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In microchannels, the stability of a fluid jet injected into another immiscible fluid strongly depends on its degree of
geometric confinement. When the width of the jet, w, is larger than the channel height, H, the surface tension driven
Rayleigh-Plateau instability is suppressed so that the 2D (bidimensional)-confined jet is absolutely stable and never
collapses into bubbles (or drops) in contrast to what occurs when w≤H1,2. We here demonstrate both experimentally
and theoretically, that this picture is indeed no longer valid when Marangoni effects are considered. We experimentally
show that the addition of small length alcohol molecules into the liquid phase destabilizes a 2D-confined gas-water
microfluidic stream (w>H) leading to the generation of steady non-linear waves and further to the production of bub-
bles. Using a simple hydrodynamic model, we show through a linear analysis that the destabilization of the gas stream
may result from a Marangoni instability due the fast adsorption of the alcohol molecules which occurs on a time scale
comparable to that of the microfluidic flow.

I. INTRODUCTION:

The breakup of a cylindrical unconfined fluid jet in-
jected into another immiscible fluid is a natural phenomenon
that each of us witnesses daily when having a shower, drink-
ing at a water fountain or blowing soap bubbles3, for in-
stance. This phenomenon which has to be either controlled
or avoided in many industrial and technological applications
including polymer extrusion4, spray atomization5,6, ink jet
printing7,8, emulsification9,10 or foam generation11, has been
a major topic of research in hydrodynamics and soft matter
for more than two centuries12. Since the seminal works of
Plateau and Rayleigh13,14, it is acknowledged that quiescent
fluid cylinders are unstable and break-up into drops or bub-
bles as a result of the surface tension driven Rayleigh-Plateau
instability. However, the effect of geometric confinement
on the stability of co-flowing systems made of two immiscible
fluids may drastically change this picture1,2,15. Confined co-
flows have drawn great interest over the last two decades16–22

because of their relevance for the microfluidic production of
highly monodisperse droplets23–26 or bubbles.27–31 Two stan-
dard microfluidic methods to produce monodisperse droplets
or bubbles are the cross-flow geometry which consists of an
intersection of a main channel with two symmetrical side ones
and the axisymmetric flow focusing geometry where a needle
is centred into a capillary tube. By injecting the dispersed liq-
uid (or gas) through either the main channel or the needle and
the outer fluid through either the side channels or the outer
gap between the needle and the tube, one obtains of central
liquid (or gas) stream that is stable or breaks up into monodis-
perse droplets, depending on the operating conditions (e.g.
flow conditions, physico-chemical parameters of the fluid and
geometrical parameters of the device). Since the pioneering
works of and Cramer et al.32 and Anna et al.23, a tremendous

amount of works33–38 has been devoted to the study of the
influence of these operating parameters on the jet/droplet (or
bubble) transition, as well as on the size of the droplets pro-
duced or the width of the stable jets that are formed. The ex-
istence of two regimes of breakup: dripping in which droplet
pinch off near the location where the two immiscible fluids
meet (respectively the cross flow junction or the tip of the
needle) and jetting in which the droplet pinch off from an ex-
tended thread downstream have been identified17,18. Using a
lubrication approximation and neglecting inertial terms, Guil-
lot et al.17 have performed a linear stability analysis on the
developed flow profile for an axisymmetric jet and shown that
the transition from dripping to jetting is related to an abso-
lute convective transition of the Rayleigh plateau instability, a
conclusion that was also reached by Utada et al.19.Using this
approach and neglecting the angular dependence of the per-
turbations, they have also numerically investigated the case
of a co-flowing jet confined in a rectangular conduct that is
the most encountered geometry in microfluidic experiments
and shown that the stability of such a jet strongly depends on
its degree of geometric confinement. When the width of the
inner thread, w, is larger than the channel height, H, the sur-
face tension driven Rayleigh-Plateau instability is suppressed
so that the 2D-confined jet is absolutely stable and never col-
lapses into drops or bubbles in contrast to what occurs when
w≤H1,2. This theoretical prediction has been experimentally
checked by Humphry et al.15 and de Saint Vincent et al.39

for liquid/liquid coflows as well as by Dollet et al.1 for non-
wetting gas 2D-confined streams. It has also been theoreti-
cally confirmed by Cabezas et al.20 using a more refined hy-
drodynamic theoretical model.

In this article, we investigate the effect of surface active
molecules on the stability of a 2D-confined gas-liquid jet. We
show that the behaviour of the jet changes drastically when



2

small length alcohol molecules are added into the liquid phase
leading to its destabilization and to the formation of steady
non-linear waves, although the jet is 2D-confined and should
therefore be stable. Using a simple hydrodynamic model, we
show through a linear stability analysis that this red new re-
ported phenomenon may result from a Marangoni instability
due to the fast adsorption of the alcohol molecules onto the
gas-water interface as it occurs on a timescale comparable to
that of the microfluidic flow.

II. EXPERIMENTAL SECTION:

A. Materials

In our experiments, we work with mixtures of butan-1-
ol (Sigma Aldrich) and deionized water containing 1 g/L of
NaCl (Sigma Aldrich). In order to ensure the wettability of
the microfluidic channels, we have added 1 wt % of Tween
20 (Fisher Scientific). In our study, xbut , the mass fraction of
butanol is either 0 or 7 %. The water/butan-1-ol solution is
first prepared and then mixed with Tween 20 and stirred to
obtain an homogeneous mixture. All our experiments are per-
formed at T=23◦C. The viscosities of the system with and
without butanol measured with a Rheometer Low shear 400
from Lamy rheology are respectively 1.1 and 0.96 mPa.s. The
values of the equilibrium surface tension of these liquid solu-
tion with N2 are respectively 33.6 and 25.4 mN.m−1 for the
system without and with butanol. These values are determined
with a tensiometer (TrackerT M from Teclis Scientific, France)
that measures the shape of rising N2 bubbles formed in the liq-
uid solutions40. The time to reach the equilibrium value sur-
face tension value is very short for the butanol system (less
than 1s the resolution of this apparatus) whereas it takes sev-
eral minutes for the system without butanol. Using a commer-
cial maximum bubble pressure tensiometer, BPA2S (SINTER-
FACE Technologies, Germany), we characterize the dynamic
surface tension of the solutions at much shorter times. This
apparatus41 permits to estimate very short adsorption times
from dynamic surface tension data acquired in a bubble life-
time tli f e interval from 10−2 s up to 10 s, and even down
to tli f e = 10−3 s for solutions with water as solvent42,43. In
Fig. 1, we observe that the adsorption of butanol molecules
onto the gas/liquid interface is much faster than that of the
Tween 20 surfactant molecules. At tli f e =10−2 s, the value
of the surface tension for gas/solution with butanol system is
roughly the equilibrium one indicating that the adsorption of
the butanol molecules on the gas interface at this timescale is
already total. In contrast, at tli f e =10−2 s, the value of the
surface tension for the gas/solution without butanol system,
which has not relaxed yet to its equilibrium value, is still large
indicating that the adsorption process of Tween 20 surfactant
molecules onto the gas interface is red much slower. From ad-
ditional experiments conducted at tli f e ≃ 10−3 s on the Tween
20 surfactant solution with no butanol, we deduce that Tween
20 surfactant molecules do barely not absorb on the gas/liquid
interface at on the millisecond time scale since the value of
the measured surface tension remains close to that of water

γw=72.4 mN.m−1.

FIG. 1. Dynamic surface tensions measured for the surfactant solu-
tion made of 1 wt % of Tween 20 with 0 wt % (■) and 7 wt % (•)
butanol over the interval 1 ms−2000 ms using the maximum bubble
pressure method. Values under 10 ms for the 7 wt % butanol solution
cannot be obtained due to technical limitations of the apparatus42,43.

B. Microfluidic experiments

FIG. 2. Top view sketch of the set-up and definition of the geometric
parameters characterizing the channel and the gas jet. Insets : im-
ages of the syringe pump (Nexus 3000 from Chemyx, USA) and the
gas pressure controller (OB1 MK3+ from Elvesys, France) used to
conduct our experiments. Inset: image of the inner gas stream that
forms at the cross junction where gas and liquid meet.

Our microfluidic experiments are carried out in planar mi-
crochannels, fabricated by soft lithography techniques 44: a
molding of poly(dimethylsiloxane), PDMS (Sylgard 184 Sil-
icone Elastomer, Dow Corning) is sealed to a smooth PDMS
slab using a plasma treatment, which also makes the channel
surfaces hydrophilic. Laminar gas-liquid co-flowing streams
are formed at a symmetrical cross flow junction (see inset
of Fig. 2). The inner dimensions of the main channel are
H=63 µm, W=250 µm and L=2.4 cm. The gas (N2) is intro-
duced through the central channel and the liquid from the two
lateral channels, respectively, as depicted in Fig. 2. The liquid
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flow rate, Qw, is controlled by a syringe pump Nexus 3000
(Chemyx, USA) whereas N2 is delivered through the gas in-
let from a pressurized tank (pressure P0+∆P) by means of a
pressure controller OB1 MK3+ (Elvesys, France). The main
channel outlet is at atmospheric pressure, P0. The set-up is
placed under an inverted microscope DM IL LED (Leica, Ger-
many) with a 5−10 x objective, which is connected to a high-
speed camera FASTCAM Mini AX100 (Photron, Japan). The
rate of acquisition is 20000 frames per second and the field of
view is 600x1200 µm2. All images shown in the article are
extracted from videos taken with this framerate. Image pro-
cessing and analysis were performed using mainly “Resclice”,
“Measure” and “Analyse particles” functions of the ImageJ
software.

C. Observations and results

FIG. 3. A) Images of the two-phase flow observed for ∆P=300 mbar
and different values of Qw for the system without butanol. The ver-
tical dashed line separates the domains for which a gas stream or gas
bubbles are observed. B) Variation of the ratio between the gas jet
mean width <w> and H as a function of Qw. Insets of B: sketches of
2D-confined and 3D-unconfined jets represented in a vertical cross-
section of the rectangular channel. The horizontal dashed line corre-
sponds to the transition from a 2D-confined to a 3D-unconfined jet.

For the two liquid systems (without and with butanol), we
work at a constant ∆P value in the range [100−300] mbar
while increasing Qw from 10 to 300 µL/min. Fig. 3A shows
the evolution of the two-phase flow as a function of Qw with
no butanol. For low values of Qw, we observe a stable jet
whose uniform width, w, continuously decreases with Qw
(see Fig. 3B) until it becomes comparable to H where the
jet, which is now 3D-unconfined, takes a cylindrical shape.
As this shape is unstable with respect to the surface tension
driven Rayleigh-Plateau instability, the jet then breaks and

FIG. 4. A) Images of the two-phase flow observed for ∆P=300 mbar
and different values of Qw for the system with butanol. The green cir-
cles locate necks that spread without deforming. Multimedia views
of images g and f are available. B) Variation of the ratio between
the width of the gas jet <w> and H as a function of Qw. Insets
of B: sketches of 2D-confined and 3D-unconfined jets represented
in a vertical cross-section of the rectangular channel. The horizon-
tal dashed line corresponds to the transition from a 2D-confined to a
3D-unconfined jet.

forms monodisperse bubbles that are periodically emitted in a
dripping regime (Fig. 3A). Such a behavior has been reported
by Dollet1 on a different gas/liquid surfactant system.
Very surprisingly, when butanol is added to the liquid phase,
the behaviour and the stability of the gas jet drastically dif-
fer, as displayed in Fig. 4A. For small values of Qw, a gas jet
still forms, however, its width is no longer uniform along the
channel as some localized narrow necks are clearly noticeable
(see multimedia views of images g and f). The gas jet mean
width, <w> (this value is obtained by averaging over time the
width of the jet at a fixed position along the microchannel),
varies with Qw (Fig. 4B) up to a critical flow rate value, above
which the non-uniform jet breaks into monodisperse bubbles,
although it is still globally 2D-confined.

To get a better understanding of the mechanism of desta-
bilization of the gas stream phenomenon, we next study the
width of a short neck as it is convected. As shown in Fig. 5,
the amplitude of the disturbance δw, measured at different x
positions along the main channel, increases until it reaches a
steady state whose value depends on Qw, as reported in Fig. 6.
Surprisingly, we note that for Qw > 50, the disturbed jet does
not break into bubbles even though wmin is smaller than H and
the jet therefore adopts a circular cross-section, locally.

In this steady state regime, the neck propagates at a constant
velocity (Fig. 7A) while maintaining its shape (see multimedia
views of images g and f). Interestingly, this non-linear thick-
ness disturbance, localized in space and time, bears some sim-



4

FIG. 5. Evolution of the amplitude of a neck, δw=wmax−wmin that
is observed for the system with butanol as a function of x (in cm), the
channel position, for different values of Qw. Insets: Images of the
necks observed at different x for Qw=50 µL/min and ∆P=300 mbar.
Lines are only guide for the eyes.

FIG. 6. Variation of the steady state values of wmin (•), wmax (♦) and
δw=wmax−wmin (■) with Qw when ∆P=300 mbar, for the butanol
system. The values of these parameters (defined in Fig. 5) which
characterize the neck geometry are measured at x=1 cm. The values
of Qw for the symbols in red, green and blue are, as in Fig. 5, respec-
tively 50, 80 and 110 µL/min. Lines are only guide for the eyes.

ilarities with a soliton. The formation of these necks occurs
periodically and results from the growth of a small perturba-
tion of the jet width that takes place near the cross-junction
where the gas and the two liquid streams meet, very shortly
after the laminar gas stream has been formed. Their mean
production rate increases with Qw (see Fig. 8). The propaga-

tion velocity of these necks also increases with Qw and, in our
experiments conducted at ∆P=300 mbar, it varies from 0.5
to 1.5 m.s−1. It is also very important to outline that all the
phenomena reported herein are not triggered by the evapora-
tion of butanol, as experimentally, we observe no difference
whether the gas used for our experiments is or is not saturated
with butanol. As evidenced in Fig. 7B, the hydrodynamic in-
stability that destabilizes the gas microfluidic stream develops
in a very short time, the order of magnitude of which is the
millisecond.

FIG. 7. A) The thickness profile of the liquid film, ζ=
(W−w)

2 , along
the x direction, is plotted at different times, t. The experimental vari-
ables are ∆P=300 mbar and Qw=50 µL/min. B) Temporal variation
of the jet width at four different x positions taken along the channel
for ∆P=300 mbar and Qw=50 µL/min.

III. THEORY:

A. A first qualitative explanation

To model the instability leading to the destabilization
of the 2D-confined jet, it is first important to understand the
effect of interfacial tension on the liquid pressure.
Let us first consider the standard case, for which no
Marangoni effects are considered (e.g. for which the surface
tension remains constant). In a cylindrical 3D-unconfined
geometry, any variation of the radius R of a gas thread having
a constant pressure, P0, leads to two contributions for the
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FIG. 8. Variations of the mean production rate, f (▲), and velocity
(■), of the steady state necks with Qw when ∆P=300 mbar. Evolu-
tion of the fluid mean velocity, Vw (□) with Qw when ∆P=300 mbar.
The values of Qw (given in µL/min) for the symbols in red, green
and blue are, as in Fig. 5, respectively 50, 80 and 110. Lines are only
guide for the eyes.

FIG. 9. Sketch of the cross-section of a 2D-confined gas stream in a
vertical plane. Schematic representation of a 2D-confined gas stream
for which the disturbance of the fluid thickness taken at half-height
of the channel varies periodically along the flow direction x, accord-
ingly to ζ (x)=ζ̄ +δζ eikx.

Laplace pressure because of the two curvatures that character-
ize the gas-liquid interface. These contributions, which write
−γ/R(x) and γ

∂ 2R(x)
∂x2 with γ the gas/liquid surface tension, are

respectively related to the curvature normal to the interface
and to that along the x-axis. The first one is responsible for
the Rayleigh-Plateau instability as for a radius disturbance

of the complex form, R(x, t)=R̄ + δReikx, the pressure
disturbance in the liquid writes in a linear approximation :
δPℓ=γ( 1

R̄2 − k2)δReikx (R̄ and k are respectively the value of
the radius of the unperturbed jet and the wavevector of the
radius disturbance). The system is then always unstable since
for kR̄<1, the liquid pressure is larger in the liquid regions
where R(x, t)>R̄ than in the regions where R(x, t)<R̄ so that
a liquid flow results leading to an increase of the amplitude
of the disturbance, δR. The gas stream is then unstable and
breaks into gas bubbles.

For a 2D-confined jet, the situation is however different as
the cross section of the jet is, to a good approximation, a rect-
angle of dimensions (w−H)×H bounded with two half cir-
cles of radius H/2, as illustrated in Fig. 9. Such an approxi-
mation holds because the capillary numbers at play in our ex-
periments, Ca=ηV/γ≪1 and because the gas does not wet the
PDMS surface1. One of the two curvature radii of the inter-
face is therefore constant and equal to H/2 so that the Laplace
pressure contribution now writes:

PL =−γ
2
H

+ γ
∂ 2w/2

∂x2 (1)

where w is the width of the jet.

When γ is constant, for a disturbance of the form
w(x, t)=w̄ + δweikx, the pressure disturbance in the liquid
writes in a linear approximation : δPℓ=−γk2δweikx (w̄ and k
are respectively the width of the unpertubed jet and the wave-
vector of the width disturbance). The system is therefore al-
ways stable as for any k value, the liquid pressure is larger
in the regions where w(x, t)<w̄ than in the regions where
w(x, t)>w̄. As a result of this liquid pressure gradient, a flow
of liquid from the former regions to the latter ones occurs and
leads to a decrease of the amplitude of the disturbance, δw
that hence always stabilizes the system.

The simple Rayleigh-Plateau picture depicted above well
rationalizes our observations made on the Tween 20 surfac-
tant system with no butanol for which the gas stream becomes
unstable only when it becomes 3D-unconfined (i.e. with a
circular cross-section, as depicted in inset of Fig. 4B). How-
ever, it fails to explain why, for the system with butanol, the
gas stream may destabilize although it is still 2D-confined and
therefore should be stable.

Interestingly, maximum bubble pressure measurements
reveal that the total adsorption of butanol molecules on the
gas/liquid interface occurs faster than 10 ms (the resolution of
this apparatus for such a solution) in contrast to the Tween 20
surfactant molecules of our systems. The destabilization of
the 2D-confined gas microfluidic stream, which occurs on a
millisecond time scale, may therefore result from Marangoni
effects as butanol molecules may have time to partially ad-
sorb onto the gas/liquid interface. The Marangoni effect is
responsible for froth in liquid mixtures45. The interface of a
liquid mixture is always enriched by the molecules exhibit-
ing the lowest surface tension (butanol here) as compared to
the bulk. Under surface extension, the surface concentration
evolves and leads to an increase of γ , the surface tension. The
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system after extension retrieves its thermodynamic equilib-
rium, through an exchange of molecules between the bulk
and the interface and the value of γ becomes again equals
to γ̄ . Along this line, a disturbance of the complex form
w(x, t)=w̄+δweikx, generates an excess surface that modifies
the local surface area fraction of the butanol molecules and
hence leads to a disturbance of the local surface tension that
in the linear regime takes the complex form γ(x, t)=γ̄+δγeikx.
From Eq.(1), it therefore follows that the pressure liquid dis-
turbance computed in the linear regime has now two terms as
it is given by δPℓ=(δγ

2
H − γ̄k2δw)eikx. The second term is al-

ways stabilizing whereas the first term may possibly become
destabilizing if the real part of the complex amplitude, δγ , is
positive. A full analysis of the problem is not straightforward
as it requires to theoretically describe the kinetics of adsorp-
tion of the butanol molecules on the disturbed interface. As
this phenomenon involves an advection flux, it necessitate to
compute the fluid velocity that strongly depends on the bound-
ary Marangoni condition set by the adsorption of the butanol
molecules46. In the next paragraph, we detail this approach.

B. Modelling of the instability of a 2D-confined gas stream.

To check this plausible scenario, we perform a linear anal-
ysis of the stability of a thin layer of liquid of constant
thickness, ζ̄ , by considering a thickness disturbance of the
form ζ (x, t)=ζ̄+δζ eikx+st and assuming that at the millisec-
ond time scale of our microfluidic experiments, only the bu-
tanol molecules have time to adsorb at the gas/liquid inter-
face (the Tween 20 molecules hence do not play any role
for the destabilization phenomenon that we experimentally
witness). In the linear regime, the surface concentration
of the butanol molecules at the gas liquid interface writes
Γ(x, t)=Γ̄+δΓeikx+st so that the local surface tension varies
accordingly to γ(x, t)=γ̄+δγeikx+st where γ̄ is the value of the
gas/liquid surface tension for a butanol surface concentration
equal to Γ̄ that of the gas/liquid interface for the unperturbed
liquid layer. Although evaporation may induce Marangoni
effects47–49, we do not consider in our model the transfer by
evaporation of the butanol molecules from the liquid to the
gas. This simplification is justified, as we have experimen-
tally checked that the destabilization of the 2D-confined gas
jet is not triggered by the evaporation of butanol. Since the
exchange of butanol molecules between the bulk and the inter-
face is rather complex to theoretically describe, we decide to
make the following three simplifying assumptions. Firstly, we
consider that the adsorption/desorption kinetics of the butanol
molecules at the interface from the bulk is mono-exponential,
with a characteristic time, τ . Such an approximation which
corresponds to a first order kinetics of adsorption is expected
for a Langmuir model. We therefore consider that the bu-
tanol mass transfer mechanism is kinetically controlled and
not diffusion controlled50–52. Such assumption seems justi-
fied as the weight fraction of butanol in the bulk, 7 %, is quite
large. Secondly, at the gas/liquid interface, we neglect the
surface diffusive flow in front of the advective flow. This as-
sumption is valid as long as the Peclet number at play which

is the inverse ratio between these two fluxes satisfies the fol-
lowing condition: Pe=V λ/D≫1 (V , λ and D are the fluid
velocity at the gas/liquid interface, the wavelength of the sur-
face disturbance and the surface diffusion coefficient of the
butanol molecules (that we estimate to be similar to the bulk
one), respectively46,53. For our experiments this condition is
well satisfied as V ≃ 1 ms−1 and λ ≃ 10−3 m−1 (see Fig. 8)
and D ≃ 2,5.10−10s54, leading to Peclet numbers of the or-
der of 107. Thirdly, we consider that the surface tension of the
water/butanol mixture obeys the Eberhart’s equation55 so that:
γ(Γ)=Γγw+(1−Γ)γbut where γw and γbut are respectively the
surface tension of water and of butanol with N2. With these
ingredients, the kinetic evolution of Γ is given by46:

∂Γ

∂ t
+∇s.(vintΓ) =

Γ̄−Γ

τ
(2)

where vint is the fluid velocity vector at the gas/liquid
interface) and where ∇s=(I −nn).∇ and (I −nn) are
respectively the surface gradient operator and the surface
identity tensor, (n is the normal to the gas/liquid interface
pointing towards the gas). The second term of the left hand
side represents the advective flux of butanol at the interface.
To determine vint, one must analytically solve the fluid
flow within the cell. This is a difficult task because of the
rectangular channel geometry, so we describe the physics of
the problem by approximating the 3D velocity by a 2D one, at
half-height of the channel. Although, such an approximation
may seem severe as it necessitates that ( ζ

H )2≪1, it however
permits to identify the physical origin of the instability that
we witness as we will show below. Using a lubrication
approximation (valid for kδζ≪1), we approximate the
velocity field by a bidimensionnal one, oriented along the
x direction, varying only in the (x,y) plane. Because of the
no-slip condition at the wall and Marangoni effects, the
velocity field within the liquid writes:

v(x,y, t) =V (x, t)
y[2ζ (x, t)− y+b(x, t)]

ζ (x, t)2 ex (3)

where b(x,t)
2 is the distance between the gas-liquid interface

and the apex position of this parabolic profile (see Fig. 10).
In the linear regime, b(x, t) and V (x, t) vary accordingly to
b̄+ δbeikx+st and V̄ + δVeikx+st , respectively. Note that: (i)
V̄ is the liquid velocity at the gas/liquid interface if the thick-
ness of the liquid layer is constant and (ii) b̄=0 (for the unper-
turbed state, there is no Marangoni effect as the butanol sur-
face concentration at the gas/liquid interface is constant). For
the perturbed state, the fluid velocity vector at the gas/liquid
interface, vint, is v(x,ζ , t)=Vint(x, t)ex where:

Vint(x, t) =V (x, t)[1+b(x, t)/ζ (x, t)] (4)

With the lubrication approximation, Eq.(2) simplifies to:

∂Γ

∂ t
+

∂

∂x
(VintΓ) =

Γ̄−Γ

τ
(5)

By using Eberhart’s equation, and Eq.(5), it is straightforward
to derive that the kinetic equation that monitors the evolution



7

of γ(x, t) writes:

∂γ

∂ t
+Vint

∂γ

∂x
=

γ̄ − γ

τ
+Egγ̄

∂Vint

∂x
(6)

where Eg is the dimensionless Gibbs elasticity modulus given
by Eg=

γ−γ̄

γ̄
.

Because of the great viscosity difference between air and
the liquid, the contribution of the gas to the interface stress is
negligible compared to that of the liquid; so that the tangential
stress balance at the gas-liquid interface writes:

η
bV
ζ 2 − ∂γ

∂x
= 0 (7)

Writing the Navier-Stokes equation within the lubrication
approximation and the above expression of the velocity field,
yields the following equation:

2η
V
ζ 2 +

∂P
∂x

= 0 (8)

where the pressure P in the liquid is the sum of the Laplace
pressure PL=− 2γ

H − γ
∂ 2ζ

∂x2 given in Eq.(1) and the pressure of
the gas.

We close the problem by writing the volume conservation
of the liquid:

∂ζ

∂ t
+

∂Q
∂x

= 0 (9)

where the flux Q=
∫ ζ (x,t)

0 v(x,y)dy=bV/2+2V ζ/3.

We perform a linear stability analysis on the set of equa-
tions 6, 7, 8, and 9 that monitors the spatio-temporal response
of the system (e.g. of the disturbances δV , δζ , δγ and δb that
are proportional to eikx+st with k and s complex numbers that
represent the wavevector and the growth rate of the fluctua-
tions, respectively).

Because of the great viscosity difference between air
and the liquid, the amplitude of the gas pressure perturbation
is negligible compared to that of the liquid1, with this con-
vention, arranging the first order term of Eq.(8), using Eq.(1),
leads to the following equation:

2η
ζ̄ δV −2V̄ δζ

ζ̄ 3
+ ik(k2

γ̄δζ −2
δγ

H
) = 0 (10)

The conservation of the liquid volume yields at first order
to:

sδζ + ik
(

2
3
(
ζ̄ δV +V̄ δζ

)
+

V̄ δb
2

)
= 0 (11)

The stress continuity at the interface writes:

ηV̄
δb
ζ̄ 2

− ikδγ = 0 (12)

FIG. 10. Schematic representation of the parabolic velocity pro-
file for the cases where b=0 and where b̸=0. In the former case,
there is no surface tension gradient at the interface and therefore no
Marangoni effects.

Developing Eq.(4) at first order and using Eq.(6) gives the
last equation:

−iEgkγ̄(δV +
V̄ δb

ζ̄
)+δγ(iV̄ k+ s+

1
τ
) = 0 (13)

Eqs.(10-13) are a set of four linear equations for the four
variables of the problem. The matrix of this linear system
writes: ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2η

ζ̄ 2 0 ik3γ̄ −4 ηV̄
ζ̄ 3 − 2ik

H

2ikζ̄

3
ikV̄
2 s+ 2ikV̄

3 0

0 V̄ η

ζ̄ 2 0 −ik

−iEgkγ̄ − ikEgV̄ γ̄

ζ̄
0 s+ ikV̄ + 1

τ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(14)

An instability appears if there is an eigen-mode for
which s has a positive real part. A quick analysis of the prob-
lem reveals four dimensionless physical parameters, listed
here: a capillary number, defined as Ca=ηV̄/γ̄ , another num-
ber Cm=

Hη

γ̄τ
that is the ratio of the water/butanol migration

velocity H/τ to the capillary velocity, the ratio of the film
thickness to the channel height, X=ζ̄/H, and Eg. We next in-
troduce q=kζ̄ and S=sτ , the dimensionless wave-vector and
growth rate of the fluctuation, respectively. By cancelling the
determinant of the matrix given in (14), we then obtain a sec-
ond order polynomial equation for S, shown below:

−24C2
aq2 +4S(9iCaCmXq+

C2
mX2 +3CmEgq2X(X +1)+CmXq4)+

4iCa(6CmXq+Egq3(2X +3)+q5)+

12C2
mX2S2 +4CmXq4 +Egq6 = 0

(15)
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By solving this dispersion equation using Mathematica, we
extract two roots for S(q) and hence s(q). In the case where
Eg vanishes, the two analytical solutions are:

s1 =−1
τ
− ikV̄ (16a)

and

s2 =−k4γ̄ ζ̄ 3

3η
−2ikV̄ η (16b)

They correspond to surfactant density waves and capillary
waves, two fluctuation modes that are both damped and con-
vected.

In Fig. 11, we plot, Re(S), the real part of S(q), for these
two modes as a function of q for an illustrative case where
Marangoni effects take place (i.e., Eg ̸=0) and another case
with no Marangoni effects (i.e., Eg=0). As expected, when
Eg=0, these two modes are always stable as Re(S)<0 for all q
values. However, when Eg ̸=0, our model very interestingly
demonstrates that one of the two modes becomes unstable
as it exhibits a q domain where Re(S)>0 whereas the other
mode remains stable. Four dimensionless numbers are at play
in our problem. To investigate the influence of (V̄ ) and ζ̄

on the stability of the liquid layer for a given liquid system,
we numerically establish a stability diagram in the [log(Ca),
X] plane, where we report domains where the system is sta-
ble (i.e., Re(S)<0) and unstable (i.e., Re(S)>0), the values of
Cm=

Hη

γ̄τ
and Eg being kept constant as they only depend on

the physico-chemical properties of the gas/fluid system con-
sidered (η , γ̄ , τ and Eg) and of H. In Fig. 12, we report such
stability diagrams established for four different values of Eg
and the same value of Cm. Our numerical results show that
for Eg=0 (for which there is no Marangoni effects), the liq-
uid layer is always stable whatever the flow conditions. When
Eg ̸=0, for any X value, the system becomes unstable when
the capillary number is large enough. These diagrams show
that as the value of Eg increases, the unstable region becomes
wider on the stability diagrams.

C. Results and discussion

In our microfluidic experiments, the destabilization of
the gas/liquid interface occurs on a millisecond time scale (see
Fig. 7B). On such a short timescale, for our liquid systems,
Tween 20 molecules do not have time to adsorb on this in-
terface. For the system with no butanol, the value of the sur-
face tension γ̄ at this gas/liquid interface is therefore constant
and roughly equal to that of water γw=72.4 mN.m−1. Any
disturbance of this gas/liquid surface therefore does not gen-
erate Marangoni effects as the surface coverage by Tween 20
surfactant molecules (and hence the value of γ , the surface
tension) is not able to vary significantly during such a short
time. We therefore conclude that Marangoni effects induced
by the sole adsorption of Tween 20 surfactant molecules are
unable to destabilize the 2D-confined microfluidic jet for our

surfactant system with no butanol. Experimentally, this is ex-
actly what we observe as the gas stream becomes unstable and
forms bubbles only when it becomes 3D-unconfined.

For the system with butanol, the physical situation is very
different as the butanol molecules may now have time to ad-
sorb on the gas liquid interface since their adsorption time
is very short (as revealed with the maximum bubble pressure
tensiometer: at 10 ms, the adsorption of the butanol molecules
is quasi-total). Unfortunately because of the time resolution
of the maximum bubble pressure apparatus, we have no ex-
perimental means to characterize the adsorption of the bu-
tanol molecules on the gas/liquid interface (and henceforth
the gaz/liquid surface tension) for times shorter than 10 ms.
Because of these experimental limitations, we can only qual-
itatively compare our model predictions to our experimental
findings as the values of γ̄ , Eg and τ are impossible to deter-
mine exactly. Experimentally, we can just state that τ≤10−2 s.
Under the fast extension of the gas/liquid surface induced
by a disturbance, as the newly created surface is populated
by the molecules present in the bulk, its composition is that
of the bulk. Using a cuboid approximation and the Eber-
hart’s approximation55 for computing the surface tension, the
value of the dynamic surface tension at t=0 s is estimated
to γ0=70.9mN.m−1. As γ0>γ̄≥γbut it therefore follows that
0<Eg≤ 1.8.

FIG. 11. Re(S) of the two fluctuation modes as a function of q for
a system with and without Marangoni effects for which the values
of Eg are respectively 0.2 (blue curves) and 0 (red curves). For both
systems Ca=8.10−3, Cm=1. 10−4 and X = 0.4. The dashed and con-
tinuous lines correspond to surfactant density waves and capillary
waves, respectively.

In Fig. 12, we indicate in the [log(Ca),X] plane, the do-
mains where the system is stable (i.e., Re(S)<0) and unstable
(i.e. Re(S)>0), for a fixed value of Cm=4.6 10−4 (which cor-
responds to τ = 6 10−3s) and four different values of Eg. Very
interestingly, we note that for Eg=0 the jet is always stable
whereas it may become unstable when the value of Eg is dif-
ferent from zero. The diagram obtained for Eg = 1.8 show an
excellent agreement between theoretical predictions and our
experimental observations while respecting τ ≤ 10−2 s and
0 < Eg ≤ 1.8.
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FIG. 12. Stability diagrams in the [log(Ca),X] plane, numerically
computed with Cm=4.6 10−4(which corresponds to τ = 6 10−3 s)
and 4 different Eg. The blue (resp. red) areas correspond to unstable
(resp. stable) regions. In the last diagram, the white circles corre-
spond to the experimental conditions of our experiments conducted
at ∆P=300 mbar, for all Qw value in the jet regime (i.e. between 10
and 140 µL/min) (see Fig.4).

IV. CONCLUSION:

In closing, despite its simplicity, our model seems to
well corroborate our experimental observations. We therefore
believe that we have identified the key ingredients at play in
the destabilization of 2D-confined microfluidic gas streams.
This phenomenon only occurs when the adsorption time of the
chemical species promoting such effects is of the order of the
characteristic time of the microfluidic flow, that is typically
≃ 1ms. Experimentally, we have shown that the addition of
a few % of butanol in the surfactant solution phase permits
to witness such effects. We anticipate that this experimental
system may also lead to Marangoni effects on various physical
phenomena such as droplet impacts, splashes to name a few56

for which the characteristic hydrodynamic timescales at play
are also very short.
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