
Out queue (FIFO) buffers, represent the data, called tokens, exchanges between
nodes.

The automated generation of parallel code from such dataflow models re-
quires solving several NP-Complete problems, especially for resource allocation.
Calculations are distributed on the PEs of the target architecture and will read
and write, during the execution of an application, on FIFO buffers assigned to a
range of memory addresses. The resource allocation choices can be made at com-
pile time or at runtime. The allocation at runtime leads to performance overhead
and unpredictable application behavior. For these reasons, this paper investigates
methods that allocate resources at compile time, during software synthesis. The
software synthesis process is responsible for translating a dataflow model into a
prototype.

Classic resource allocation methods involve three phases: The mapping con-
sists in distributing actors on the PEs of the target. The Scheduling consists
in ordering the execution of actors on the PEs. The Timing associates to each
actor a start time and an end time, useful to calculate the long time average
throughput, also called latency, of the application. The time required for the
mapping and scheduling process grows exponentially with the number of PEs
and the number of nodes and edges of the dataflow graph [7].

The Scaling up of Clusters of Actors on Processing Element (SCAPE) method
is introduced in this paper which is a hierarchy-based clustering method that
transforms an application to match its degree of parallelism to the parallel
computation capabilities of the targeted architecture. The method offers as
many clustering configurations as there are hierarchy levels in the Synchronous
Dataflow (SDF) input graph which gives the user the possibility to choose the
required granularity for a reduced software synthesis time.

Section 2 presents dataflow MoCs, the traditional mapping and scheduling
method and the state-of-the-art clustering heuristics. Section 3 describes the pro-
posed SCAPE method and the backbone of the resulting code. Section 4 outlines
experimental results on several granularity clustering configurations showing a
tradeoff between design space exploration time and produced schedule latency.
Finally, Section 5 concludes this paper.

2 Context and related work

2.1 SDF based dataflow MoCs

The most studied dataflow MoC is the SDF [8] illustrated in the fig. 1, in which
the integer numbers on the input and output ports of actors are the rate of
tokens respectively consumed and produced by actors at each execution of the
actors.

Title Suppressed Due to Excessive Length 3

Actor
Delay

Buffer FIFO

Rate of tokens produced
Rate of tokens consumed

C
1

1

1
A

2

B
2

D
1

E
1

2
2

Fig. 1. SDF MoC semantics

An SDF graph is usually transformed into an equivalent Single rate Directed
Acyclic Graphs (SrDAG) [12] to map and compute a periodic deadlock-free
schedule iterated infinitely. A repetition of a periodic schedule is called a graph
iteration. The single rate transformation consists in duplicating the actors by
the number of firings specified by the schedule, and in adding special actors to
distribute or gather tokens, so that the production and the consumption rates
on each FIFO are equals. Then, DAG transformation consists in breaking cyclic
data-paths. To be consistent, all cyclic data paths must contain at least one
initial data token also called delays. Therefore, breaking a cycles means replacing
FIFOs with delays by a pair of special actors which backup delayed tokens and
read the backed up tokens.

An extension of the SDF model is the Parameterized and Interfaced SDF
(PiSDF) model [4]. In this paper, the feature of interest of the PiSDF model is
its support for hierarchy. The hierarchy feature allows the internal behavior of
actors to be specified by a subgraph instead of C code. The PiSDF MoC defines
interfaces of a subgraph as input and output data ports of the parent hierarchi-
cal actor. Interfaces allow the transmission of tokens between hierarchical levels.
The hierarchy is used to represent different levels of granularity of the computa-
tions that compose an application, the lower levels of hierarchy being the finer
granularity.

These SDF based models have two main advantages justifying their interest.
The first one is to express the three types of parallelism [13], two of which are
used in this paper: task and data parallelism (pipeline being the third).

– Task parallelism is expressed by two actors belonging to parallel data-paths
like actors A and B in the fig. 1. As there is no data-path between these
actors, they can be fired at the same time.

– Data parallelism is expressed when several firings of a single actor are in-
dependent from each other. If enough data tokens are present in the input
FIFOs, then several firings can be executed concurrently. An example is the
actor C in the fig. 1 which can be executed 2 times when A and B are
executed 1 time.

The second advantage is that the model is independent of the target architecture.
An application is represented once and executed on all types of architecture
(single cores, multicores with shared or distributed memories, FPGA, etc.).

4 O. Renaud et al.

2.2 Classic flattening method

This paper focuses on tools that have chosen to allocate resources at compile
time, also called static allocation. Software synthesis can be modeled by a work-
flow. The typical static scheduling workflow is composed of four main tasks:
flattening, SrDAG transformation, mapping and scheduling, then code genera-
tion.

The flattening task of the workflow consists in putting all the actors of a
graph at the same level which means all hierarchical actors are replaced by
their subgraph. To keep the functionality of the application in fig. 2, token rates
consumed and produced in the initial subgraph are scaled up on upper levels.
Tools usually flatten the whole graph to execute the rest of the process which
brings the finer level of granularity to the top-level graph.

The SrDAG transformation task is used to reveal parallelism on flattened
graph fig. 2. It highlights the minimal number of firings of each actor to return
the graph back to its original state given by the calculation of the Repetition
Vector (RV) q. Here, actor B is fired 4 times per graph iteration, so q(B) = 4.
It also emphasizes the interdependencies between the actors, which is useful
to calculate the execution order of the actors, allowing them to be iterated
infinitely without generating a deadlock. In the figure, the named nodes are the
actor instances and the unnamed nodes are the special actors responsible for
distributing or gathering the data tokens.

CA B4 1 21

x1 x4 x2

A0

B0

B1

B2

B3

C0

C1

Flattening SrDAG Transformation

Ω C24

A B4 1 14
Input graph

21

x1 x4 x2

x1 x2

x1 x4

Fig. 2. Classic flattening process: 3 SDF actors turn into 10 SrDAG actors

The excessive complexity of the SrDAG increases the mapping opportunities
which results in a better distribution of the computations on the different PEs
and reduces the latency of the application on the target. Since the mapping
opportunities are limited to the number of PEs in the architecture, exposing more
parallelism than the number of PEs is unnecessary and time consuming. [10].
This is why reducing the exposed parallelism to the number of PE will most
likely be sufficient to fully exploit the architecture parallelism, while being much
simpler to map and schedule.

Example 1. Considering a machine learning application: Squeezenet neural net-
work whose SDF model is composed of 70 actors, its SrDAG transformation

Title Suppressed Due to Excessive Length 5

results in 5452 actors. Mapping this application on an architecture composed of
8 PEs with a greedy algorithms requires considering and evaluating 8 mapping
choices. Here the degree of parallelism is up to 1000 which is an needlessly fine
granularity.

2.3 Cluster of SDF actors

A way to reduce the complexity of mapping and scheduling algorithms is to
reduce the number of actors to map in the srDAG, without altering behavior
of the application. This reduction can be achieved using clustering techniques,
wich transform the input graph by grouping actors with a particular behavior.
Since grouping two or more actors into a single equivalent hierarchical actor may
change the behavior of the application, or even create deadlocks, clustering rules
have been introduced in [10]. These rules are illustrated in Figure 3 where SDF
graphs are represented with rectangular actors and the corresponding precedence
graphs with round actors. A cluster must respect the execution order of the actors
defined by the precedence rules (a), the initial tokens must be considered (b) and
there must be no simple path from a node of the precedence graph to another
one that contains more that one arc(c). A simple path is the one which does not
visit any node along the path more than once.

(c)(b)(a)

x
D

y
z

3

y

x z
D x z

y
y

z
x

x1
x2
x3

y1
z3
z2
z1

Fig. 3. (a) illustrate the violation of the first precedence shift condition, (b) illustrate
the violation of the hidden delay condition, and (c) illustrate the violation of the cycle
introduction condition

A method to cluster SDF actors is presented in [2] which introduced the
Pairwise Grouping of Adjacent Nodes for Acyclic graph (APGAN) algorithm.
Considering an acyclic SDF graph G = ⟨A,F ⟩ where A is a set of stateless
actors and F is a set of FIFO, the algorithm can be summarized as follows: A
cluster hierarchy is constructed by clustering exactly two adjacent vertices at
each step. At each clusterization step, the chosen pair of adjacent actors have
the maximum repetition count value ρ see Definition definition 1, associated to
their inter-connected edge.

Definition 1. If Z is a subset of actors in a connected, consistent SDF graph:
ρ(Z) ≡ gcd({q(A) |A ∈ Z})

APGAN candidates should respect the clustering rules that can be verified by
applying a reachability matrix [3]. Then repeat the process until the end of
the opportunities. Execution of hierarchical actor resulting from a clustering
operation is assumed to be atomic and is thus mapped and scheduled as a whole
on a single core. In order to execute such cluster actor, it is thus necessary to

6 O. Renaud et al.

compute a sequential schedule of all actor firings that belong to the cluster.
APGAN algorithm also provides special clustering schedules that are nested
looped schedules whose specificity is to make sequential the behavior of a cluster.
APGAN clustering technique focuses on single-core optimization.

Four clustering techniques are presented in [9]. The first one empowers the
user to select improper groups of actors, manual methods are tedious and may
introduce deadlocks. The second one consists in clustering SDF subgraphs as
long as possible. The third one is the Unique Repetition Count (URC) clustering
technique developed in section 3.1. The last one is an adaptation of Sarkar’s
multiprocessor DAG scheduling heuristic [11] based on macro dataflow model in
which the program is partitioned into tasks at compile time and the tasks are
scheduled on processors at run time. All of these methods focus on the efficient
reduction of the complexity of a graph without considering parallelism. The
method introduced in this paper involves automatically generated architecture-
adaptive parallel cluster instances.

3 SCAPE method

The objective of the SCAPE method is to apply graph transformation to the
SDF graph of an application, prior to its mapping and scheduling. To do so,
clustering of actors within the input hierarchical SDF graph aims at reducing
the complexity of the derived SrDAG used during mapping and scheduling. The
SCAPE method aims at preserving the parallelism of the application so that it
matches the parallel computing capabilities of the target architecture.

3.1 Design space exploration optimisation

The SCAPE method is composed of three steps: configuration of the granularity,
identification of particular patterns that will be the subject of clustering, and
scaling up of the last clusters on the target architecture.

Configuration of the granularity The SCAPE method takes as input the PiSDF
graph of n hierarchy levels that models the application and an integer value
corresponding to the number nc of hierarchy levels that the user wants to group
coarsely. The output of the new method is a transformed graph with the RV q
associated with the actors located in the subgraphs on n − nc level reduced to
the number of PE that compose the architecture. A graph on n levels will have
n+2 possible configurations of n− nc levels.

– Level 0 configuration: it is the state-of-the-art configuration where the entire
graph is flattened before producing the SrDAG for scheduling.

– level n+1 clustering configuration: it is grouping the entire graph into a
single actor, thus resulting in a mono-core schedule.

– level 1 clustering configuration: it corresponds to generate groups on the
bottom levels and reduce the RV q associated with the actors located in the
subgraphs on this level to the number of PE.

Title Suppressed Due to Excessive Length 7

– level l | l ∈ [2, n+1[clustering configuration: it corresponds to coarsely group-
ing bottom levels, generate groups on the just upper levels and reduce the
RV q of actors on this level to the number of PE fig. 4.

3

2

1

0

Ω C
24

A B
4 1 1 4

Ω’

CA B
4 1 21

Le
ve

l n
um

be
r

Fig. 4. Configuration based on clustering levels

Identification of particular patterns that will be the subject of clustering The
SCAPE method considers two patterns:

URC pattern: It’s a sequence of at least two sequential actors with the same
repetition count value ρ see Definition definition 1 without internal state. Such a
pattern can be the object of a cluster if the consistency of the graph is preserved
that can be verify by applying a reachability matrix.

Example 2. Considering the graph G shown in fig. 5 which contains a sequence
of actors B, C, D, and each FIFO connecting these actors presents the same
repetition count value ρ, ρ(A,B) = gcd(1, 4) = 1 and ρ(Ω,C) = gcd(1, 2) = 1.
The method transforms the graph G by replacing this identified group with
a hierarchical actor whose behavior is specified by a subgraph containing the
identified group. This way the newly created hierarchical actor executes once
per iteration and the elements it contains keep their initial execution number.
Thus the SrDAG transformation of this piece of graph which would have resulted
in 3× 8 = 24 actors is presently 1 actor.

Single Repetition Vector (SRV) pattern: It’s a single actor that does not
belong to an URC candidate, with a RV q greater than or equal to the number
of PEs of the target architecture.

Example 3. We consider the graph G shown in fig. 5 which contains an actor E
with a RV q equal to 16 and a target architecture which contains 4 cores. The
method transforms the graph G by replacing this identified actor by a hierar-
chical actor whose behavior is specified by a subgraph containing the identified
actor. This way the hierarchical actor executes once per iteration and the element
it contains keeps its native execution number. Thus the SrDAG transformation
of this piece of graph which would have resulted in 16 actors is presently 1 actor.

These two identified patterns will drastically reduce the size of the SrDAG and
consequently make the application intrinsically sequential.

8 O. Renaud et al.

Scaling up of cluster The final step, called the scaling, consists of creating clusters
of actors with a RV q matching the target architecture. The scaling is done on
the hierarchical actors located on the subgraphs at the level nc input integer
value. Level 0 and n+2 clustering are not subject to scaling. According to [8] to
preserve the consistency of a graph G, on each FIFO f the rates of consumed
and produced tokens cons and prod and the RV q of the source and sink actors
src and snk are linked by the equation:

q(src(f)) × prod(f) = q(snk(f)) × cons(f) (1)

To calculate the scaling, the RV of the hierarchical actor q(ha) shall be equal to
the greatest common divisor of the RVs of the actors of the subgraph C flattened
just above the number of PE nPE .

q(ha) = gcd(q(a ∈ C) |q(ha) ≥ nPE (2)

In case the hierarchical actor contains a FIFO with a number of delay D, special
care must be taken when scaling the actor. In particular, if the hierarchical
actor is directly connected to a delayed FIFO or indirectly via a special actor
or an interface connected to a delayed FIFO. If one condition holds true then
the calculation of the scaling is indexed on the delay value such as the rates of
consumed tokens on the delayed FIFO cons(fhad

) has to be less than or equal
to the delay value D.

q(ha) = gcd(q(a ∈ C)) | cons(fhad
) ≤ D (3)

In order to keep the consistency of the graph, the rates of tokens consumed and
produced on the input and output ports by the hierarchical actor in(ha) and
out(ha), f for final and i for the initial value, are scaled as follow:{

in(ha)f = in(ha)i × q(ha)i/q(ha)f
out(ha)f = out(ha)i × q(ha)i/q(ha)f

(4)

Thus the actors from the subgraph are executed q(a ∈ C)/q(ha) times.

Example 4. We consider the graph G shown in fig. 5 and a target architecture
with 4 PEs. As the RV q of the URC cluster is q(a ∈ URC) = 8, then the
scaling will be gcd(8, 4) = 4. Thus, the hierarchical actor URC executes 4 times
and the subgraph elements twice per iteration. Respectively as the RV q of
the SRV cluster is q(a ∈ SRV) = 16, then the scaling will be gcd(16, 4) = 4.
Thus, the hierarchical actor SRV executes 4 times and the subgraph elements
4 times per iteration. From the input graph, the classic ”flattening” approach
obtains a size of the SrDAG of 50 actors, the ”SCAPE” approach obtains a
size of the SrDAG of 10 actors. The method reduces both the number of actors
related to calculations and the number of special actors related to data transfers
on the different instances. The complexity of the graph has been divided by 5,
which considerably reduces the mapping and scheduling time of the tool without
compromising the parallelism.

Title Suppressed Due to Excessive Length 9

A B
x 1 x 8

C
x 8

D
x 8

E
x 16

A urc
x 1 x 4

srv
x 4

B
x 2

C
x 2

D
x 2

E
x 4

1 6 2 2 2 2 2 1

16 4 4 4

Input graph

Transformed graph

2

Fig. 5. SCAPE method

3.2 Code generation

The code generated by the classic flattening approach in our tool [5] takes the
form of a specific C file for each target PE. Every file contains first of all a part
dedicated to the initialization of the application which includes the definition
of the allocated buffers, actors and FIFOs initialization functions such as delay
initialization. The second part of these files is a loop representing the thread
containing the scheduled firing of actors. It is a function call implementing the
behavior of the actor. Up until now, the tool did not support code generation for
optimized actor groups. A plugin has been created to answer this new constraint.
Thanks to this plugin, a cluster of actors is translated by nested function calls
depending on whether the group contains other groups and the firing instances
of the group elements are translated by ”for” loops fig. 6.

Core0.c

A(out0_A);
B(out0_A0,out0_B0);
B(out0_A1,out0_B1);
C(out0_B);

Core1.c

B(out0_A2,out0_B2);
B(out0_A3,out0_B3);
C(out0_B);

Ω(out0_Ω);
C(out0_Ω1); C(out0_Ω2);

Core0.c Core1.c
Ω(out0_Ω){

A(out0_A);
for(int index = 0; index < instance; index++){

B(out0_A+ index *size,out0_Ω+ index *size);
}

}
Ω.c

(a)

(b)

Fig. 6. Considering the graph from fig. 4 and a two-core architecture (a) illustrates the
code generation on clustering configuration with level 0, and (b) illustrates the code
generation on clustering configuration on 2 levels

4 Experiments

The purpose of this section is to show that the proposed method offers a trade-
off between reducing mapping and scheduling time, also called analysis time,

10 O. Renaud et al.

while preserving the latency of applications in comparison to the classic flat-
tening method. The proposed method has been implemented in open source
projects into Parallel and Real-time Embedded Executives Scheduling Method
(PREESM) rapid prototyping framework. Compared to other mapping and schedul-
ing frameworks, the absolute analysis time may seem high for DAGs with a few
thousand actors. This time is due to the language used, Java, and heavyweight
implementation choices made by PREESM. Nevertheless, the comparison of the
evolution of analysis times, which relates to their complexity, would remain valid
with faster implementations of both the state-of-the-art corresponding to ”Level
0” and the proposed technique. The experiments are performed on a desktop
computer with an 8-core Intel i7-8665U processor and 31,2 GB of RAM.

4.1 Experimental setup

Figure.7 presents the ”analysis” and latency measured for the stereo applica-
tion. The application has 2 levels of hierarchy, so there are 4 possible clustering
configurations as explained in the section section 3.1. Three image processing
application use-cases such as Stereo, Stabilization and Squeezenet were used to
conduct the experiments on architectures with a 1, 2, 4, 8 or 16 of homogeneous
cores summarized in the table Table.1. These models were chosen because they
do not contain too many delays, which impends the scaling opportunities of the
SCAPE method. These applications have between 2 and 3 levels of hierarchy. For
each number of cores, only the result giving the best latency was kept, among
all levels of the SCAPE method.

4.2 Analysis time evaluation

The experimental results depicted in Fig.7 compare in red the state-of-the-art
configuration and the different shades of blue for the different levels of clustering
configuration up to 0. The analysis time curves are shown on the left side of
Fig. 7. The curves representing the clustering configuration on different levels
are between two extremes. The highest curve named ”Level 0” represents the
more complex graph with a time that increases with the number of cores due
to the time that the mapping and scheduling algorithm takes to map, schedule
and allocate memory to each of the elements of the SrDAG. The lowest curve:
the fully cluster configuration remains constant and fast whatever the number
of cores but no parallelism.

4.3 Latency evaluation

The latency curves are shown on the right side of figure Fig. 7. There are still two
extreme curves: the ”level 0” curve whose complexity allows to distribute the
actors on the different cores. That’s why the latency decreases with the number
of cores. The level 3 clustering configuration, because it is sequential, has the
longest latency and is architecture-independent. Thus the different clustering

Title Suppressed Due to Excessive Length 11

Number of PEs

La
te

nc
y

(m
s)

Number of PEs

A
na

ly
se

 ti
m

e(
m

s)

Fig. 7. Comparison of analysis time and latency between the classical flattening ap-
proach and three configurations of SCAPE method on Stereo application on several
architectures

configurations offer graphs of different levels of granularity and provide a tradeoff
between the analysis time and the latency of an application.

Results depicted in table 1 correspond to the ratio between the times ob-
tained on the state-of-the-art configuration, ”level 0”, and those obtained on
the clustering configuration that offers the best compromise between analysis
time and latency. A value greater than 1 is a speedup. The values obtained on
the Squeezenet application on level 0 configuration are estimated with an expo-
nential function. The process exceeded the RAM memory capacity of the used
machine, due to the large number of actors in the SrDAG on the state-of-the-
art configuration, and was unable to complete after 48h. Hence the relevance of
the method that allows to provide analysis and executable code even on very
complex applications.

Number of PEs

Application SDF Level SrDAG Relative time 1 2 4 8 16

Stereo 28 2 187 analysis 5.3 1.2 1.4 1.7 1.6
latency 1.0 0.9 0.9 0.8 0.8

Stabilization 22 3 98 analysis 1.5 0.5 0.5 0.6 0.7
latency 1.0 1.0 0.7 0.7 0.8

Squeezenet 98 3 5452 analysis∗ 203.5k 100.5 94.5 84.2 68.8
latency∗ 1.0 1.0 1.0 1.0 1.0

∗Estimated values
Table 1. Comparison of analysis time and latency between the classic flattening ap-
proach and best configurations of SCAPE method on three use-cases

5 Conclusion

This paper presents a new method to reduce mapping and scheduling time while
preserving the parallelism of SDF graphs. It consists in reducing the size of the

12 O. Renaud et al.

graph by clustering actors reproducing particular patterns and then reducing the
firing instances of these clusters on the target architecture. The method allows
the user to choose the potential expense of the produced schedule and reduce
the analysis time accordingly. Experimental results show that for a significantly
improved analysis time we obtain a slightly deteriorated latency of the gener-
ated code. In addition, the methods enable mapping and scheduling massively
parallel applications which were too complex for state-of-the-art approaches. Po-
tential directions for future work include identifying and clustering more complex
patterns and automating the search for the optimal level of clustering, without
needing to try all configurations.

References

1. Alok, G.: Architecture apocalypse dream architecture for deep learning inference
and compute-versal ai core. Embedded World (2020)

2. Bhattacharyya, S., Murthy, P., Lee, E.: Apgan and rpmc: Complementary heuris-
tics for translating dsp block diagrams into efficient software implementations.
Design Automation for Embedded Systems 2 (09 1997)

3. Bhattacharyya, S.S., Lee, E.A.: Scheduling synchronous dataflow graphs for effi-
cient looping. J. VLSI Signal Process. Syst. 6(3), 271–288 (dec 1993)

4. Desnos, K., Heulot, J.: PiSDF: Parameterized & Interfaced Synchronous Dataflow
for MPSoCs Runtime Reconfiguration. In: 1st Workshop on MEthods and TOols
for Dataflow PrOgramming (METODO). ECSI, Madrid, Spain (Oct 2014)

5. Heulot, J., Desnos, K., Nezan, J.F., Pelcat, M., Raulet, M., Yviquel, H., Lagalaye,
P.L., Lann, J.C.L.: An experimental toolchain based on high-level dataflow models
of computation for heterogeneous mpsoc. Proceedings of the 2012 Conference on
Design and Architectures for Signal and Image Processing pp. 1–2 (2012)

6. Klikpo, E.C., Khatib, J., Munier-Kordon, A.: Modeling multi-periodic simulink
systems by synchronous dataflow graphs. In: 2016 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS). pp. 1–10 (2016)

7. Lee, E., Ha, S.: Scheduling strategies for multiprocessor real-time dsp. In: 1989
IEEE Global Telecommunications Conference and Exhibition ’Communications
Technology for the 1990s and Beyond’. pp. 1279–1283 vol.2 (1989)

8. Lee, E.A., Messerschmitt, D.G.: Static scheduling of synchronous data flow pro-
grams for digital signal processing. IEEE Transactions on Computers C-36(1),
24–35 (1987)

9. Pino, J., Bhattacharyya, S., Lee, E.: A hierarchical multiprocessor scheduling sys-
tem for dsp applications. In: Conference Record of The Twenty-Ninth Asilomar
Conference on Signals, Systems and Computers. vol. 1, pp. 122–126 vol.1 (1995)

10. Pino, J., Bhattacharyya, S., Lee, E.: A hierarchical multiprocessor scheduling
framework for synchronous dataflow graphs (05 1995)

11. Sarkar, V.: Partitioning and scheduling parallel programs for execution on multi-
processors (1 1987)

12. Sih, G., Lee, E.: Scheduling to account for interprocessor communication within
interconnection-constrained processor networks. pp. 9–16 (01 1990)

13. Zhou, Z., Desnos, K., Pelcat, M., Nezan, J., Plishker, W., Bhattacharyya, S.:
Scheduling of parallelized synchronous dataflow actors (10 2013)

	SCAPE: HW-Aware Clustering of Dataflow Actors for Tunable Scheduling Complexity

