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Abstract—In this paper, we propose a new distance for
network-constrained trajectories named Edit distance with Quasi
Real Penalties (EQRP). Depending on the case, it can compare
trajectories as non-ordered sets and as sequences while other
distances only compare trajectories as non-ordered sets or as
sequences. Moreover, it is parameter-free, manages local time
shifting, and respects triangle inequality; three properties ex-
pected from a trajectory distance that are not satisfied simul-
taneously by any other distance to the best of our knowledge.
To demonstrate the pertinence of our idea, we benchmark our
distance against some state-of-the-art distances for network-
constrained trajectories. Specifically, for each distance, we de-
termine its capability to identify precisely similar trajectories.
We also determine their respective performance for trajectory
clustering. Our results show the predominance of EQRP over
the existing edit distances and in some cases a more precise
ability to evaluate the dissimilarity between network-constrained
trajectories compared to other measures.

Index Terms—Trajectory analysis, edit distance, road network,
clustering, graphs.

I. INTRODUCTION

Location-based services (LBS) are widely used in our
modern societies to provide assistance in many contexts such
as social interactions, navigation, entertainment, or fitness
activities for example. This results in massive production and
storage of spatio-temporal traces also called trajectories, which
mainly consist of ordered sequences of locations and describe
their authors’ movements in time and space. We distinguish
two kinds of trajectories: free-space or nearly free-space
ones which can take any form and occur in an environment
with no or few limitations (e.g. on the sea) and network-
constrained trajectories corresponding to travel that only take
place along the edges of a given network such as a road
network (see Figure 1). Compared to free-space trajectories,
network-constrained trajectories are more related to human
activities and have broader socio-economic applications. They
are for example essential to understand mobility patterns in
cities, predict traffic congestion, select the best advertisement
and business locations or recommend optimal travel routes.

Initially, network-constrained trajectories were processed
without taking into account the underlying network structure
as their free-space counterpart. This is because most methods
and measures dedicated to trajectory analysis have been orig-
inally designed for free-space trajectories. However, such an

approximation can induce significant bias in trajectories com-
parison. For example, trajectories can be mistakenly declared
similar because some of their points appear spatially close
while the network distance between them is actually large. To
overcome these biases, a bunch of measures specially devel-
oped for network-constrained trajectories have been recently
proposed in the literature. We can classify them into four main
families: simple distances, node-to-trajectory distances, set
distances, and warping distances. Simple distances compare
trajectories by evaluating the distance between nodes of the
same index (i.e. comparing first node of each trajectory, then
second node, and so on) or using a set of points of interest.
Node-to-trajectory distances determine the minimum spacing
between each node of a first trajectory and all the nodes of
a second one. Set distances compare two trajectories based
on the size of their intersection, i.e. the number of nodes or
edges they have in common. Finally, warping distances take
into account the order of the nodes and try to find the optimal
alignment between trajectories when comparing them. This
brings an additional dimension to the trajectories comparison
process which is not present in the three other families.

Fig. 1: Network-constrained trajectories.

While warping distances consider trajectories as sequences
of nodes and the others mostly as non-ordered sets of nodes,
trajectories actually bear both characteristics and should be
compared along these two dimensions. For example, a trajec-
tory and its copy in the opposite direction have exactly the
same nodes but are not identical, without being completely
different. However, to the best of our knowledge, none of the
existing distances are able to process trajectories both as non-



ordered sets and sequences. In addition, we compared state-of-
the-art distances by checking three major properties: triangle
inequality, local time shifting handling, and parameter depen-
dence. Triangle inequality ensures that the distance measure
discriminates correctly the compared trajectories. It is also
used to reduce the number of distance computations through
pruning strategies when comparing large sets of trajectories.
Local time shifting corresponds to the presence of very similar
sub-sequences, offset from each other, in different trajectories.
A measure able to handle it can optimally align trajectories
during their comparison. Concerning parameter dependence,
we are actually evaluating if the measure is parameter-free
or not as it is more suitable to have no parameters to
calibrate before applying a measure. None of the existing
distances satisfy simultaneously these three properties even
though the shortcomings of some distances are compensated
by other distances and vice-versa. These observations led us to
formulate the following hypothesis: is it possible to hybridize
two distances to obtain a measure that respects the three fore-
mentioned properties but also treats trajectories as non-ordered
sets and sequences concomitantly? We respond positively to
this question by proposing Edit distance with Quasi Real
Penalties (EQRP) a new network-constrained trajectory dis-
tance that combines warping and node-to-trajectory distances.

The remaining of the paper is structured as follows: to
support our motivations, we start by explaining some notions
related to network-constrained trajectories. Then we present
the related works. After, we define our new distance EQRP
and describe the methodology adopted for the comparison of
some state-of-art network-constrained distances to the newly
proposed one. Later, we present the implementation details of
our experiments, the results obtained and a discussion of these
results before concluding.

II. DEFINITIONS

A road network is a set of interconnected road segments
that support mobility in a given geographical space. Usually,
it is modeled as a graph G(V,E) where V represents the set
of nodes which are often road intersections and E corresponds
to the set of edges which are road segments linking the nodes.

A trajectory is a time-ordered sequence of geographic
positions, usually identified by latitudes and longitudes, which
describe a movement. In the context of a network-constrained
environment such as an urban road network, the geographic
positions can be replaced by the nodes of the graph represent-
ing the road network. In the rest of the paper, we consider
trajectories as sequences of road network nodes. We formally
define a trajectory T as:

T = ((v1, t1), ..., (vi, ti), ..., (vn, tn)) (1)

Where vi ∈ V are nodes and t1 < ... < ti < ... < tn are
timestamps associated to nodes. Timestamps can be omitted
in various situations.

III. RELATED WORK

Although trajectory data analysis has been an active research
field for decades, similarity/distance measures specifically
designed for network-constrained trajectories emerged only
recently. One of the first distance integrating road network
structure in its definition was proposed in 2005 by Hwang et
al. [1]. It compares trajectories according to a set of Points Of
Interest (POIs) which can be road intersections or places. Two
trajectories are considered similar if all the POIs lie on both
of them otherwise there are not. Thus, this distance measure,
which does not respect triangle inequality, can only take two
values 0 or 1, and is not able to compare trajectories accurately.
Moreover, POIs must be predefined by users who may not
have extended knowledge of the road network. Following
this first distance, Tiakas et al. [2] presented a distance
for network-constrained trajectories, similar to the Euclidean
distance for free-space trajectories. This distance corresponds
to the average shortest path distances between nodes of same
index (i.e nodes that appear at the same position in compared
trajectories). It respects triangle inequality, but cannot handle
local time shifting or trajectories with different lengths.

To ensure that, no matter the size of trajectories, it is always
possible to compute a network distance between them, Evans
et al. [3] opted for a node-to-trajectory approach. Here, the
distance between two trajectories is equal to the average of
minimum distances between each node of one trajectory and
all the nodes of the second. In the same vein, [4] defined a
spatio-temporal similarity measure by converting the node-to-
trajectory distance to a similarity measure using an exponential
function. This second measure has been labeled as Spatio-
temporal Linear Combine STLC in [5]. Notice that both node-
to-trajectory measures do not respect triangle inequality.

Another node-to-trajectory distance is the Hausdorff dis-
tance. It measures the mutual proximity of two sets, by
indicating the maximal distance from any node in one set to
the other set. [6] and [7] proposed versions of Hausdorff dis-
tance adapted to network constrained trajectories by replacing
Euclidean distance with network distance. The version in [6]
respect triangle inequality contrary to the one in [7].

Besides, we also have distances based on the intersection
of sets. They are used for applications like carpooling or
network flow analysis where similar trajectories are those
which share common road segments. Usually, these distances
are computed edge-wise to ease the detection of common road
segments and to integrate the length of road segments. As
examples, we mention SIM TRAJ [8], a similarity that equals
to the ratio between the length of two trajectories’ common
parts and the length of one of them selected as reference,
DSL [9] a dissimilarity which corresponds to the length of two
trajectories uncommon parts over the total length of all road
segments forming them and EBD [10] equivalent to the length
of the longest trajectory minus the length of the compared
trajectories’ intersection. Among the three, only EBD respect
triangle inequality.

The previously presented distances are all sequence-



independent, i.e. they don’t consider the order of trajecto-
ries’ nodes, contrary to warping measures. Warping mea-
sures for network-constrained trajectories are mainly exten-
sions of measures for free-space trajectories such as: Longest
Common Subsequence (LCSS) [11], Dynamic Time Warping
(DTW) [12], Edit Distance on Real sequence (EDR) [13]
and Edit distance with Real Penalty (ERP) [14]. They are
sequence-dependent and able to handle local time shifting and
trajectories with different lengths. Shang et al. [15] proposed
the first warping measure adapted to network-constrained
trajectories. Their measure extends LCSS which compares two
trajectories by determining the size of their longest common
subsequence. The points constituting this sub-sequence must
not necessarily occupy consecutive positions but must appear
in the same order within the two trajectories. The particularity
of LCSS is to match two points, even if they do not coincide, as
long as the distance between them is below a threshold. Later,
[16] defined LORS (Longest Overlapping Road Segments)
which is also a variation of LCSS using the sequence of
edges. In addition to the trajectory modeling difference, LORS
matches edges only when they are identical while the former
measure depends on a threshold value to loosely match nodes.
Then, [17] built LCRS (Longest Common Road Segments)
on top of LORS using Jaccard index. Note that the idea of
using the Jaccard index to define trajectory similarity was first
presented by Xia et al. in [18]. Network versions of DTW [19],
EDR and ERP [20] were also proposed.

These last three distances have the advantage to be complete
match warping measures, i.e. all the nodes of compared
trajectories are used in the calculation of the distance, contrary
to LCSS based distances which are partial match distances.
A match corresponds to a pairing between two nodes, each
belonging to one of the compared trajectories. The distance
between these matching nodes is used to compute the global
distance between the trajectories. Concerning DTW, its par-
ticularity is to allow sequence stretching or shrinking in time
by replicating previously processed points when there is no
match. This ensures that there is always a matching pair for
any trajectory point. EDR and ERP are edit distances that
evaluate the cost of edit operations namely, insertion, deletion,
and substitution necessary to transform a trajectory into an-
other. Substitution corresponds to a match while insertion and
deletion occur when there is no match which is also called a
gap. The cost of each edit operation is designated as a subcost.

Despite their qualities, edit distances also bear shortcom-
ings. EDR, for example, depends on a matching threshold
which is often difficult to fix. It also uses fixed subcosts
that are not correlated to the actual distances between nodes.
This negatively impacts the ability to accurately assess the
distances between trajectories. ERP, for its part, is defined
according to real distances between nodes but requires the
specification of a reference node in the evaluation of the
distances between trajectories to handle gaps. The impact of
this reference node on ERP accuracy in graph space had not
been studied. Moreover, the use of real distances between
nodes makes ERP sensitive to the presence of deformations in

the trajectories. Among warping distances, only ERP respect
triangle inequality.

As a wrap-up, we retain that some network-constrained tra-
jectory distances consider trajectories only as non-ordered sets
while others treat them only as sequences although trajectories
bear both properties. Moreover, despite their respective qual-
ities, none of these distances concomitantly respect triangle
inequality, is parameter-free, and able to manage local time
shifting, even though each of these characteristics is important
to guarantee a good comparison of trajectories. These are the
reasons that led us to define a new measure that meets all
these needs.

IV. EDIT DISTANCE WITH QUASI REAL PENALTIES

The measure we propose differs from existing edit distances
by how it handles gaps during the matching process. More
precisely, when there is a match, the classical network dis-
tance between pair of nodes is used. However, if there is a
gap, the insertion or deletion cost is fixed at the Hausdorff
distance between the compared trajectories. Let’s recall that
Hausdorff distance measures the mutual proximity of two sets,
by indicating the maximal distance from any node in one set
to the other set. Doing so, we replace the fixed cost of EDR
(always equal to 1) by a semi-fixed cost, i.e. which is fixed
only for a pair of trajectories. This also allows us to avoid
the use of a reference node contrary to ERP. The result is an
edit distance that considers trajectories both as sequences and
non-ordered sets of nodes (thanks to Hausdorff distance). This
definition also makes it possible to indirectly set the matching
threshold between nodes to the Hausdorff distance between
trajectories. The new edit distance we introduce is named
Edit distance with Quasi Real Penalties (EQRP). It is formally
defined between two trajectories T1 and T2 of respective sizes
n and m by the recurrence formula:

EQRP (T1, T2) =



0, If n = 0 and m = 0
∞, If n = 0 or m = 0

min


EQRP (Rest(T1), Rest(T2)) + dG(Head(T1), Head(T2)) +D

EQRP (Rest(T1), T2) +Hausdorff(T1, T2) +D

EQRP (T1, Rest(T2)) +Hausdorff(T1, T2) +D

Otherwise

(2)
Head designates the first node of the considered sequence,

Rest refers to the whole sequence except the first node and
dG is the network distance between two nodes, and D is the
diameter of the network. The Hausdorff distance formula is :

Hausdorff(T1, T2) = max

{
maxvi∈T1

minvj∈T2
dG(vi, vj)

maxvj∈T2
minvi∈T1

dG(vi, vj)
(3)

Adding the diameter to the different subcosts ensures that
EQRP respects the triangle inequality: for any triplet of distinct
trajectories R, S, and T we have

EQRP (R,S) ≤ EQRP (R, T ) + EQRP (T, S) (4)

Indeed, for an edit distance to respect this inequality, it is
sufficient that the distance between elements on which it is
based also respects it even if there is a gap [21]. When there is



no gap, we use the graph distance (the shortest path between
nodes) which respects the triangle inequality. Conversely, if
there is a gap, the inequality remains respected because the
Hausdorff distance is necessarily smaller than or equal to D.

As other warping distances, EQRP can be calculated using
a dynamic programming algorithm to solve its recurrence
formula. This method of calculation has a complexity of
O(nm(|V |+|E|)) with n and m, the respective sizes of the
compared trajectories and (|V |+|E|) the cost of computing the
shortest path between two nodes. This complexity includes the
cost of pre-calculating the Hausdorff distance whose cost is
also O(nm(|V |+|E|)).

V. COMPARISON TO OTHER DISTANCES

After having formally defined our new distance, it is im-
portant to ensure its relevance by comparing it to existing
network-constrained distances. However, comparing distances
is not trivial because the values returned by different distances
for the same pair of trajectories are not always consistent
as each distance has its own semantics. Therefore, it is not
appropriate to rely directly on the values and we need to pro-
ceed through indirect approaches. In this section, we describe
two alternative approaches: resistance to transformations and
clustering ability.

A. Comparison by transformations

The method of comparison by transformations was initially
proposed by Han et al in their review [5]. It aims to compare
distances between free-space trajectories by evaluating their
ability to resist different transformations: addition or dele-
tion of sampling points; trajectory resampling; time dilation
and compression; spatial expansion and compression; noise
addition. Here, we do not explicitly take into account the
temporal data of the trajectories, because most of the compared
distances do not integrate them, so the transformations relating
exclusively to the time domain are discarded (time dilation and
compression, trajectory resampling). Additionally, the trajec-
tories are modeled as sequences of nodes, it is subsequently
not possible to add sample points without modifying the road
network. The constraints of the road network also make it
very difficult to expand or compress the trajectories without
changing their shape. Due to these limitations, we retain only
two of the transformations initially proposed and adapt them
to network-constrained trajectories. We renamed the deletion
of sample points as nodes deletion and we decline the noise
addition in two versions: loops and detours addition.

1) Nodes deletion: Before any node deletion, we identify
first the pivot nodes which are nodes where the trajectory
noticeably changes shape. This is done using the Ramer-
Douglas-Peuchker (RDP) algorithm [22] whose principle is
to replace a polyline (a broken line) made up of several
points by a direct line, i.e. a shortcut, between the endpoints.
This modification is only applied if the distance between the
direct line and the furthest point of the polyline is less than a
predefined threshold. To adapt this idea to network-constrained
trajectories, we add the GPS coordinates as attributes to the

nodes. Once pivot nodes are identified, we randomly delete
some nodes among those remaining. The number of nodes
removed depends on a ratio r whose values are between 0
and 1. For a trajectory T , of size n, with k pivot nodes, the
number of nodes to remove is NBpts = min{n ∗ r, n − k}.
The min ensures that only the non-pivot nodes can be deleted.

2) Loops and detour addition: In free-space, noise addition
to a trajectory results in adding Gaussian noise to points’
coordinates, while for network-constrained trajectories, it cor-
responds to the addition of deviations in the route of the
trajectories. The reason is that the space of the road network is
discrete, which prevents the addition of points other than those
present in the set of nodes forming the network. Two types of
deviations can be generated: a loop or a detour. A loop is a
circuit in the road network, a sequence of nodes starting and
ending with the same node. A detour is an alternative route
between two distinct nodes of the same trajectory. Usually,
these two disturbances occur during the map-matching process
when the raw trajectories contain noise or due to an error in
the matching process between points and road segments. The
objective here is to try to reproduce them artificially.

To add a loop, we randomly choose a node u in the
trajectory and a node v outside the trajectory but within a
predefined radius around u. We calculate the shortest paths
from u to v and vice-versa. The resulting path, which forms a
loop, is then inserted in the trajectory: once arrived at u, we
go through the loop before continuing the initial trajectory.
The number of loops to add to a trajectory is also managed
by a ratio between 0 and 1.

The procedure to add a detour is similar. First, we choose
two distinct nodes u and v of the same trajectory separated by
a given number of nodes p (for projection). Then, we select
a random node w outside the trajectory but accessible from
u within a predefined radius. Then we determine the shortest
path going from u to v via w and we replace the sub-sequence
of the original trajectory between u and v by the one passing
through w. Note that the detour is not necessarily longer than
the path it replaces in the original trajectory, because the
sub-trajectory from u to v had no reason to be the shortest
path between these two nodes. The detour is therefore just an
alternative path passing through the vertex w.

3) Evaluation of transformations impact: To quantify the
robustness of distances against transformations, we rely on the
method described in [5]. First, we randomly select a reference
trajectory from the original dataset. Second, we extract the
ordered list of trajectories closest to the reference trajectory,
using the distance we want to evaluate, sorted by increasing
value. This list is the original list. Third, we apply a given
transformation to all trajectories in the original dataset apart
from the reference trajectory, to obtain a derived dataset. We
then order the trajectories of the derived dataset by increasing
distance to the reference (and untouched) trajectory to obtain
a transformed list. Fourth, we evaluate the similarity between
the original list and the transformed list. This is repeated for
each transformation. The intuition behind this approach is that
a distance that resists well to transformations will tend to



similarly order the closest trajectories to a reference trajectory,
both in the original and in derived datasets. The similarity
between the ordered lists is computed using Spearman’s rank
correlation coefficient [23] that measures the correlation be-
tween two rankings X and Y of the same size as:

rs =
cov(X,Y )

σX .σY
(5)

With cov the covariance and σ the standard deviation.
Spearman’s measure takes values from -1 to 1. A value close
to 1 means that the rankings are similar which also indicates
a good robustness of the distances against transformations.
A value close to 0 indicates an absence of link between the
two rankings and therefore a low, or non-existent, resistance of
distances against transformations. A value close to -1 indicates
a decreasing trend: close trajectories in the original data are
distant in the derived data and vice-versa.

Comparing distances through correlations can be a source of
bias in the case of measures such as EDR and LCSS because of
the way they are calculated. Indeed, these measures consider
any pair of trajectories having no matching pair of nodes as
being at a maximum distance from each other, i.e. at distance
1 when distances are normalized. This poses a problem of
resolution in the trajectories comparison and biases the nearest
neighbor ordering. More specifically, we note that from a
certain index, the order of the nearest neighbors does not
vary anymore since all the trajectories are found at distance 1
from the reference trajectory regardless of the transformations.
We then obtain high correlation values that do not reflect the
ability of the distance to manage a transformation but rather
its inability to do so. We could possibly choose to exclude the
trajectories at a maximum distance but this problem also arises
in a more general way when distances can only take a limited
set of values, small compared to the number of trajectories,
and that many trajectories are therefore at the same distance
from the reference trajectory. To overcome this bias, we break
the equality of the trajectories located at the same distance
from the reference trajectory by a random choice. For a better
understanding, consider six trajectories T2; T3; T4; T5; T6;
T7 whose respective distances to the reference trajectory T1
are: 0.3; 1; 0.5; 1; 1; 0.2. The natural ordering of the nearest
neighbors of T1 would be T7; T2; T4; T3; T5; T6 if we
used the order of the indices in case of equality. If the distance
used has a limited resolution as explained above, the order of
the last three trajectories T3; T5; T6 has very little chance
to change because of transformations. We break this constant
ordering by randomly ranking T3; T5; T6 each time they are
all at the maximum distance from the reference trajectory. In
an extreme case, if all the trajectories are at distance 1 from
the reference trajectory in the original dataset and in a derived
dataset, this solution will lead to a total lack of correlation
between the two rankings. For the sake of impartiality, we
apply this random ranking technique to all distances.

Comparison of distances according to their robustness to
transformations does not assess their resolution, i.e. their
ability to accurately account for the relative differences be-

tween trajectories. In order to better assess this resolution, we
propose to also use a comparison by clustering.

B. Comparison by Clustering

A way to compare network-constrained trajectory distances
is to measure how well they can cluster trajectories. The
underlying idea is that if we have groups of similar trajectories
(visually close for example) then the more discriminating a
distance is, the better it should distribute the trajectories in
their original clusters. To compare distances by clustering, we
select a sample of trajectories that we divided into distinct
groups. Each group consists of trajectories that are geograph-
ically close to each other and the clusters do not overlap.
Trajectories are clustered using Hierarchical Cluster Analysis
(HCA) algorithm. The comparison of the clustering results is
done using the Adjusted Rand Index (ARI) measure [24] and
the Silhouette coefficient [25].

ARI estimates the quality of clustering by comparing the
result obtained with the ground truth while ignoring permuta-
tions. Indeed, it may happen that the trajectories are perfectly
distributed in clusters but the order of these clusters differs
from that provided by the ground truth. Such a result must
be counted as correct, hence the need to ignore permutations
between clusters. The other specificity of ARI measure is that
random clustering returns a value close to 0 regardless of the
dataset size and the number of clusters. The formula of the
ARI measure is:

ARI =
RI − E[RI]

max(RI)− E[RI]
(6)

where RI is the Rand Index measure from which ARI
is derived, RI = (a + b)/

(
n
2

)
; a is the number of pairs

of elements that belong to the same cluster in the ground
truth and in the result of the clustering; b is the number
of pairs of elements that belong to the same cluster in the
ground truth and to different clusters in the clustering result;
E[RI] is the expectation of the Rand Index and is obtained
by calculating this measurement on random distributions of
elements in clusters.

The Silhouette coefficient measures the similarity of an
object with its own group compared to other groups. It does
not require a ground truth and is defined as:

S =
b− a

max(a, b)
(7)

With a the average distance between an element and all
the other members of its cluster and b the average distance
between an element and all the elements of the closest cluster.
The Silhouette coefficient for all the elements of a dataset
corresponds to the average of the Silhouette coefficients of
the different elements. The values of the ARI measure and
the Silhouette coefficient range from -1 (worst case) to 1
(best case). Negative values usually indicate the misassignment
of elements to clusters. Values close to 0 indicate clusters
overlapping for the Silhouette coefficient and random assign-
ments for the ARI measure. The advantage of the Silhouette



coefficient compared to the ARI measure is that it does not
require ground truth.

VI. EXPERIMENTATION

Experiments were performed on a server running UBUNTU
16.04. Geographic data are processed with Quantum GIS 3.4
Madeira (QGIS 3.4).

A. Road network and trajectories

The road network is extracted from the map of the ad-
ministrative region of Porto (Portugal) downloaded on Open-
StreetMap1 and using the open-source tool Osm2Po2. The
directed graph obtained is strongly connected with 350189
nodes representing intersections or road ends and 811583
edges.

Trajectories were extracted from Porto trajectory
dataset [26] which contain 1710670 raw trajectories
corresponding to 442 taxis’ journeys in the city of Porto
and its surroundings over a whole year, from 01/07/2013 to
30/06/2014. Each trip is described by an identifier, a set of
GPS coordinates measured every 15 seconds, and various
additional information about the taxi, the origin of the trip
request, etc. The trajectories selected have been map-matched
using barefoot3, an open-source library written in Java,
and implementing the Hidden Markov Model (HMM). Each
trajectory is then transformed into a sequence of road network
nodes.

B. Distances

We compare EQRP to network versions of STLC, Hausdorff
distance, DTW, LCSS, EDR and ERP in terms of clustering
performances and transformations handling. Table I presents
the formulas of the competing distances network versions
which all have a complexity of O(nm(|V |+|E|)). Sizes of
trajectories T1 and T2 are respectively n and m. Head desig-
nates the first node of the considered sequence, Rest refers to
the whole sequence except the first node, vg is the reference
node, and dG is the network distance between two nodes.
To implement the network version of ERP, we had to define
a reference node for the case when there is a gap. Among
diverse possibilities, we choose the reference node based on
the criterion of eccentricity. Recall that the eccentricity of a
vertex is the maximum distance between this vertex and all
the other vertices of the graph. According to this choice, two
variants of the graph version of ERP were implemented. In
the first variant (ERPG1), the reference node is one of those
having the minimum eccentricity, and in the second (ERPG2)
it is a node of maximum eccentricity which is considered. A
node of minimum eccentricity naturally constitutes a reference
in a graph since it belongs to its center. Likewise, a maximum
eccentricity node can act as a reference node because it is the
most eccentric of all. Concerning LCSS and EDR, the value of
the threshold ε is set at 0 because the imprecision associated

1https://www.openstreetmap.org
2https://osm2po.de
3https://github.com/bmwcarit/barefoot

with the geographic coordinates had been removed by the
map-matching operation. All the distances are implemented
in python. We also use python implementation of hierarchical
clustering provided by SciPy4 library.

C. Transformations parameters

We choose to delete 20% of vertices in the nodes deletion
transformation. Concerning the loops addition transforma-
tion, we select 5% of nodes in each trajectory and set the
neighborhood radius to 500 meters. For the detours adding
transformation, we set the projection parameter to 5 (nodes)
in order to simulate medium detours. The neighborhood radius
parameter remains fixed at 500 meters. These parameters make
it possible to limit the number of generated loops or detours on
the trajectories in order to avoid strong distortions. This choice
of neighborhood radius aims to produce loops of intermediate
size (neither too small nor too large) and also ensure the
presence of neighboring nodes in the graph representing the
road network. Note that we conducted various experiments
with different parameters and the results obtained follow
the same tendency as those corresponding to the parameters
mentioned above.

D. Clustering

The ground truth for the clustering consists of a sample of
100 trajectories split into five non-overlapping clusters of 20
trajectories each. Figure 2 illustrates the disjoint zones as well
as the trajectories that are extracted there. We compute the
pairwise distance matrices for each distance and apply Hier-
archical Cluster Analysis. We use the ward linkage measure
for HCA to minimize the variance of clusters being merged.

Fig. 2: Distinct clusters with their trajectories.

VII. RESULTS

A. Impact of nodes deletion

Figure 3 presents the results for nodes deletion. Among
the distances compared, Hausdorff appears to be the most
robust, with correlations regularly between 80% and more
than 90%. STLC is the second distance that best handles
the effects of nodes deletion transformation with correlation

4https://docs.scipy.org



TABLE I: Competing distances formulas

Distances Formulas

STLC(T1, T2) =

∑
vi∈T1

e−dG(vi,T2)

n
+

∑
vj∈T2

e
−dG(vj,T1)

m

dG(vi, T2) = minvj∈T2
dG(vi, vj)

DTW (T1, T2) =



0, If n = 0 and m = 0
∞, If n = 0 or m = 0

dG(Head(T1), Head(T2)) +min


DTW (T1, Rest(T2))

DTW (Rest(T1), T2)

DTW (Rest(T1), Rest(T2))

Otherwise

LCSS(T1, T2) =


0, If n = 0 or m = 0
1 + LCSS(Rest(T1), Rest(T2)), if dG(Head(T1), Head(T2)) ≤ ε,

max

{
LCSS(Rest(T1), T2)

LCSS(T1, Rest(T2))
Otherwise

EDR(T1, T2) =



n, If m = 0
m, If n = 0

min


EDR(Rest(T1), Rest(T2)) + subcost

EDR(Rest(T1), T2) + 1

EDR(T1, Rest(T2)) + 1

Otherwise

subcost =

{
0, If dG(Head(T1), Head(T2)) ≤ ε
1, Otherwise

ERP (T1, T2) =



∑n
l dG(vi, vg), If m = 0∑m
l dG(vj , vg), If n = 0

min


ERP (Rest(T1), Rest(T2)) + dG(Head(T1), Head(T2))

ERP (Rest(T1), T2) + dG(Head(T1), vg)

ERP (T1, Rest(T2)) + dG(Head(T2), vg)

Otherwise

values regularly above 80%. EQRP proves its robustness
by generating correlations around 70 % in the best case.
Moreover, it is much more efficient than the graph versions of
the other warping distances as ERP, EDR, DTW and LCSS.
Only DTW produce average correlation values while the other
three have correlations close to 0. The performance of ERP,
regardless of the variant considered, stands out as the worst.

B. Impact of adding loops

The curves presented in Figure 4 show that in the case of
loop addition, the three best distances are in order Hausdorff,
STLC and EQRP. The Hausdorff distance obtains the best
performance, with correlations reaching 80% while STLC
correlation peak is between 70% and 80%. The curves de-
scribing the evolution of the EQRP correlations indicate a
good capability to resist the addition of loops with correlation
values that reach 70%. The graph versions of ERP, EDR,
LCSS and DTW remain less efficient than the leading trio.
Especially ERP correlations are close to 0 as for the nodes

deletion transformation. However DTW stands out with better
correlation values that reach almost 50%. This gives it a
medium resistance to transformation by adding loops.

C. Impact of adding detours

From Figure 5 we note that adding detours has quite a
similar impact on distances as loops addition. That could
be expected as loops are kind of detours. ERP variants are
again the least resilient to this transformation with correlations
close to 0. EDR and LCSS follow respectively with correlation
also close to 0, which also show a weak capacity to manage
this transformation. DTW, presents an average resistance with
correlations reaching at best 50%. The three best distances
remain in order: Hausdorff, STLC and EQRP. Hausdorff
distance and STLC present performances that reach 80%, while
EQRP reach 70%. This shows their good ability to manage the
addition of detours.



Fig. 3: Spearman’s correlations by distance as a function
of the number of nearest neighbors for the nodes deletion
transformation (Ratio = 20%).

Fig. 4: Spearman’s correlations by distance as a function
of the number of nearest neighbors for the adding loop
transformation (Ratio = 5% & Radius = 500 meters).

D. Clustering performances

The results from the clustering comparison, presented in
table II, corroborate the conclusions resulting from experi-
ences related to trajectory transformations. Hausdorff distance,
STLC and EQRP manage to distribute perfectly (or almost
perfectly) trajectories into distinct clusters. The same goes
for DTW which stands out here, with substantially equal
performance unlike what was observed for the comparison
by transformations. LCSS, EDR and ERP variants produce
low quality partitioning. ERP remains the worst-performing
distance.

Fig. 5: Spearman’s correlations by distance as a function
of the number of nearest neighbors for the adding detours
transformation (Projection = 5 & Radius = 500 meters).

TABLE II: Clustering performances by distance

Distances ARI Silhouette
STLC 1.0 0.887
DTW 1.0 0.557
EQRP 1.0 0.538

Hausdorff 0.975 0.488
LCSS 0.283 0.147
EDR 0.173 0.106
ERPG1 0.022 0.367
ERPG2 0.006 0.434

VIII. DISCUSSION

The Hausdorff distance resists well to various transforma-
tions because of its formulation based on the evaluation of the
minimum distances between nodes and trajectories. Actually,
these distances tend to remain stable even when the trajectories
are deformed. Indeed, the minimum distance between a node
u and a trajectory varies only if the trajectory noticeably
changes its shape so that it modifies its node closest to u. STLC
good abilities can also be explained by the node-to-trajectory
distance computation scheme. The case of DTW is particular
in the sense that it is a relatively sensitive distance against
transformations but it has a good discrimination capability.
This is explained by the fact that DTW computes the real
distances between the nodes of the compared trajectories.
It subsequently returns a relatively precise distance between
trajectories but any modification in the position of the nodes is
automatically reflected in the distance calculated. Concerning
warping distances LCSS and EDR, their weak performance
is due to their calculation method that does not include the
actual distance between nodes and uses matching thresholds.
In the case of ERP we suspect a negative impact of the
reference nodes even if it remains to be proved. Our choice
of a double implementation of ERP network version, aimed
to highlight the impact of the reference node choice on its



robustness and accuracy but the results do not lead to a
clear conclusion. Although the results seem to show a slight
predominance of Hausdorff distance and STLC over EQRP
regarding transformations, it should be remembered that these
two distances do not take into account the order of the nodes
and are therefore limited in their evaluation of the distances
between trajectories.

This limitation effect is mainly perceptible during the com-
parison to similar trajectories. Take the example of three car
trajectories T1, T2 and T3 such that the first two are disjoint
and T3 is identical to T2 in terms of nodes but their sequences
are reversed, i.e. T2 is from node A to node B while T3 is in
the opposite direction. When comparing T1 to T2 and T3 with
Hausdorff distance and STLC, it is not possible to distinguish
T2 from T3 which will appear perfectly identical because they
are at the same distance of T1. However EQRP will highlight
the difference due to the direction of each trajectory because
it aligns trajectories according to their nodes’ sequences.

IX. CONCLUSION

We propose a new distance for network-constrained trajec-
tories combining the qualities of node-to-trajectory distances
with those of the edit distances. This distance also considers
trajectories both as non-ordered sets and as sequences. We
compare our distance to some of the most popular distances for
network-constrained trajectories by assessing their resistance
to transformations and their clustering performances. The
result shows that our distance outperforms all the existing edit
distances and is in some cases more effective than node-to-
trajectory distances.

As future work, we are interested in the use of EQRP
to query large network-constrained trajectories databases. We
also project to create a network-constrained trajectory analysis
platform integrating a search engine. This is a perspective
that would lead to the development of parallel or distributed
architectures for trajectories storage and distances computation
and will include indexes specifically defined to the EQRP
distance, based for example on the triangle inequality.
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