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Abstract
Let S ⊆ ℝ

n be a compact semialgebraic set and let f be a polynomial nonnegative 
on S. Schmüdgen’s Positivstellensatz then states that for any 𝜂 > 0 , the nonnega-
tivity of f + � on S can be certified by expressing f + � as a conic combination of 
products of the polynomials that occur in the inequalities defining S, where the coef-
ficients are (globally nonnegative) sum-of-squares polynomials. It does not, how-
ever, provide explicit bounds on the degree of the polynomials required for such an 
expression. We show that in the special case where S = [−1, 1]n is the hypercube, a 
Schmüdgen-type certificate of nonnegativity exists involving only polynomials of 
degree O(1∕

√

�) . This improves quadratically upon the previously best known esti-
mate in O(1∕�) . Our proof relies on an application of the polynomial kernel method, 
making use in particular of the Jackson kernel on the interval [−1, 1].

Keywords Schmüdgen’s Positivstellensatz · Sum-of-squares polynomials · Lasserre 
hierarchy · Polynomial kernel method · Jackson kernel · Semidefinite programming
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1 Introduction

Consider the problem of computing the global minimum:

(1)fmin ∶= min
�∈Bn

f (�)
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of a polynomial f of degree d ∈ ℕ over the hypercube Bn ∶= [−1, 1]n ⊆ ℝ
n . The pro-

gram (1) can be reformulated as finding the largest � ∈ ℝ for which the function 
f − � is nonnegative on Bn . That is, writing P(Bn) ⊆ ℝ[x] for the cone of all polyno-
mials that are nonnegative on Bn , we have:

By replacing P(Bn) in (2) by a smaller subset of ℝ[�] one may obtain lower bounds 
on fmin . One way of obtaining such subsets is based on the following description of 
Bn as a semialgebraic set:

In light of this description, we see that the preordering Q(Bn)r , truncated at degree r , 
defined by1:

satisfies Q(Bn)r ⊆ P(Bn) for all r ∈ ℕ . Here, Σ[�] is the set of sum-of-squares poly-
nomials (i.e., of the form p = p2

1
+ p2

2
+…+ p2

m
 for certain pi ∈ ℝ[�] ). When no 

degree bounds are imposed (i.e., r = ∞ ) we obtain the full preordering Q(Bn) gener-
ated by the polynomials gi(�) = 1 − x2

i
 ( i ∈ [n]) , which coincides with the quadratic 

module generated by the products 
∏

i∈I gi(�) ( I ⊆ [n] ). We thus obtain the following 
hierarchy of lower bounds for fmin , due to Lasserre [1]:

If the program (5) is feasible, its maximum is attained. By definition, we have 
fmin ≥ f(r+1) ≥ f(r) for all r ∈ ℕ . Furthermore, we have limr→∞ f(r) = fmin , which fol-
lows directly from the following special case of Schmüdgen’s Positvstellensatz.

Theorem 1 (Special case of Schmüdgen’s Positivstellensatz [2]) Let f ∈ P(Bn) be a 
polynomial. Then for any 𝜂 > 0 there exists an r ∈ ℕ such that f + � ∈ Q(Bn)r.

1.1  Main result

We show a bound on the convergence rate of the lower bounds f(r) to the global 
minimum fmin of f  over Bn in O(1∕r2) . Alternatively, our result can be interpreted as 
a bound on the degree r in Schmüdgen’s Positivstellensatz of the order O(1∕

√

�) of 
a positivity certificate for f + � when f ∈ P(Bn).

(2)fmin = max{� ∈ ℝ ∶ f − � ∈ P(Bn)}.

(3)Bn = {� ∈ ℝ
n ∶ gi(�) ∶= (1 − x2

i
) ≥ 0 ∀i ∈ [n]}.

(4)Q(Bn)r ∶=

{

∑

J⊆[n]

𝜎JgJ ∶ 𝜎J ∈ Σ[�], deg(𝜎JgJ) ≤ r

} (

gJ ∶=
∏

j∈J

gj

)

,

(5)f(r) ∶= max{� ∈ ℝ ∶ f − � ∈ Q(Bn)r}.

1 Sometimes the index r is used in the literature to denote the truncation where all summands have 
degree at most 2r. For our treatment here it is more convenient to let r denote the truncation where all 
summands have degree at most r, the main reason being our use later of Theorem 8.
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Theorem  2 Let f be a polynomial of degree d ∈ ℕ . Then there exists a constant 
C(n, d) > 0 , depending only on n and d, such that:

Furthermore, the constant C(n, d) may be chosen such that it either depends poly-
nomially on n (for fixed d) or it depends polynomially on d (for fixed n), see relation 
(20) for details.

Corollary 3 Let f ∈ P(Bn) with degree d. Then, for any 𝜂 > 0 , we have:

where C(n, d) is the constant from Theorem 2. Hence we have f + � ∈ Q(Bn)r for 
r = O(1∕

√

�).

Proof Let 𝜂 > 0 and set Cf ∶= C(n, d) ⋅ (fmax − fmin) . Pick an integer 
r ≥ max{�d

√

2n,
�

Cf∕�} . Then we have:

which shows f + � ∈ Q(Bn)(r+1)n .   ◻

1.2  Outline of the proof

Let f ∈ ℝ[�] be a polynomial of degree d. To simplify our arguments and notation, we 
will work with the scaled function:

for which Fmin = 0 and Fmax = 1 . Since the inequality (6) is invariant under a posi-
tive scaling of f and adding a constant, it indeed suffices to show the result for the 
function F.

The idea of the proof is as follows. Let 𝜖 > 0 and consider the polynomial 
F̃ ∶= F + 𝜖 . Let r ≥ d . Suppose that we are able to construct a (nonsingular) linear 
operator �r ∶ ℝ[�]r → ℝ[�]r which has the following two properties:

(6)fmin − f((r+1)n) ≤ C(n, d)

r2
⋅ (fmax − fmin) for all r ≥ �d

√

2n.

f + � ∈ Q(Bn)(r+1)n for all r ≥ max
�

�d
√

2n,
1
√

�

√

C(n, d)(fmax − fmin)
�

,

f + � = f − f((r+1)n)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

∈Q(Bn)(r+1)n

+
(

f((r+1)n) − fmin +
Cf

r2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≥0 by Theorem 2

)

+ fmin
⏟⏟⏟

≥0
+
(

� −
Cf

r2
⏟⏟⏟

≥0

)

,

F ∶=
f − fmin

fmax − fmin

,

(P1)�rp ∈ Q(Bn)(r+1)n for all p ∈ P(Bn)r,

(P2)‖�−1
r
F̃ − F̃‖∞ ∶= max

�∈Bn
��−1

r
F̃(�) − F̃(�)� ≤ 𝜖.
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Then, by (P2), we have �−1
r
F̃ ∈ P(Bn)r . Indeed, as F is nonnegative on 

Bn , F̃(�) = F(�) + 𝜖 is greater than or equal to � for all � ∈ Bn , and so (P2) 
tells us that after application of the operator �−1

r
 , the resulting polyno-

mial �−1
r
F̃ is nonnegative on Bn . Using (P1), we may then conclude that 

F̃ = �r(�
−1
r
F̃) ∈ Q(Bn)(r+1)n . It follows that −� ≤ F((r+1)n) , i.e., Fmin − F((r+1)n) ≤ � , 

and thus fmin − f((r+1)n) ≤ � ⋅ (fmax − fmin) . We collect this in the next lemma for 
future reference.

Lemma 4 Assume that for some r ≥ d and 𝜖 > 0 there exists a nonsingular operator 
�r ∶ ℝ[�]r → ℝ[�]r which satisfies the properties (P1) and (P2). Then we have

In what follows, we will construct such an operator �r for each r ≥ �d
√

2n and 
the parameter � ∶= C(n, d)∕r2 , where the constant C(n,  d) will be specified later. 
Our main Theorem 2 then follows after applying Lemma 4.

We make use of the polynomial kernel method for our construction: after 
choosing a suitable kernel Kr ∶ ℝ

n ×ℝ
n
→ ℝ , we define the linear operator 

�r ∶ ℝ[�]r → ℝ[�]r via the integral transform:

Here, � is the Chebyshev measure on Bn as defined in (7) below. A good choice for 
the kernel Kr is a multivariate version (see Sect. 3.1) of the well-known Jackson ker-
nel Kja

r  of degree r (see Sect. 2.3). For this choice of kernel, the operator �r naturally 
satisfies (P1) (see Sect. 3.2). Furthermore, it diagonalizes with respect to the basis 
of ℝ[�] given by the (multivariate) Chebyshev polynomials (see Sect.  2.2). Prop-
erty (P2) can then be verified by analyzing the eigenvalues of �r , which are closely 
related to the expansion of Kja

r  in the basis of (univariate) Chebyshev polynomials 
(see Sect. 3.3). We end this section by illustrating our method of proof with a small 
example.

Example 5 Consider the polynomial f (x) = 1 − x2 − x3 + x4 , which is nonnegative 
on [−1, 1] . For r ∈ ℕ , let �r be the operator associated to the univariate Jackson 
kernel (11) of degree r, which satisfies (P1) (see Sect. 3.2). For � = 0.1 , we observe 
that applying �−1

7
 to f + � yields a nonnegative function on [−1, 1] , whereas apply-

ing �−1
5

 does not (see Fig.  1). Applying the arguments of Sect.  1.2, we may thus 
conclude that f + � ∈ Q(Bn)8 , but not that f + � ∈ Q(Bn)6.

1.3  Related work

The polynomial kernel method, which forms the basis of our analysis, is widely used 
in functional approximation, see, e.g., [3]. In the present context, the method has 
already been employed for the analysis of the sum-of-squares hierarchy for optimi-
zation over the hypersphere Sn−1 in [4] (where a rate in O(1∕r2) was shown as well) 

fmin − f((r+1)n) ≤ � ⋅ (fmax − fmin).

�rp(�) ∶= ∫Bn

Kr(�, �)p(�)d�(�) (p ∈ ℝ[�]r).



519

1 3

An effective version of Schmüdgen’s Positivstellensatz for…

and for optimization over the binary cube {−1, 1}n in [5]. There, the authors use ker-
nels that are invariant under the symmetry of Sn−1 and {−1, 1}n , respectively.

In [6], the polynomial kernel method, and the Jackson kernel in particular, were 
used to analyze the quality of a related Lasserre-type hierarchy of upper bounds on 
fmin over Bn = [−1, 1]n , where one searches for a density in the truncated preorder-
ing Q(Bn)r minimizing the expected value of f over Bn (showing again a convergence 
rate in O(1∕r2)).

For a general compact semialgebraic set S, a polynomial f nonnegative on S and 
𝜂 > 0 , existence of Schmüdgen-type certificates of positivity for f + � with degree 
bounds in O(1∕�c) was shown in [7], where c > 0 is a constant depending on S. This 
result uses different tools, including in particular a representation result for polyno-
mial optimization over the simplex by Pólya [8] and the effective degree bounds by 
Powers and Reznick [9].

For the case of the hypercube2 a degree bound in O(1∕�) for Schmüdgen-type 
certificates is obtained in [10], thus showing that one can take c ≤ 1 in the above 
mentioned result of [7]. This result holds in fact for a weaker hierarchy of bounds 
obtained by restricting in (5) to decompositions of the polynomial f − � involv-
ing factors �J that are nonnegative scalars (instead of sums of squares), also known 
as Handelman-type decompositions (thus replacing the preordering Q(Bn)r by its 
subset Hr of polynomials having a Handelman-type decomposition). The analysis 
in [10] relies on employing the Bernstein operator �r , which has the property of 
mapping a polynomial nonnegative over the hypercube to a polynomial in the set 
Hrn ⊆ Q(Bn)rn.

In this paper, we can show a further improvement by using a different type of ker-
nel operator; namely we show that we can take the constant c ≤ 1∕2 in the special 
case S = [−1, 1]n.

−1 −0.5 0 0.5 1

0

1

2

3
f(x) + η

K−1
5 f(x) + η

K−1
7 f(x) + η

Fig. 1  The polynomial f (x) + � of Example 5 and its transformations under the inverse operators �−1
5

 and 
�−1

7
 associated to the Jackson kernels of degree 5 and 7

2 The hypercube [0, 1]n is considered in [10] but the results extend to the hypercube [−1, 1]n by an affine 
change of variables.
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2  Preliminaries

2.1  Notation

Throughout, Bn ∶= [−1, 1]n ⊆ ℝ
n is the n-dimensional hypercube. We write 

ℝ[x] for the univariate polynomial ring, while reserving the bold-face notation 
ℝ[�] = ℝ[x1, x2,… , xn] to denote the ring of polynomials in n variables. Simi-
larly, Σ[x] ⊆ ℝ[x] and Σ[�] ⊆ ℝ[�] denote the sets of univariate and n-variate sum-
of-squares polynomials, respectively, consisting of all polynomials of the form 
p = p2

1
+ p2

2
+⋯ + p2

m
 for certain polynomials p1,… , pm and m ∈ ℕ . For a polyno-

mial p ∈ ℝ[�] , we write pmin, pmax for its minimum and maximum over Bn , respec-
tively, and ‖p‖∞ ∶= sup�∈Bn �p(�)� for its sup-norm on Bn.

2.2  Chebyshev polynomials

Let � be the normalized Chebyshev measure on Bn = [−1, 1]n , defined by:

Note that � is a probability measure on Bn , meaning that ∫
Bn d� = 1 . We write ⟨⋅, ⋅⟩� 

for the corresponding inner product on ℝ[�] , given by:

For k ∈ ℕ , let Tk be the univariate Chebyshev polynomial (see, e.g., [11]) of degree 
k, defined by:

Note that |Tk(x)| ≤ 1 for all x ∈ [−1, 1] and that T0 = 1 . The Chebyshev polynomials 
satisfy the orthogonality relations:

A univariate polynomial p may therefore be expanded as:

For � ∈ ℕ
n , we consider the multivariate Chebyshev polynomial T� , defined by 

setting:

(7)d�(�) =
dx1

�

√

1 − x2
1

…
dxn

�

√

1 − x2
n

.

⟨f , g⟩� ∶= ∫Bn

f (�)g(�)d�(�).

Tk(cos �) ∶= cos(k�) (� ∈ ℝ).

(8)⟨Ta, Tb⟩� = �
1

−1

Ta(x)Tb(x)d�(x) =

⎧

⎪

⎨

⎪

⎩

0 a ≠ b,

1 a = b = 0,
1

2
a = b ≠ 0.

p = p0 +

deg(p)
�

k=1

2pkTk, where pk ∶= ⟨Tk, p⟩�.
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The multivariate Chebyshev polynomials form a basis for ℝ[�] and satisfy the 
orthogonality relations:

Here, w(�) ∶= |{i ∈ [n] ∶ �i ≠ 0}| denotes the Hamming weight of � ∈ ℕ
n.

We use the notation ℕn
d
⊆ ℕ

n to denote the set of n-tuples � ∈ ℕ
n with 

��� =
∑n

i=1
�i ≤ d . As in the univariate case, we may expand any n-variate polyno-

mial p as:

2.3  The Jackson kernel

For r ∈ ℕ and for coefficients �r
k
∈ ℝ to be specified below in (12), consider the 

kernel Kja
r ∶ ℝ ×ℝ → ℝ given by:

We associate a linear operator �ja
r ∶ ℝ[x]r → ℝ[x]r to this kernel by setting:

Using the orthogonality relations (8), and writing �r
0
∶= 1 , we see that:

In other words, �ja
r  is a diagonal operator with respect to the Chebyshev basis of 

ℝ[x]r , and its eigenvalues are given by �r
0
= 1, �r

1
,… , �r

r
 . In what follows, we set:

with �r =
�

r+2
 . We then obtain the so-called Jackson kernel (see, e.g., [3]). The fol-

lowing properties of the Jackson kernel are crucial to our analysis.

T�(�) ∶=

n
∏

i=1

T�i (xi).

(9)⟨T� , T�⟩� = �Bn

T�(�)T�(�)d�(�) =

⎧

⎪

⎨

⎪

⎩

0 � ≠ �,

1 � = � = 0,

2−w(�) � = � ≠ 0.

(10)p =
�

�∈ℕn
deg(p)

2w(�)p�T� , where p� ∶= ⟨T� , p⟩�.

(11)Kja
r
(x, y) ∶= 1 + 2

r
∑

k=1

�
r
k
Tk(x)Tk(y).

�ja
r
p(x) ∶= ∫

1

−1

Kja
r
(x, y)p(y)d�(y) (p ∈ ℝ[x]r).

�ja
r
Tk(x) ∶= �

1

−1

Kja
r
(x, y)Tk(y)d�(y) = �

r
k
Tk(x) (0 ≤ k ≤ r).

(12)�
r
k
=

1

r + 2

(

(r + 2 − k) cos(k�r) +
sin(k�r)

sin(�r)
cos(�r)

)

(1 ≤ k ≤ r),
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Proposition 6 For every d, r ∈ ℕ with d ≤ r , we have: 

 (i) K
ja
r (x, y) ≥ 0 for all x, y ∈ [−1, 1],

 (ii) 1 ≥ 𝜆r
k
> 0 for all 0 ≤ k ≤ r , and

 (iii) |1 − �r
k
| = 1 − �r

k
≤ �2d2

(r+2)2
 for all 0 ≤ k ≤ d.

Proof Nonnegativity of the Jackson kernel is a well-known fact, and is verified, e.g., 
in [6]. We check that the other properties (ii)-(iii) hold as well.

Second property (ii): Note that when k ≤ (r + 2)∕2 , both terms of (12) are posi-
tive, and so certainly 𝜆r

k
> 0 . So assume (r + 2)∕2 < k ≤ r . Set h = r + 2 − k , so that 

k�r = � − h�r , 2 ≤ h < (r + 2)∕2 , and

It remains to show that the RHS of (13) is positive for all 2 ≤ h < (r + 2)∕2 . Note 
that 1 > cos(𝜃r) > 0 , sin(𝜃r) > 0 and that sin(h�r) ≥ 0 for all 2 ≤ h < (r + 2)∕2 . We 
proceed by induction on h. For h = 2 , we compute:

which settles the base of induction. For h ≥ 2 , we compute:

We conclude that 𝜆r
k
> 0 for all k ∈ [r] . To see that �r

k
≤ 1 , note that for all k ∈ ℕ , 

Tk(x) ≤ 1 for −1 ≤ x ≤ 1 and Tk(1) = 1 . We can thus compute:

making use of the nonnegativity of Kja
r (x, y) on [−1, 1]2 for the inequality.

Third property (iii): Using the expression of �k
r
 in (12) we have

(13)(r + 2)�r
k
= −h cos(h�r) +

sin(h�r)

sin(�r)
cos(�r).

(14)
−h cos(h𝜃r) +

sin(h𝜃r)

sin(𝜃r)
cos(𝜃r) = −2(2 cos2(𝜃r) − 1) + 2 cos2(𝜃r)

= −2 cos2(𝜃r) + 2 > 0,

−(h + 1) cos((h + 1)𝜃r) + sin((h + 1)𝜃r)
cos(𝜃r)

sin(𝜃r)

= −(h + 1)
(

cos(h𝜃r) cos(𝜃r) − sin(h𝜃r) sin(𝜃r)
)

+
(

sin(h𝜃r) cos(𝜃r) + cos(h𝜃r) sin(𝜃r)
) cos(𝜃r)

sin(𝜃r)

= −h cos(h𝜃r) cos(𝜃r) + (h + 1) sin(h𝜃r) sin(𝜃r) +
sin(h𝜃r)

sin(𝜃r)
cos2(𝜃r)

= cos(𝜃r)
���

>0

(

− h cos(h𝜃r) +
sin(h𝜃r)

sin(𝜃r)
cos(𝜃r)

)

���������������������������������������������������

≥0 by the induction assumption

+(h + 1) sin(h𝜃r) sin(𝜃r)
�����������������

≥0

≥ 0.

�
r
k
= �

r
k
Tk(1) = �

1

−1

Kja
r
(1, y)Tk(y)d�(y) ≤ �

1

−1

Kja
r
(1, y)d�(y) = �

r
0
= 1,
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We now bound each trigonometric term using the fact that:

 When k = 1 we immediately get:

 Assume now 2 ≤ k ≤ d . Using (15) combined with cos(𝜃r), sin(𝜃r), sin(k𝜃r) > 0 we 
obtain:

and thus:

This concludes the proof if k ≥ 2 .   ◻

3  Proof of the main theorem

3.1  Construction of the linear operator �
r

As noted before, in order to prove Theorem 2 it suffices to construct a linear operator 
�r ∶ ℝ[�]r → ℝ[�]r that is nonsingular and satisfies (P1) and (P2). For this purpose 
we define the multivariate Jackson kernel Kr ∶ ℝ

n ×ℝ
n
→ ℝ by setting:

where Kja
r  is the (univariate) Jackson kernel from (11). Now let �r be the corre-

sponding kernel operator defined by:

1 − �
k
r
= 1 −

r + 2 − k

r + 2
cos(k�r) −

1

r + 2

sin(k�r) cos(�r)

sin(�r)
.

(15)cos(x) ≥ 1 −
1

2
x2, x −

1

6
x3 ≤ sin(x) ≤ x (x ∈ ℝ).

1 − �
1
r
= 1 − cos(�r) ≤ 1

2
�
2
r
=

�2

2(r + 2)2
≤ d2�2

(r + 2)2
.

sin(k�r) cos(�r)

sin(�r)
≥ (

k�r −
1

6
k3�3

r

)(

1 −
1

2
�
2
r

) 1

�r
≥ k −

k

2
�
2
r

(

1 +
k2

3

)

1 − �
k
r
≤ 1 −

r + 2 − k

r + 2

(

1 −
k2�2

r

2

)

−
1

r + 2

(

k −
k

2
�
2
r

(

1 +
k2

3

)

)

=
r + 2 − k

r + 2
⏟⏞⏞⏟⏞⏞⏟

≤1

k2�2
r

2
+

k

2(r + 2)
⏟⏞⏟⏞⏟

≤1∕2

�
2
r

(

1 +
k2

3

)

⏟⏞⏟⏞⏟

≤ 2

3
k2 if k≥2

≤ k2�2
r
≤ d2�2

(r + 2)2
.

(16)Kr(�, �) ∶=

n
∏

i=1

Kja
r
(xi, yi),
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The operator �r is diagonal w.r.t. the (multivariate) Chebyshev basis, and its eigen-
values can be expressed in terms of the coefficients �r

k
 of the Jackson kernel, as the 

following lemma shows.

Lemma 7 The operator �r is diagonal w.r.t. the Chebyshev basis for ℝ[�]r , and its 
eigenvalues are given by:

Proof For � ∈ ℕ
n
r
 , we see that:

as required.   ◻

It follows immediately from Proposition 6(ii) that �r has only nonzero eigenval-
ues and thus is non-singular. We show that �r further satisfies (P1) and (P2).

3.2  Verification of property (P1)

Consider the following strengthening of Schmüdgen’s Positivstellensatz in the uni-
variate case.

Theorem 8 (Fekete, Markov-Lukácz (see [12])) Let p be a univariate polynomial of 
degree r, and assume that p ≥ 0 on the interval [−1, 1] . Then p admits a representa-
tion of the form:

where �0, �1 ∈ Σ[x] and �0 and �1 ⋅ (1 − x2) are of degree at most r + 1 . In other 
words, in view of (4), we have p ∈ Q([−1, 1])r+1.

By Proposition 6(i), for any y ∈ [−1, 1] , the polynomial x ↦ K
ja
r (x, y) is nonneg-

ative on [−1, 1] and thus, by Theorem  8, it belongs to Q([−1, 1])r+1 . This implies 
directly that the multivariate polynomial � ↦ Kr(�, �) =

∏n

i=1
K

ja
r (xi, yi) belongs to 

Q(Bn)(r+1)n for all � ∈ [−1, 1]n.

�rp(�) = ∫�∈Bn

Kr(�, �)p(�)d�(�) (p ∈ ℝ[�]r).

�
r
�
∶=

n
∏

i=1

�
r
�i

(� ∈ ℕ
n
r
).

�rT�(�) = ∫�∈Bn

Kr(�, �)T�(�)d�(�)

=

n
∏

i=1

(

∫yi∈[−1,1]

Kja
r
(xi, yi)T�i(yi)d�(yi)

)

=

n
∏

i=1

�
r
�i
T�i(xi) = �

r
�
T�(�),

(17)p(x) = �0(x) + �1(x)(1 − x2),
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Lemma 9 The operator �r satisfies property (P1), that is, we have �rp ∈ Q(Bn)(r+1)n 
for all p ∈ P(Bn)r.

Proof One way to see this is as follows. Let {�i ∶ i ∈ [N]} ⊆ Bn and wi > 0 ( i ∈ [N] ) 
form a quadrature rule for integration of degree 2r polynomials over Bn ; that is, 
∫
Bn p(�)d�(�) =

∑N

i=1
wip(�i) for any p ∈ ℝ[�]2r . Then, for any p ∈ P(Bn)r , we 

have �rp(�) =
∑N

i=1
Kr(�, �i)p(�i)wi with p(�i)wi ≥ 0 for all i, which shows that 

�rp ∈ Q(Bn)(r+1)n .   ◻

3.3  Verification of property (P2)

We may decompose the polynomial F̃ = F + 𝜖 into the multivariate Chebyshev 
basis (10):

By Lemma 7, we then have:

making use of the fact that �0 = 1 and |T�(x)| ≤ 1 for all x ∈ Bn . It remains to ana-
lyze the expression at the right-hand side of (18). First, we bound the size of |F�| for 
� ∈ ℕ

n.

Lemma 10 We have �F�� = �⟨F, T�⟩�� ≤ 2−w(�)∕2 for all � ∈ ℕ
n.

Proof Since � is a probability measure on Bn , we have ‖F‖� ≤ ‖F‖∞ ≤ 1 . Using the 
Cauchy-Schwarz inequality and (9), we then find:

  ◻

To bound the parameter |1 − 1∕�r
�
| , we first prove a bound on |1 − �r

�
| , which 

we obtain by applying Bernoulli’s inequality.

Lemma 11 (Bernoulli’s inequality) For any x ∈ [0, 1] and t ≥ 1 , we have:

Lemma 12 For any � ∈ ℕ
n
d
 and r ≥ �d , we have:

F̃ = 𝜖 +
�

𝜅∈ℕn
d

2w(𝜅)F𝜅T𝜅 , where F𝜅 = ⟨F, T𝜅⟩𝜇.

(18)

‖�−1
r
F̃ − F̃‖∞ = ‖

�

𝜅∈ℕn
d

(1∕𝜆r
𝜅
)2w(𝜅)F𝜅T𝜅 − 2w(𝜅)F𝜅T𝜅‖∞

≤ �

𝜅∈ℕn
d

2w(𝜅)�F𝜅��1 − 1∕𝜆r
𝜅
�,

⟨F, T�⟩� ≤ ‖F�‖�‖T�‖� ≤ ‖T�‖� = 2−w(�)∕2.

(19)1 − (1 − x)t ≤ tx.
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Proof By Proposition 6, we know that 0 ≤ �k ∶= (1 − �r
k
) ≤ �2d2∕r2 ≤ 1 for 

0 ≤ k ≤ d . Writing � ∶= max0≤k≤d �k , we compute:

making use of (19) for the second to last inequality.   ◻

Lemma 13 Assuming that r ≥ �d
√

2n , we have:

Proof Under the assumption, and using the previous lemma, we have |1 − �r
�
| ≤ 1∕2 , 

which implies that �r
�
≥ 1∕2 . We may then bound:

  ◻

Putting things together and using (18), Lemma 10 and Lemma 12 we find that:

Hence �r satisfies (P2) with � = C(n, d)∕r2 , where:

In view of Lemma 4, we have thus proven Theorem 2. Finally, we can bound the 
constant C(n, d) in two ways. On the one hand, we have:

resulting in a polynomial dependence of C(n, d) on d for fixed n. On the other hand, 
we have:

resulting in a polynomial dependence of C(n, d) on n for fixed d. Namely, we have:

|1 − �
r
�
| ≤ n�2d2

r2
.

1 − �
r
�
= 1 −

n
∏

i=1

�
r
�i
= 1 −

n
∏

i=1

(1 − ��i
) ≤ 1 − (1 − �)n ≤ n� ≤ n�2d2

r2
,

|1 − 1∕�r
�
| ≤ 2n�2d2

r2
.

|1 − 1∕�r
�
| = |

1 − �r
�

�r
�

| ≤ 2|1 − �
r
�
| ≤ 2n�2d2

r2
.

‖�−1
r
F̃ − F̃‖∞ ≤ �

𝜅∈ℕn
d

2w(𝜅)�F𝜅��1 − 1∕𝜆r
𝜅
�

≤ �

𝜅∈ℕn
d

2w(𝜅)∕2 ⋅
2n𝜋2d2

r2
≤ �ℕ

n
d
� ⋅max

𝜅∈ℕn
d

2w(𝜅)∕2 ⋅
2n𝜋2d2

r2
.

C(n, d) ∶= |ℕ
n
d
| ⋅max

�∈ℕn
d

2w(�)∕2 ⋅ 2n�2d2.

|ℕ
n
d
| =

(

n + d

n

)

=

n
∏

i=1

d + i

i
≤ (d + 1)n and max

�∈ℕn
d

w(�) ≤ n,

|ℕ
n
d
| =

(

n + d

d

)

≤ (n + 1)d and max
�∈ℕn

d

w(�) ≤ d,
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4  Concluding remarks

We have shown that the error of the degree r Lasserre-type bound (5) for the mini-
mization of a polynomial over the hypercube [−1, 1]n is of the order O(1∕r2 ) when 
using a sum-of-squares decomposition in the truncated preordering. Alternatively, 
if f is a polynomial nonnegative on [−1, 1]n and 𝜂 > 0 , our result may be interpreted 
as showing a bound in O(1∕

√

�) on the degree of a Schmüdgen-type certificate of 
positivity for f + � . The dependence on the dimension n and the degree d of f in the 
constants of our result is both polynomial in n (for fixed d), and polynomial in d (for 
fixed n).

4.1  The constant C(n, d)

A question left open in this work is whether it is possible to show Theorem 2 with a 
constant C(d) that only depends on the degree d of f, and not on the number of vari-
ables n (cf. (20)). This question is motivated by the fact that for the analysis of the 
analogous hierarchies for the unit sphere in [4] and for the boolean hypercube in [5] 
the existence of such a constant (depending only on d) was in fact shown.

4.2  Relation to recent developments

Recently, there has been growing interest in obtaining a sharper convergence analy-
sis for various Lasserre-type hierarchies for the minimization of a polynomial f over 
a semialgebraic set S = {� ∈ ℝ

n ∶ gj(�) ≥ 0 (j ∈ [m])} . Our work thus contributes 
to this research area. We outline some recent developments.

We refer to the works [13, 14] (and further references therein) for the analysis of 
hierarchies of upper bounds (obtained by minimizing the expected value of f on S 
with respect to a sum-of-squares density).

The most commonly used hierarchies of lower bounds are defined in terms of 
sums-of-squares decompositions in the quadratic module of S, being the set of conic 
combinations of the form �0 +

∑m

j=1
�jgj with �j ∈ Σ[�] . Such decompositions are 

called Putinar-type certificates. In comparison, the preordering Q(S) also involves 
conic combinations of the products of the gj . In [15] a degree bound in O(exp(�−c)) 
is given for the quadratic module, where c > 0 is a constant depending on S.

In a recent work [16], Baldi & Mourrain are able to improve this result to obtain a 
bound with a polynomial dependency on � . Roughly speaking, their method of proof 
relies on embedding the semialgebraic set S in a box [−R,R]n of large enough size 
R > 0 , and then relating positivity certificates on S to those on [−R,R]n . Our present 
result on [−1, 1]n then allows them to conclude their analysis. Their argument relies 
on the fact the constant C(n, d) in Theorem 2 may be chosen to depend polynomially 
on the degree d of f. Such a dependence was not shown in the earlier work [10].

(20)C(n, d) ≤ 2�2d2n2n∕2(d + 1)n and C(n, d) ≤ 2�2d2n2d∕2(n + 1)d.
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Note that it has been shown in [17] that the hierarchies of bounds based on Puti-
nar type representations have finite convergence for generic problems. However, and 
perhaps somewhat surprisingly, their convergence analysis (for general problems) 
has remained a challenging problem.

We also wish to note that a polynomial degree bound was shown already in [18] 
for a slightly different hierarchy, based on Putinar-Vasilescu type representations, 
which give a decomposition in the quadratic module after multiplying the polyno-
mial f + � by a suitable power (1 +

∑n

i=1
‖�‖2)k (under some conditions).

4.3  Putinar vs. Schmüdgen on the hypercube

As mentioned, Putinar-type hierarchies (making use of the quadratic module) are 
more commonly applied in practice than the Schmüdgen-type hierarchy (making use 
of the preordering) that we consider in this paper. It is therefore natural to consider 
the status of convergence results for Putinar-type hierarchies on the hypercube Bn.

Magron [19] shows a degree bound in O(exp(c�−1)) for Putinar-type certificates 
of f + � on Bn , improving the general result of [15] in this special case3. His result 
relies on the degree bound in O(�−1) for Schmüdgen-type certificates on Bn shown in 
[10]. Importantly, it is contingent on an unresolved conjecture also posed in [10]: 
For each n ∈ ℕ even, the polynomial 2−n(1 − x1)(1 − x2)… (1 − xn) + � lies in the 
quadratic module of Bn truncated at degree n for � =

1

n(n+2)
 . This open question, 

which asks for an exact estimation of the constant that needs to be added to each 
generator of the preordering of Q([−1, 1]n) in order to ensure membership in the 
quadratic module, remains interesting in itself.

In principle, our new degree bounds for Schmüdgen-type certificates on Bn could 
(slightly) improve the result of Magron (which relies on the weaker bounds of [10]). 
However, such an improvement would still depend exponentially on 1∕� , in addition 
to being contingent on a conjecture. Furthermore, it seems to us that it is in any case 
superseded by the new result of Baldi & Mourrain [16] mentioned above, which 
(when specialized to the hypercube) shows degree bounds for Putinar-type certifi-
cates with polynomial dependency on 1∕� . It is an open question whether the degree 
bound in O(1∕

√

�) we have shown here for Schmüdgen-type certificates on Bn may 
be extended to Putinar-type certificates.

Lastly, we wish to mention that error bounds for the Putinar-type Lasserre hierar-
chy on the hypercube Bn were already provided in [20]. There, however, the author 
considers a regime where the order r of the relaxation is fixed, while the dimension 
n tends to infinity. His results are therefore not directly comparable to those of the 
present paper or to those discussed above.

3 The cube [0, 1]n is considered in [19], but all results carry over immediately to [−1, 1]n after an affine 
change of variables.
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4.4  Negative results

We have so far focused our discussion on positive results concerning sum-of-
squares representations. That is, results that give upper bounds on the error of 
Lasserre’s bound (5); or equivalently on the required degree of Schmüdgen-type 
positivity certificates. In order to put these results in context, it would be inter-
esting to have complementary negative results, thus giving lower bounds on the 
convergence rate of the Lasserre hierarchy.

The only applicable negative result known to the authors is due to Stengle [21]. 
He considers the interval [−1, 1] ⊆ ℝ with the semialgebraic description:

Note that this description is different from the (more natural) description  (3) that 
we have used in this paper. In particular, Theorem 8 does not apply to it. Writing 
Q((1 − x2)3)r for the corresponding (truncated) preordering, Stengle shows that

only when r = Ω(1∕
√

�) . In other words, he shows for f (x) = 1 − x2 that the 
Lasserre-type bound f(r) obtained by replacing Q(1 − x2)r in  (5) by Q((1 − x2)3)r 
satisfies:

On the one hand, it is remarkable that Stengle’s lower bound in Ω(1∕r2) matches the 
upper bound in O(1∕r2) we show in this paper exactly. On the other hand, we empha-
size that Stengle’s result relies heavily on the nonstandard description of [−1, 1] as a 
semialgebraic set. We leave the question of proving negative results for the standard 
description (3) for future research.
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