Inverse Calibration Process

Aim: to recover the asymptotic behaviour for all loading conditions Calculation of (∆σ cr 33 , ap) linked to the local parameters (τ 0 i , h i )

γvp s = γ0 i × |τs| ri n i
× sgn(τs), ri(x, t) = τ 0 i (T, ε) + hi(T, ε) × pi(x, t), ṗi = (τ 0 i , hi)(T, ε) functions to be calibrated.

(1) γ vp s slip on the considered system (s).

ψvp = s ψvp,s, ψvp,s(Avp, Ap,i) = γ0 i × -Ap,i ni + 1 × |Avp,s| -Ap,i n i +1 , ψp = s ψp,s, ψp,s(Avp, Ap,i) = γ0 i × |Avp,s| (ni -1) × |Avp,s| -Ap,i n i -1
, with:

(ψvp, ψp) dissipation potentials ( εvp, ṗ), (Avp, Ap,i) thermodynamic forces ←→ (εvp, pi).

(2) 

σ(x, t) = L(x) : (ε(x, t) -εvp(x, t)), εvp(x, t) = s γ vp s (x, t) ms(x), div σ(x, t) = 0, σ(x, t) • n(x) antiperiodic on ∂V, ε(x, t) = ε(t) + 1 2 (∇u * (x, t) + ∇u * T (x, t)), u * (x, t) periodic on ∂V.         
(3)

γvp s = ∂ψvp,s ∂Avp,s (Avp,s, Ap,i) , γp s = ∂ψp,s ∂Ap,i (Avp,s, Ap,i) , s ∈ Si,
with:

εvp associated with its thermodynamic force Avp(≡ σ), p = (pi) associated with its thermodynamic force Ap = (Ap,i),

i ∈ {{100}, {110}} referring to a slip family of the studied material [Soulacroix, PhD Thesis (2014)],

Ap,i(x, t) = -ri(x, t), ri(x, t) = τ 0 i (T, ε) + hi(T, ε) × pi(x, t), ṗi = s∈S i γp s (Avp, Ap) , γp s = | γvp s |. (4) RVE V
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τ 0 i (T, ε) Calibration of h i (T,
n {100} = 4, γ0 {100} ( ε) = 0.7 × ε and n {110} = 4, γ0 {110} ( ε) = 0.5 × ε,
with: n i deduced from observations, γ0 i ( ε) determined using numerical tests at the single crystal scale.

τ 0 i (T, ε) = A f i ( ε) × exp -b f i × T + C f i ( ε) A f i ( ε) = M ax a f,0 i -a f,1 i × exp -a f,2 i × log 10 ε , 0 ,
with: 

C f i ( ε) same strain rate dependence as A f i ( ε), (A f i , b f i , C f i )
τ 0 i (T, ε) targeted function. τ 0,(n+1) i (T, ε) = τ 0,(n) i (T, ε) + fs × (n) ∆σ cr 33 (T, ε), fs = 0.5, with: τ 0,(n+1) i
input data used in the LM algorithm,

Er (n) = 1 N × | (n) ∆σ cr 33 (T, ε)|, |Er (n) -Er (n-1) | < δ × Er (n-1) ,
with:

(n) ∆σ cr 33 (T, ε) error at given loading conditions, (Er (n) , δ(= 10 -3 )) relative error and stopping criterion.

(5)

Beginning of the iterative process

End of the iterative process
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Calibration of h i (T, ε)

h {100} = h {110} = h h (n+1) = ap,exp × h (n) a (n) p,simu , |a (n) 
p,simu -ap,exp| < δ × ap,exp, with:

ap,exp experimental strain hardening slope, a (n) p,simu numerical strain hardening slope, δ(= 10 -4 ) relative stopping criterion.

h(T, ε) = a h × ln b h × ε + f h c h × T + d h e h ,
with:

h (n) input data used in the LM algorithm, (a h , b h , c h , d h , e h , f h ) coefficients determined by using LM algorithm [Levenberg, QAM (1944)] [Marquardt, JSIAM (1963)]. (6) 
End of the iterative process
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Results of Inverse Calibration

Variation of T

ε = 10 -1 [s] -1 [Salvo et al., JNM (2015)]
Variation of ε with:

T = 1500 [ • C] [Ben Saada, PhD Thesis (2017)]
p i (x, t) = M p,i l ξ (l) p,i (t) µ (l) p,i (x) -[Decomposed], g ξ (g) p,i (t) χ (g) (x)
ρ (k) vp (x) = L(x) : D * µ (k) vp (x) -µ (k) vp (x) . (8) 
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Macroscopic State Law

∂ w ∂ ε = σ, σ = L : ε + Mvp k < ρ (k) vp > ξ (l) vp , - ∂ w ∂ξ (k) vp = a (k) vp , a (k) vp = ε : a (k) + l < µ (k) vp : ρ (l) vp > ξ (l) vp , - ∂ w ∂ξ (k) p,i = a (k) p,i , a (k) 
p,i = -   τ 0 i < µ (k) p i > +h i × M p,i l ξ (l) p i < µ (k) p i µ (l) p i >   -[Decomposed], -τ 0 i + h i × ξ (k) p i × c (k) -[Constant per grain],
with:

a (k) =< µ (k) vp : L : A >, L =< L : A > . (9) 
Evolution of the Reduced Thermodynamic Variables

ȧ(k) vp (ε, ξvp) = ∂a (k) vp ∂ ε : ε + Mvp l ∂a (k) vp ∂ξ (l) vp × ξ(l) vp , with ξ(l) vp = ∂ψ hom vp ∂a (l) vp =⇒ ȧ(k) vp = ∂a (k) vp ∂ ε : ε + ∂ψ hom vp ∂ξ (k) vp , ψ hom = ψ, ψ = < ψ >, < ψ >= g c (g) s < ψs > (g) ,
approximation of the effective dissipation potential [Fritzen and Leuschner, CMAME (2013)],

< ψ TSO vp,s (Avp,s, A p,i ) > (g) = ψvp,s( Ā(g) vp,s , Ā(g) p,i ) + ∂ 2 ψvp,s ∂Avp,s∂A p,i × C (g) A (g) vp,s , A (g) p,i + 1 2 ∂ 2 ψvp,s ∂A 2 vp,s × C (g) A (g) vp,s + 1 2 ∂ 2 ψvp,s ∂A 2 p,i × C (g) A (g) p,i -[Decomposed],
Tangent Second Order (TSO) linearisation of the effective dissipation potential [Castañeda, JMPS (1996)] [Michel and Suquet, CM (2016)].

with: g) .

C (g) (X, Y ) = < X -X(g) Y -Ȳ (g) > (g) , C (g) (X) = < X -X(g) 2 > (
Similar work has to be done on ȧ(k) p , ȧ(k) vp has to be coupled with ȧ(k) p .

(10) 

T = 1100 [ • C], ε = 10 -1 [s] -1 T = 1700 [ • C], ε = 10 -1 [s] -1 T = 1500 [ • C], ε = 10 -6 [s] -1

Results

Local

  inspired by [Knezevic et al., IJP (2013)],

  obtained by minimising error using LM algorithm[Levenberg, QAM (1944)] [Marquardt,JSIAM (1963)],

  vp (x ) dx , D(x, x ) = Γ(x, x ) : L(x ), with: (D, Γ) nonlocal and nonlocal Green operators, σ(x, t) = L(x) : A(x) : ε(t)

  [%], T = 1700 [ • C], ε = 10 -1 [s] -1 ε33 = 7 [%], T = 1500 [ • C], ε = 10 -6 [s] Behaviour law ⇐= from experimental results ♦ Aim: to recover asymptotic behaviour Inverse calibration ♦ Behaviour law parameters impacted by the loading conditions ♦ Iterative calibration process using Levenberg Marquardt algorithm Model reduction: NTFA-TSO ♦ NTFA: 2 different decompositions studied ♦ Reduced-variable evolution laws ⇐= effective-dissipation-potential linearisation Results ♦ [Macroscopic scale] Good agreement between: • Experimental results • FFT results • NTFA-TSO model ♦ [Local scale] Almost no error margin between: • FFT results • NTFA-TSO model
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with: w local free-energy,

ε(x, t) = εe(x, t) + εvp(x, t), εvp(x, t) = s γ vp s (x, t) ms(x),

with:

ms Schmid tensor UO2 fluorite crystallographic structure [Soulacroix, PhD Thesis (2014)],

Local Problem to be Solved for RVE V : Equation System (3) Coupled with Evolution Laws (4)
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