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Recently, the evolution of the Weyl point (WP) caused by the introduction of nonhermiticity into Weyl
semimetals has aroused great research interest. We consider elastic flexural wave propagation in a phononic
beam containing piezoelectric materials and introduce nonhermiticity through active regulation of external
circuits. Considering a synthetic parameter space constituted by the one-dimensional Bloch wave vector and two
geometrical parameters, we demonstrate that a double WP (DWP) arises at the band crossing. Then we study
its evolution from the hermitic to nonhermitic situation under the effect of the active piezoelectric materials. We
find that the DWP in the hermitic case evolves into a Weyl degenerate line and a Weyl hollow ring as concerns
the real and imaginary parts of the Weyl frequencies, respectively. The formation mechanisms of the DWPs,
lines, and rings are explained through the Hamiltonian of the system. Further, we observe the changes of the
DWP and degenerate line in the transmission spectra of finite structures. Finally, we discuss the synthetic Fermi
arc interface states through the analysis of the reflected phase vortices. In this paper, we provide insights into the
high-dimensional Hermitian and non-Hermitian physics in elastic wave systems using synthetic dimensions.

DOI: 10.1103/PhysRevResearch.5.023020

I. INTRODUCTION

In condensed matter physics, Weyl semimetals are a pe-
culiar class of three-dimensional (3D) quantum states [1–4]
that exhibit linear dispersion relations in all spatial direc-
tions around specific points of the reciprocal space, called
Weyl points (WPs) [5]. The integration of the Berry curvature
around the WP gives access to a topological charge that can
be associated with the Berry flux of a magnetic monopole.
WPs with opposite topological charges usually appear in pairs
and are connected by the Fermi arc which is the recipro-
cal space representation of the gapless unidirectional surface
state at the Fermi energy [1,6]. Subsequently, the concept of
Weyl semimetals was naturally extended to classical wave
systems, including photonic [7,8], acoustic [9,10], and elastic
[11] systems. Different from the linear band crossing that
arises in simple WPs, the dispersion may be dominated by
a quadratic term in the Hamiltonian at least in one momentum
direction. In this case, the crossing belongs to the double WP
(DWP) [12]. The DWP has been observed in chiral woodpile
photonic crystals [13] and stoichiometric compound stron-
tium silicide [14]. Furthermore, to overcome the difficulty
in the calculation and experiments dealing with spatially 3D
structures, the concept of synthetic dimensions was skillfully

*083623jinyabin@tongji.edu.cn

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

introduced to investigate high-dimensional physics based on
low-dimensional spatial structures [11,15,16].

On the other hand, the non-Hermitian systems have be-
come the focus of attention in recent years [17–21]. Indeed,
the non-Hermitian Hamiltonian considering loss and pos-
sibly gain is a more realistic situation than the Hermitian
Hamiltonian of a closed system. While loss may be naturally
present in any structure, some active elements can be used
to achieve gain in non-Hermitian systems. For elastic wave
systems, an elegant way would rely on active regulation of
lead-zirconate-titanate (PZT) external circuits (ECs) [22–25].
The realization of negative effective values including neg-
ative inductance, capacitance, resistance, or a combination
of the three of them through a non-Foster electrical circuit
has become a reliable way to develop space-time modulated
metamaterials in recent years [26–28], and some experimental
works have been successfully carried out [29–31]. One of the
most important characteristics of non-Hermitian systems is
the appearance of an exceptional point (EP), which is the tran-
sition point of a parity-time symmetric system from pure real
eigenvalues to complex conjugate spectra [32,33], thus open-
ing to phenomena such as asymmetric mode switching [34]
and unidirectional invisibility [35], among others. Recently,
it has been observed that the introduction of nonhermiticity
in optical [36] and acoustic [37] systems will make the WP
of the Hermitian case evolve into a Weyl exceptional ring,
which is the continuous track of the EP in the reciprocal space.
Although the general Hermitian and non-Hermitian Weyl
physics have been widely discussed in optical and acoustic
systems, research into elastic flexural wave systems is still
lacking.
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FIG. 1. (a) Schematic of the unit cell composed of three aluminum blocks and two lead-zirconate-titanate (PZT) blocks. The two PZT
blocks colored in yellow and green are connected to external circuits (ECs) with copper electrodes. The arrows with solid and dashed lines
represent the propagating and evanescent waves, respectively, and indicate the direction of wave propagation. The layers are numbered from
1 to 5. (b) Three-dimensional (3D) virtual parameter space composed of the wave vector k and synthetic parameters ξ and ζ . The three kinds
of colored balls represent the double Weyl point (DWP) formed between different bands. (c) Simulated and theoretical band structures for
ξ = ζ = 0. The red circles, blue dots, and red solid lines, respectively, correspond to simulation with PZT EC, simulation using PZT effective
modulus parameters, and theoretical calculation. (d) Band structure in the ξ−ζ space at k = ±π/a for the hermitic case. The red ball denotes
DWP. (e) For the nonhermitic case, the left and right panels represent, respectively, the real and imaginary parts of the spectrum in the ξ−ζ

space at k = ±π/a. The real and imaginary parts, respectively, form a Weyl degenerate line (WDL) and a Weyl hollow ring (WHR). The
colors of the surfaces in (d) and (e) indicate the frequency, with an increase from blue to red.

In this paper, we further extend the exploration of the
Hermitian and non-Hermitian Weyl physics to elastic
phononic systems [38,39] by introducing nonhermiticity
through active regulation of piezoelectric materials in a
phononic beam. We realize the Weyl physics in a synthetic
3D space constituted by the one-dimensional (1D) recipro-
cal space and two geometrical parameters. We found that
the introduction of the non-Hermitian factor will lead to the
evolution of the DWP into the Weyl degenerate line (WDL)
and Weyl hollow ring (WHR), describing the evolution of the
real and imaginary parts of the frequency, respectively. We
propose a Hamiltonian that gives a physical explanation of
the trends in the DWPs, lines, and rings. We further observe
the changes of the DWP and WDL in the transmission spectra
of a finite phononic beam. Finally, we discuss the reflected
phase vortices around the DWP and WDL and demonstrate

the synthetic Fermi arc interface states that are guaranteed by
these vortices.

II. MODEL AND FORMULATION

Figure 1(a) gives a schematic view of the phononic beam
where each unit cell is constituted by two piezoelectric blocks
(PZT-5H) sandwiched between three aluminum blocks. The
calculations are based on three levels of approaches. One is
the full simulation of the elastic beam structure including
the piezoelectricity of PZT blocks and the external electric
circuits. In a second simulation approach, the properties of
the piezoelectric blocks are approximated by effective param-
eters following the effective modulus theory of Farhat et al.
[22], as explained in Appendix A. A third analytical approach
presented below describes the flexural waves of the metabeam
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based on the Timoshenko beam theory. Here, the material
parameters of aluminum are Young’s modulus E = 70 GPa,
Poisson’s ratio ν = 0.33, and density ρ = 2700 kg/m3. We
set the effective parameters of PZT as E eff

0 = 55GPa, ρ =
7500 kg/m3, and after equivalence, the Poisson’s ratio 0.1704
and shear modulus 23.5 GPa. The geometric parameters of
the structure are the lattice constant a = 90 mm and the sides
of the beam b = h = 50 mm. We further assume 2a1 + a3 =
2a/3 and a2 + a4 = a/3 and define two new parameters as
ξ = 2a1−a3

2a1+a3
and ζ = a2−a4

a2+a4
which will constitute our synthetic

parameters. Since the layer lengths are necessarily positive,
both ξ and ζ are in the range [-1, 1]. Additionally, the wave
vector is defined in the 1D Brillouin zone (BZ) related to
the period of the structure, and its range is [−π/a, π/a].
The two synthetic dimensions and one physical dimen-
sion can construct a virtual 3D parameter space, as shown
in Fig. 1(b).

We start with the case ξ = ζ = 0 and employ the transfer
matrix method to obtain the band structure of the phononic
beam, as shown by the red solid lines in Fig. 1(c). Details
about the theoretical derivation of the Timoshenko theory and
transfer matrix calculations are provided in Appendix B; we
use finite element simulation to verify the accuracy of the the-
oretical calculation, including simulation using PZT effective
modulus parameters (blue dots) and simulation with full PZT
EC (red circles). For the former, the material parameters of
the piezoelectric blocks are set as equivalent parameters dur-
ing simulation, while for the latter, the following simulation
modeling is adopted using the Comsol Multiphysics software:
the upper and lower surfaces of the PZT blocks are coated
with copper electrodes of thickness t = 0.1 mm connected to
two circuits, respectively, as shown in Fig. 1(a). Each circuit
contains an AC voltage source and variable resistor, induc-
tor, and capacitor. Their specific values are derived from the
chosen modulus parameters, as explained in Appendix A. It
can be seen in Fig. 1(c) that the results of the three meth-
ods show good agreement, supporting the correctness of our
theoretical derivation based on the Timoshenko beam theory.
Therefore, we choose the Timoshenko theory to carry out

our research in the rest of this paper. It is worth noting that
the band crossing of Fig. 1(c) exhibits degenerate points at
the boundaries of the BZ (k = ±π/a) which arise from a
band-folding effect. Indeed, with ξ = ζ = 0, the original unit
cell of Fig. 1(a) is composed of two identical half-unit cells. If
we fix the wave vector to k = −π/a or π/a and scan the two
synthetic parameters, as shown in Fig. 1(d), a degenerate point
with cone intersection will be formed by the first and second
bands in the ξ−ζ space, which is the so-called DWP; its fre-
quency is 430 Hz and corresponds to the red balls in Fig. 1(b).
Similarly, the third and fourth bands will form DWPs at
(0, 0, ±) and (±0.58, ±0.8, ±π/a), corresponding to the
red and yellow balls in Fig. 1(b), respectively. Additionally, if
we fix k = 0, DWPs can be found at (±0.88, 0, 0) formed
by second and third bands, corresponding to the green balls
in Fig. 1(b). Additional results about DWPs are provided in
Appendix C.

In the following, we shall focus on the DWP formed
by the first two bands at k = −π/a and π/a. By adjusting
the resistance and reactance of the two ECs, respectively,
we can make the effective moduli of the PZT blocks com-
plex, and a non-Hermitian system with both gain and loss
can be constructed. Here, we adjust the effective Young’s
modulus of gain and loss to E eff

gain = E eff
0 (1−γ i) and E eff

loss =
Ee f f

0 (1 + γ i), respectively, where the nonhermiticity param-
eter γ is arbitrarily fixed to 0.3 without loss of generality.
The resulting effective Poisson’s ratios and shear mod-
uli (see Appendix A) become veff

gain = 0.1704 − 0.3511i,
veff

loss = 0.1704 + 0.3511i, Geff
gain = 23.5 − 3.7 × 10−4i,

and Geff
loss = 23.5 + 3.7 × 10−4i GPa. If we scan the ξ −ζ

space, the DWP of the hermitic case evolves into a WDL at
the frequency of 436 Hz [left panel of Fig. 1(e)]. In addition,
the imaginary part of the frequency is no longer zero but forms
a WHR [right panel of Fig. 1(e)]. More information about the
WDL and WHR is provided in Appendix C.

To explain the DWP in the hermitic case and its evolution
to line and ring phenomena in the nonhermitic case, we pro-
pose the following Hamiltonian of the system [40]:

H (ξ, ζ , k) =
[
ω0(1 + mζ ) − i	0 + i	 κ (ξ, k)

κ∗(ξ, k) ω0(1 − mζ ) − i	0 − i	

]
, (1)

where ω0 is the original (ζ = 0) first nonrigid-body reso-
nance frequency of the PZT blocks, iγ and −i	(	 = τγ � 0)
denote the gain and loss modulation, respectively, τ is
a coefficient connecting nonhermitic parameters γ and 	,
−i	0(	0 � 0) denotes the intrinsic loss, and κ (ξ, k) =
κ+(ξ ) + κ−(ξ )e−ika, with κ+(ξ ) = κ0(1 + nξ ) and κ−(ξ ) =
κ0(1−nξ ) representing the intracell and intercell coupling
strengths; here, κ0 is the original (ξ = ζ = 0 and γ = 0)
coupling strength, κ∗ is the conjugate of κ , and m and n
are two coefficients that control the resonance frequency shift
and coupling strength, respectively. The eigenfrequencies of
Eq. (1) take the following form:

ω̃1,2 = ω0 − 	0i ±
√

κκ∗ − (τγ − mω0ζ i)2, (2)

where κκ∗ = 4κ2
0 [(cos ka

2 )
2 + n2ξ 2(sin ka

2 )
2
]. If we set k =

−π/a or π/a as before, this expression simplifies to κκ∗ =
4κ2

0 n2ξ 2. It is worth mentioning that the dispersion around
these points are linear with respect to ζ and quadratic with
respect to k and ξ . This can be easily demonstrated by cal-
culating the first and second derivatives of ω̃1, 2 with respect
to the corresponding variables (see Appendix C). Since the
DWP or the resulting WDL correspond to a degeneracy in the
real part of the eigenfrequencies, the expression in the square
root of Eq. (2) should be real and negative. This implies that
(i) mω0τγ ζ = 0 and (ii) 4κ2

0 n2ξ 2 − τ 2γ 2 + m2ω2
0ζ

2 � 0.
The first condition is satisfied if either γ = 0 (hermitic sys-
tem) or ζ = 0. In the hermitic case of γ = 0, the second
condition will imply ξ = ζ = 0, which reveals the formation
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FIG. 2. Transmission spectra with different synthetic parameters ξ and ζ . The orange dashed lines are the band structures. (a)–(e) For the
hermitic case and (f)–(j) for the nonhermitic case, showing the evolution processes of the double Weyl point (DWP) and Weyl degenerate line
(WDL), respectively.

of DWP, as shown in Fig. 1(d). On the other hand, if ζ = 0,
condition (ii) yields − τγ

2κ0n � ξ � τγ

2κ0n , which reveals the for-
mation of WDL in the real part of the frequency, as shown in
the left panel of Fig. 1(e). So far, the eigenfrequencies can

be simplified as ω̃1,2 = ω0 − 	0i ±
√

τ 2γ 2 − 4κ2
0 n2ξ 2i. We

now set fi = ±
√

τ 2γ 2 − 4κ2
0 n2ξ 2 − 	0, and further, through

simple derivation, we can get

( fi + 	0)2

(τγ )2 + ξ 2(
τγ

2κ0n

)2 = 1. (3)

Equation (3) is an elliptic equation in the fi−ξ plane and
reveals the formation of a WHR in the imaginary part of
the frequency, as shown in the right panel of Fig. 1(e). It
is worth noting that τ and n are fitting coefficients that can
be adjusted according to actual parameters; therefore, this
model can achieve accurate description of a DWP, WDL,
and WHR.

III. OBSERVATION OF WEYL PHENOMENON IN FINITE
STRUCTURES

A. DWP and WDL

We now consider a finite structure consisting of 9 units to
observe and discuss the evolutions of the DWP and WDL in
the transmission spectra. Details about transmission spectra
calculation are provided in Appendix B. We calculate the
transmission spectra of the propagating waves for different
values of ζ . For the hermitic case [Figs. 2(a)–2(e)], the gradual
increase of ζ from negative values results first in a decrease
of the band gap that closes at ζ = 0, before opening again
and increasing for positive ζ . This behavior is consistent with
the appearance of DWP from the band structure calculation
shown by the orange dashed lines. Similarly, for the nonher-
mitic case, shown in Figs. 2(f)–2(j), the closing of the band
gap coincides with a degenerate line instead of a point. Its

length and frequency are consistent with the eigenfrequency
result of Fig. 1(e). This can be seen from slices of Figs. 1(d)
and 1(e) as illustrated in Appendix C. It is worth noting that
the parameter ζ controls the amount of gain and loss in the
system since it defines the relative lengths of the two PZT
blocks. For the hermitic case where γ = 0, there is no gain
or loss in the system, and the transmission in the passbands is
always ∼ 1 [ln(tp) = 0]. However, for the nonhermitic case,
if ζ < 0, then a2 < a4, so the overall gain of the system is
less than the loss, and the transmission for passband is almost
< 1. On the contrary, if ζ > 0, then a2 > a4, so the overall
gain exceeds the loss, and the transmission in the passbands is
almost > 1. However, if ζ = 0, the gain and loss are balanced,
so the transmission for passband is ∼ 1 [Fig. 2(h)].

B. Reflected phase vortices and synthetic Fermi
arc interface states

In the following, we discuss the properties of the reflected
phase around the DWP and WDL and their consequences for
the Fermi arcs. For the hermitic case, the reflected phase [see
Fig. 3(a)] exhibits a vortex distribution around the DWP at
ξ = ζ = 0 [15]. In this figure, we assume that the incident
wave is at the DWP frequency (430 Hz) and calculate the
reflected phase by scanning the ξ −ζ space. Similarly, in
Figs. 3(b) and 3(c), we present the reflected phase distribution
in the nonhermitic situation with a complex frequency inci-
dent wave at (436 ± 25i) Hz, where the real part is the middle
frequency of the WDL and the positive (negative) imaginary
parts correspond to the maximum (minimum) frequencies in
the WHR [see Fig. 1(e)]. It can be seen that the reflected
phase still exhibits a vortex distribution. The influence of
nonhermiticity is essentially to shift the vortex centers toward
ξ < 0 (ξ > 0) for positive (negative) imaginary parts of the
incident wave frequency.

Another illustration of the winding behavior of the re-
flected phase is presented in Fig. 3(d), where we report ϕ as a
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FIG. 3. Reflected phase vortex in synthetic ξ−ζ space. (a) Reflected phase vortex excited at the double Weyl point (DWP) frequency.
(b) and (c) Reflected phase vortex excited at the middle frequency of the Weyl degenerate line (WDL); the results of the excitation of frequencies
with (b) positive and (c) negative imaginary parts. The green and magenta dashed lines are the continuous change tracks of Fermi arc interface
state formed when the reflected phase is 0.9π and 0.1π , respectively. The yellow, gray, and black circles have their centers at ξ = ζ = 0 and a
radius R = 0.5. (d) The changes of reflected phase as a function of the polar angle along the three circles in (a)–(c).

function of the polar angle φ around a circle of radius R = 0.5
in the ξ−ζ plane. Such circles are drawn in Figs. 3(a)–3(c),
respectively, in yellow, gray, and black colors. Since the se-
lected loops encircle the vortex centers, the reflected phase
along these loops will cover a change of 2π , as summarized
in Fig. 3(d). Let us note that the reflected phase vortex around
the DWP has the same topological charge as the DWP [15].
The topological charge is defined as the integral of Berry
curvature enclosing the DWP. However, it can be judged from
an intuitive view that the topological charge corresponding to
the clockwise and counterclockwise vortices for the DWP are,
respectively, −2 and 2 [3,37,41]. The vortices created by two
excitations with opposite signs of the imaginary parts of the
frequency exhibit opposite windings.

According to the existence condition of an interface state
between two media, established by the condition on the re-
flected phase, i.e., ϕA + ϕB = 2mπ (m ∈ Z ) [42], one can find
many combinations of parameters to create an interface be-
tween two different phononic beams supporting a localized
state. Indeed, let us choose a reference phononic beam with
a certain value of the reflected phase. Then the opposite
of this phase can be found along a continuous trajectory
starting from the vortex center. This trajectory will be the
synthetic analog of the Fermi arc [15]. As a matter of illus-
tration, we choose two such reference systems with reflected

phases of ϕ = −0.9π and ϕ = −0.1π located on the circles
of R = 0.5. Then we present in Figs. 3(a)–3(c) the trajecto-
ries that represent the opposite phases of 0.9π (0.1π ) by the
green (magenta) dashed lines. These trajectories start from the
vortex center and end at the boundary of the space parameter.
This is in contrast to the Fermi arcs in periodic structures
that link two DWPs of opposite charges and results from the
absence of periodicity in the synthetic parameter space. It is
worth noting that DWPs with opposite charges can be found
in the higher-frequency bands, which ensures the appearance
of a complete Fermi arc. Some illustrations are provided in
Appendix D.

Furthermore, we verify the Fermi arc interface states
through theoretical calculations. We construct an interface
between two beams where the left beam is one of the two
reference systems mentioned above [with phase reflection of
−0.9π (−0.1 π ) on the circle of R = 0.5] and the right beam
belongs to the Fermi arcs formed by the reflection phase of
0.9π (0.1 π ) represented by the green (magenta) dashed lines
in Fig. 3. The beams on the left and right sides of the interface
contain 5 units, respectively. We calculate the interface state
frequencies for a series of configurations on the Fermi arcs, as
shown by the dots, stars, and circles in Fig. 4. For the hermitic
case, the frequencies of the interface state are almost the same
as the DWP frequency [see Fig. 4(a)]. For the nonhermitic
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FIG. 4. Theoretical calculation for Fermi arc interface state frequencies for (a) the hermitic and (b) the nonhermitic case. The black
horizontal lines in (a) and (b) are the double Weyl point (DWP) and the Weyl degenerate line (WDL) frequency, respectively. The dots in
(a) correspond to the Fermi arcs in Fig. 3(a), while the stars and circles in (b) correspond to the Fermi arcs in Fig. 3(b) and 3(c), respectively.
Green and magenta correspond to the Fermi arcs formed by ϕ = 0.9π and ϕ = 0.1π , respectively.

case, the interface states display stronger shifts from the WDL
frequency. The sign and magnitude of the shift depend on the
sign of the imaginary part of the frequency and the relative
magnitude of the gain and loss in the system. Specifically, for
the interface state frequencies with a positive imaginary part,
if the gain is greater than the loss (ζ > 0), the interface state
frequencies will shift down, and if the gain is less than the
loss (ζ < 0), the interface state frequencies will shift up [see
the stars in Fig. 4(b)]. For the interface state frequencies with
a negative imaginary part, the phenomenon is opposite [see
the circles Fig. 4(b)].

IV. CONCLUSIONS

In conclusion, we discussed the existence of DWPs in a
synthetic 3D space based on a 1D phononic beam and their
transformations under the effect of nonhermiticity resulting
from piezoelectric materials attached to ECs. We demon-
strated theoretically the formation of a DWP, WDL, and
WHR. Through the eigenderivation of the Hamiltonian, we
proved the formation of the DWP in the Hermitian beam and
the WDL and WHR in the non-Hermitian beam, respectively.
We observed the change of the transmission spectrum of finite
structures in the vicinity of the DWP and WDL and further
discussed the reflected phase vortices around them. We found
that the influence of nonhermiticity is the shift of vortex center
without destroying the vortex structure. Both Hermitian and
non-Hermitian reflected phase vortices cover 2π , ensuring the
existence of synthetic Fermi arc interface states. In this paper,
we extend the Hermitian and non-Hermitian Weyl physics to
a synthetic elastic 3D system by using piezoelectric elements,
which is a widely used platform in functional solid devices
and provides insights for the high-dimensional non-Hermitian
physics of elastic waves.
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APPENDIX A: EFFECTIVE MODULUS
OF PZT BLOCK IN ECs

In this section, we describe how the equivalent method
described in Ref. [22] can be applied to our problem to define
the effective parameters of our piezoelectric materials and the
resistance and reactance needed in the ECs. In Ref. [22], the
equivalent modulus of piezoelectric materials is determined
by the resistance and inductance of the EC. In this paper, we
specify the equivalent modulus of the piezoelectric materials
and use the relationship in Ref. [22] to derive the circuit
parameters. Different from Ref. [22], to increase the adjusta-
bility of the circuit, we add capacitors in the circuit. The
capacitance and inductance together provide the reactance of
the circuit.

For a specific equivalent Young’s modulus E eff , the
impedance in the EC should be [22]

Z =
(
sE

xx − 1
E eff

)
h[

d2
xz − εT

zz

(
sE

xx − 1
E eff

)]
ωAii

, (A1)

where dxz = −2.74 × 10−10C/N is a piezoelectric constant,
sE

xx = 1.65 × 10−11Pa−1 is an element of the piezoelectricity
compliance matrix, εT

zz = 2000ε0 is the dielectric constant,
ε0 = 8.854 × 10−12F/m is the permittivity of free space,
A2(4) = ba2(4) is the area of the PZT patch, h = 50 mm is the
height of the metabeam, and ω denotes the angular frequency.

By using Eq. (A1), we can get the equivalent Poisson’s

ratio as νeff = −E eff s′
xy, where s′

xy = sE
xy− iωd2

xzAZ
h+iωεT

zzAZ is an el-

ement of effective compliance matrix; here, sE
xy = −4.78 ×

10−12Pa−1, and the equivalent shear modulus is Geff =
E eff

2(1+νeff ) . The impedance can be expressed as

Z = R + iX, (A2)
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where R is the resistance, X = ωL− 1
ωC is the reactance con-

sisting of an inductive and a capacitive part. From Eq. (A1),
we can determine the specific inductance, capacitance, and
resistance which should be applied in the circuit to achieve
the desired equivalent modulus. Let us note that, according to
Eq. (A2), these quantities need to be adjusted when varying
the frequency. Also, the same reactance can be realized for
different combinations of L and C.

By setting the values of E eff
gain and E eff

loss, the corresponding
Poisson’s ratios and shear moduli can be derived from the
above equivalent theory as well as the required resistance
and reactance values in both ECs. Since we need to achieve
elastic wave gain, negative effective values are necessary to
achieve in practical experiments. As we mentioned in the
introduction, a non-Foster circuit can be a reliable solution to
achieve negative equivalent electrical parameters. The interest
and added value of non-Foster circuits is that the loss/gain can
actively be tuned by negative/positive sign of resistance, and
when an inductance and capacitance are added into the latter,
both of the real and imaginary parts of its effective parameter
become tunable.

APPENDIX B: DETAILS IN THE DERIVATION OF
TRANSFER MATRIX METHOD

In the Sec. II, we employ the transfer matrix method to
derive the band structure and transmission. Here, we add
details about its derivation.

In our transfer matrix analytical approach [43,44], we de-
scribe the flexural wave propagation by using the Timoshenko
beam theory based on the following equation [45]:

EI

ρS

∂4w(x, t )

∂x4
− I

S

(
1 + E

μG

)
∂4w(x, t )

∂x2∂t2
+ ∂2w(x, t )

∂t2

+ ρI

μGS

∂4w(x, t )

∂t4
= 0, (B1)

where w(x, t) is the vertical displacement; E, G, and ρ

are, respectively, Young’s modulus, shear modulus, and mass

density; I = bh3/12 is the flexural rigidity; S = bh is the
cross-sectional area; and μ = 5

6 is a shear correction factor
for rectangular section.

The time-harmonic solution of Eq. (B1) in the nth layer is
composed of two propagating and two evanescent waves (with
real and imaginary wave numbers, respectively) in two axial
directions. It can be written as

wn(x) = Aneq1x + Bneq2x + Cneq3x + Dneq4x, (B2)

where q j = (−1) j−1

√
α+(−1) j( j+1)/2

√
α2+4β

2 , j = 1, …, 4 de-
note the four wave numbers, α = −ω2ρ( 1

E + 1
μG ), β =

ω2ρ( S
EI − ω2ρ

μEG ), ω is the angular frequency, and An, Bn, Cn,
and Dn are arbitrary coefficients that should be determined
from the boundary conditions. Further, the displacement, ro-
tation angle, bending moment, and shear force of the nth layer
can be expressed as⎡
⎢⎢⎢⎣
wn(x)

ϕn(x)

Mn(x)

Vn(x)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

eq1x eq2x eq3x eq4x

q1eq1x q2eq2x q3eq3x q4eq4x

EIq2
1eq1x EIq2

2eq2x EIq2
3eq3x EIq2

4eq4x

EIq3
1eq1x EIq3

2eq2x EIq3
3eq3x EIq3

4eq4x

⎤
⎥⎥⎥⎦Un,

(B3)

where Un is the column vector formed by An, Bn, Cn, and
Dn. For the interface between layers n and n + 1, we ap-
ply the continuity conditions on wn, ϕn, Mn, and Vn as
follows: ⎡

⎢⎢⎣
wn(xi )
ϕn(xi )
Mn(xi )
Vn(xi )

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

wn+1(xi )
ϕn+1(xi )
Mn+1(xi )
Vn+1(xi )

⎤
⎥⎥⎦, (B4)

where xi is the x coordinate at the interface. Then we have
PnUn = Qn+1Un+1, (n = 1, . . . , 4), where Pn denotes the
right boundary matrix of the layer n and Qn+1 denotes
the left boundary matrix of the layer n + 1. They can be
expressed as

Pn =

⎡
⎢⎢⎢⎢⎣

eqn
1xi eqn

2xi eqn
3xi eqn

4xi

qn
1eqn

1xi qn
2eqn

2xi qn
3eqn

3xi qn
4eqn

4xi

EnIn
(
qn

1

)2
eqn

1xi EnIn
(
qn

2

)2
eqn

2xi EnIn
(
qn

3

)2
eqn

3xi EnIn
(
qn

4

)2
eqn

4xi

EnIn
(
qn

1

)3
eqn

1xi EnIn
(
qn

2

)3
eqn

2xi EnIn
(
qn

3

)3
eqn

3xi EnIn
(
qn

4

)3
eqn

4xi

⎤
⎥⎥⎥⎥⎦,

Qn+1 =

⎡
⎢⎢⎢⎢⎣

eqn+1
1 xi eqn+1

2 xi eqn+1
3 xi eqn+1

4 xi

qn+1
1 eqn+1

1 xi qn+1
2 eqn+1

2 xi qn+1
3 eqn+1

3 xi qn+1
4 eqn+1

4 xi

En+1In+1
(
qn+1

1

)2
eqn+1

1 xi En+1In+1
(
qn+1

2

)2
eqn+1

2 xi En+1In+1
(
qn+1

3

)2
eqn+1

3 xi En+1In+1
(
qn+1

4

)2
eqn+1

4 xi

En+1In+1
(
qn+1

1

)3
eqn+1

1 xi En+1In+1
(
qn+1

2

)3
eqn+1

2 xi En+1In+1
(
qn+1

3

)3
eqn+1

3 xi En+1In+1
(
qn+1

4

)3
eqn+1

4 xi

⎤
⎥⎥⎥⎥⎦, (B5)

where the specific values of E, I, and q are determined by the
material of the layer.

By employing the transfer between different layers, we
obtain

TU1 = U5, (B6)

where T = Q−1
5 P4Q−1

4 P3Q−1
3 P2Q−1

2 P1 is the transfer matrix.
Applying the Bloch periodicity condition yields

Q1U1 = eikaP5U5, (B7)

where k is the Bloch wave number. By combining
Eqs. (B6) and (B7), we obtain the eigenequation as

023020-7



HE, LI, DJAFARI-ROUHANI, AND JIN PHYSICAL REVIEW RESEARCH 5, 023020 (2023)

follows: ∣∣Q1 − eikaP5T
∣∣ = 0. (B8)

By solving Eq. (B8), we can obtain the band structure
marked in red solid lines in Fig. 1(c).

Similar to the eigenfrequency calculation, we employ the
transfer matrix method to calculate the transmission spectra
of finite structures. According to Eq. (B6), we obtain the
relationship between the left- and right-hand side coefficients
of the finite phononic beam as TN U1 = U4N+1, where TN =∏4N

i=1 Q−1
4N+2−iP4N+1−i, and N is the number of units. By re-

arranging the system of linear equations, we can rewrite it as
follows:

S

⎡
⎢⎢⎣

B1

D1

A4N+1

C4N+1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

A1

C1

B4N+1

D4N+1

⎤
⎥⎥⎦, (B9)

where

S =

⎡
⎢⎢⎣
−T(11) −T(13) 0 0
−T(21) −T(23) 1 0
−T(31) −T(33) 0 0
−T(41) −T(43) 0 1

⎤
⎥⎥⎦

−1⎡
⎢⎢⎣

T(12) T(14) −1 0
T(22) T(24) 0 0
T(32) T(34) 0 −1
T(42) T(44) 0 0

⎤
⎥⎥⎦

(B10)

is the scattering matrix, B1, D1, A4N+1, and C4N+1 are the
incident coefficients; A1, C1, B4N+1, and D4N+1 are the out-
coming coefficients; and T(i j) denote the elements in the
transfer matrix TN . Considering a left incidence propagating
wave, i.e., B1 = 1, we can obtain the reflection coefficients
for the propagating wave rp = |S(11)| and evanescent wave
re = |S(21)| and the transmission coefficients of propagating
wave tp = |S(31)| and evanescent wave te = |S(41)|, wherein
tp is used for the transmission spectra calculation of Fig. 2,
while arg[S(11)] is used for the reflection phases calculation of
Fig. 3.

APPENDIX C: DWP, WDL, AND WHR FORMED BY
DIFFERENT BANDS

First, we explain the type of degenerate points formed
by band crossing through the derivation of the system
Hamiltonian. As we stated in Sec. II, the bands are quadratic
along k and ξ but linear along ζ near the degenerate point (0,
0, π /a). We now consider the Taylor expansion of Eq. (2) at
point (0, 0, π/a) in three momentum directions. Equation (2)
is written as

ω̃1,2(ξ, ζ , k) = ω0 − 	0i ±
√√√√4κ2

0

[(
cos

ka

2

)2

+ n2ξ 2

(
sin

ka

2

)2
]

− (τγ − mω0ζ i)2. (C1)

The Taylor expansion is expressed as

ω̃δ (δ) = ω̃δ (δ0) + ω̃′
δ (δ0)(δ − δ0) + ω̃′′

δ (δ0)

2
(δ − δ0)2 + o[(δ − δ0)2], (C2)

where δ denotes k, ξ , or ζ ; and δ0 is respectively π /a and
0. Calculating the partial derivative of k, ξ , and ζ for ω̃δ ,
respectively, we obtain

ω̃′
k

(
0, 0,

π

a

)
= 0, (C3a)

ω̃′′
k

(
0, 0,

π

a

)
= ±a2κ2

0

τγ i
, (C3b)

ω̃′
ξ

(
0, 0,

π

a

)
= 0, (C3c)

ω̃′′
ξ

(
0, 0,

π

a

)
= ±4κ2

0 n2

τγ i
, (C3d)

ω̃′
ζ

(
0, 0,

π

a

)
= ±mω0. (C3e)

Therefore, the quadratic term dominates along the k and
ξ directions, while the linear term dominates along the
ζ direction. Since there are quadratic dispersions in at least
one momentum plane, this indicates that this degenerate point
belongs to the DWP [12].

Next, we focus on slicing the band structures, as shown in
Fig. 5(a). The bands cut by the gray plane corresponding to
different ζ form the orange dashed lines in Fig. 2 and assist us
in observing the DWP and WDL in the transmission spectra.

Figure 5(b) shows the WDLs and WHRs corresponding to
different γ ′s in the plane ζ = 0. The frequencies of WDLs
are slightly bent upward at both ends of positive and negative
ξ . In the reflection phase calculation, we choose the middle
frequency of the WDL as the incident wave frequency.

Finally, we show more details about DWPs which are
marked by the color balls in Fig. 1(b). The band structures
corresponding to the three pairs of synthetic parameters are
summarized in Fig. 6(a). The configuration corresponding to
the red balls causes the degeneracy of the first and second
bands as well as the third and fourth bands at the edge of the
BZ. Among them, the DWPs formed by the first and second
bands have already been discussed in the main text, while
the DWP formed by the third and fourth bands is shown in
Fig. 6(c). The configuration corresponding to the green ball
causes the degeneracy of the second and third bands at the
center of the BZ, while the configuration corresponding to
the yellow ball causes the degeneracy of the third and fourth
bands at the edge of the BZ. These DWPs are shown in
Figs. 6(b) and 6(c).

When the nonhermiticity factor is introduced into the sys-
tem, all DWPs shown in Fig. 6 evolve into WDLs for the real
parts of the frequencies [see Figs. 7(a) and 7(c)] and WHRs
for their imaginary parts [see Figs. 7(b) and 7(d)]. As the
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FIG. 5. (a) Schematic diagram of different ζ cutting band structures. (b) Observe the Weyl degenerate line (WDL; left panel) and the Weyl
hollow ring (WHR; right panel) corresponding to different non-Hermite factors γ in the ζ = 0 plane.

green DWPs are close to the synthetic parameter boundary,
the parts of the WDLs and WHRs outside the parameter
boundary are missing. The middle frequencies of green and
yellow WDLs are, respectively, 1804 and 4094 Hz. Compared
with the DWP frequencies, the introduction of nonhermiticity
leads to a slight increase of frequency.

APPENDIX D: REFLECTION PHASE VORTICES AND
FERMI ARCS AROUND DIFFERENT DWPS

Figure 8(a) shows the reflection phase in (ξ, ζ ) space
at the frequency 1804 Hz of DWPs formed by second and
third bands in a hermitic situation. Since both DWPs have a
topological charge of 2 in the synthetic parameter space, the

synthetic Fermi arcs still terminate at the parameter bound-
ary, as shown by the green and magenta dashed lines. In a
non-Hermitian case, the vortex associated with the reflection
phase is shifted to ξ < 0 and ξ > 0 depending on the positive
or negative imaginary part of the excitation frequency [see
Figs. 8(b) and 8(c)]. Also, the reflection phases exhibit oppo-
site signs in these two cases. Notice that, in Figs. 8(b) and 8(c),
the vortex centers are close to the space parameter bound-
ary, and the winding of the reflection phase cannot be fully
observed.

Figure 8(d) shows the reflection phase in (ξ, ζ ) space at
the frequency of 3995 Hz of DWPs formed by the third and
fourth bands, while Figs. 8(e)–8(f) show the reflection phase
in a nonhermitic system. In addition to some phenomena that

FIG. 6. (a) Three band structures with degenerate points in synthetic parameter space. (b) The double Weyl point (DWP) formed at
(±0.88, 0, 0) by the second and third bands; the frequency is 1785 Hz. (c) The DWP formed at (0, 0, ±π/a) and (±0.58, ±0.8, ±π/a)
by the second and third bands; the frequency is 3995 Hz. The colors of the surfaces in (b) and (c) indicate the frequency, with an increase from
blue to red.
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FIG. 7. Double Weyl point (DWP) evolution caused by the introduction of nonhermiticity. (a) and (b) Weyl degenerate line (WDL) and
Weyl hollow ring (WHR) formed by the second and third bands. (c) and (d) WDL and WHR formed by the third and fourth bands. The colors
of the surfaces indicate the frequency, with an increase from blue to red.

have been discussed, this reflection phase diagram has both
clockwise and counterclockwise reflection phase vortices. The
opposite topological charges possessed by the vortices lead to

the appearance of complete synthetic Fermi arcs [see the green
and magenta dashed lines connecting red and yellow balls in
Figs. 8(d)–8(f)].

FIG. 8. Reflection phase vortex structures in synthetic ξ−ζ space, excited at the double Weyl point (DWP) frequency (a) 1785 Hz and
(d) 3995 Hz and the Weyl degenerate line (WDL) frequency (b) and (c) (1804 ± 89i) and (e) and (f) (4094 ± 116i) Hz.
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