
HAL Id: hal-04089762
https://hal.science/hal-04089762

Submitted on 5 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Faulting original McEliece’s implementations is possible
Vincent Giraud, Guillaume Bouffard

To cite this version:
Vincent Giraud, Guillaume Bouffard. Faulting original McEliece’s implementations is possible: How
to mitigate this risk?. Workshop on the Security of Software/Hardware Interfaces, Guillaume Hiet;
Jan Tobias Mühlberg, Jul 2023, Delft, Netherlands. �hal-04089762�

https://hal.science/hal-04089762
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Faulting original McEliece’s implementations is possible
How to mitigate this risk?

Vincent Giraud
Ingenico

École Normale Supérieure, DIENS, CNRS,
PSL University, Paris, France
Email: vincent.giraud@ens.fr

Guillaume Bouffard
National Cybersecurity Agency of France (ANSSI),

École Normale Supérieure, DIENS, CNRS,
PSL University, Paris, France

Email: guillaume.bouffard@ens.fr

Abstract—Private and public actors increasingly encounter
use cases where they need to implement sensitive operations
on mass-market peripherals for which they have little or no
control. They are sometimes inclined to attempt this without
using hardware-assisted equipment, such as secure elements.
In this case, the white-box attack model is particularly
relevant and includes access to every asset, retro-engineering,
and binary instrumentation by attackers. At the same time,
quantum attacks are becoming more and more of a threat
and challenge traditional asymmetrical ciphers, which are
treasured by private and public actors.

The McEliece cryptosystem is a code-based public key
algorithm introduced in 1978 that is not subject to well-
known quantum attacks and that could be implemented in an
uncontrolled environment. During the NIST post-quantum
cryptography standardization process [17], a derived can-
didate commonly refer to as classic McEliece was selected.
This algorithm is however vulnerable to some fault injection
attacks while a priori, this does not apply to the original
McEliece. In this article, we thus focus on the original
McEliece cryptosystem and we study its resilience against
fault injection attacks on an ARM reference implementa-
tion [18]. We disclose the first fault injection based attack
and we discuss on how to modify the original McEliece
cryptosystem to make it resilient to fault injection attacks.

Index Terms—White-box attack model, Post-quantum cryp-
tography, Binary Instrumentation, McEliece.

1. Introduction

For many sectors, the implementation of sensitive
operations, such as authentication, payment, or protection
of intellectual property, increasingly targets personal em-
bedded devices such as smartphones. These kinds of pe-
ripherals are often called Customer Off-The-Shelf (COTS)
devices, since they aim for the general public, and are
designed with mass-market constraints such as a strong
sale price limitation. Hence, despite the potentially high
number of executable sources present on the platform,
they often do not have hardware security mechanisms such
as secure elements or secure enclaves. Even when these
features are embedded in the system, they may not be
accessible to third-party industrial actors, for commercial
reasons. Such stakeholders might thus try to develop alter-
native ways to address the lack of trust in these environ-
ment, which is also relevant with the rapid growth of Bring

Your Own Device (BYOD) policies allowing employees
to use their own personal devices, such as smartphones,
laptops, and tablets, for work-related activities.

Providing sensitive operations mainly implies ex-
ploitation of cryptographic assets. They can be used to
encrypt, decrypt, or sign a content. A company choosing
not to rely on hardware security mechanisms must endorse
full responsibility for the protection of these mechanisms.
This situation led to the definition of the white-box attack
model, which refers to attackers having all powers on the
execution environment. In essence, it refers to the case of
trying to protect assets on a platform where a hostile actor
is root, with the ability to read, write, or instrument ev-
erything [4]. In particular, we refer to the implementation
of cryptographic algorithms in this context as the White-
Box Cryptography (WBC) security model [8]. Companies
operating these algorithms face a significant challenge:
preventing attackers from recovering secrets in this type
of scenario. In the case of the AES, contests [3] have
shown that implementations that are not broken in less
than two weeks in the WBC attack model are very rare.
To increase this time period, protections will be embedded
against reverse engineering and binary instrumentation;
however, these measures tend to significantly increase
the resulting binary size, decrease performance, and thus,
impact usability. In concrete use cases, developers will
put in place a complete replacement of the sensitive code
on a regular basis [23]; however, these updates are not
easy to maintain owing to mobile network limitations,
mainly availability, cost and bandwidth. Another problem
affecting implementation of cryptography in the white-box
model is code porting, meaning efforts to copy them on
another device to circumvent protections.

In parallel in recent years, the risks associated to
cryptographic attacks by quantum computers received an
increasing attention with the release of the first quantum
hardware. This mode of functioning disrupts the con-
ventional premises of computations and the axioms of
cryptography. In this context, called post-quantum cryp-
tography, traditional asymmetrical ciphers are affected, es-
pecially RSA, while the impact on symmetrical ciphers is
rather limited. In response, the National Institute of Stan-
dards and Technology (NIST) initiated a process to deter-
mine public key algorithms suitable for this model [17].
Both French [16] and German [13] information security
agencies have introduced the need to transition from the
current cryptosystems to post-quantum-compatible ones.

In light of these elements, systems and services developed
today should consider this threat.

At this point, industrials wishing to implement asym-
metrical cryptographic algorithms in an uncontrolled en-
vironment or in COTS face many challenges: resisting as
long as possible against attackers able to fully instrument
their implementation, resisting against quantum attacks,
producing sufficiently lightweight binaries, and updating
them regularly through mobile networks.

In this study, we explored the security of the McEliece
cryptosystem which is an interesting candidate that is
quantum-safe and seems be more suitable on uncontrolled
environments. In our study, we focused on the possibility
of using McEliece and the security problems of using this
cryptosystem in the white-box context. For the rest of
this article, McEliece cryptosystem refers to the original
McEliece.

1.1. The McEliece Cryptosystem

Introduced in 1978 [15], the McEliece cryptosystem
is an asymmetric cipher that employs a (n,k)-linear error-
correcting code C (correcting up to t errors) with a fast
decoding algorithm and linear operations, as illustrated in
Figure 1, where Ma,b(F2) denotes a matrix of size a, b,
containing elements in the finite field of order 2. In this
era, its large key sizes have made it less favored than RSA;
however, this criterion is now less significant because of
hardware developments, and we can now observe imple-
mentations tailored for micro-controllers [12].

×Mk,n(F2) +M1,n(F2)

×Mn,n(F2) Decoding ×Mk,k(F2)

Figure 1: Representation of the operational principles in the
McEliece cryptosystem. Above is the encryption, below is the
decryption.

To encrypt a clear-text block m, it must be considered
as a vector of k bits, and multiply it with a (public) matrix
G′ = S ×G× P of size k, n, which is the multiplication
between three distinct ones: a random k × k invertible
matrix S used to scramble the data; G, a generator matrix
for C; and a random n × n permutation matrix P (i.e.
having a single nonzero entry in each row and column).
Errors are then added voluntarily with a random vector
e of Hamming weight below t to compute the encrypted
block c = mG′ + e. To decrypt a cipher-text block c,
one must be in possession of the three secret matrices
S, G and P separately, to first cancel the permutation,
i.e. compute a = cP−1, (quickly) decode b from a with
the error-correcting code C, and then unscramble the data
i.e., compute m = bS−1. An attacker intercepting the
message c would have to find the nearest codeword of
the code generated by G′ seen as a general linear code,
which is known to be NP-hard [2]. An alternative offensive
approach consists in attempting to recover the structure

of the underlying code C. The original proposal relies on
binary Goppa codes, which so far remain one of the few
families of codes which have largely resisted attempts at
devising such structural attacks.

In all cases, since the McEliece cryptosystem mainly
consists of linear applications that can be modeled as
matrix multiplications, it has significant performance po-
tential. These operations can be accelerated by dedicated
hardware, such a Graphics Processing Units (GPUs), or
by suitable instruction set extensions, particularly Single
Instruction on Multiple Data (SIMD) ones. These features
are widely popular in different research topics and can be
applied directly in this context. However, many devices
targeted by McEliece implementations do not provide
them, especially inexpensive micro-controllers.

The asymmetry of this algorithm is valued in the
industry: having distinct public and private keys provides
more flexibility when designing use cases, and is use-
ful when conceiving secure communications or content
delivery services, for example. This attribute has been
presented by many other ciphers based on factorization or
lattices. However, these paradigms create many difficulties
when considering white-box implementations. To the best
of our knowledge, this mode of execution usually relies
heavily on precomputed intermediate variables; however,
these are too large for the aforementioned algorithms.
For example, factorization implies operation on very large
numbers. For both computation time and storage size
reasons, precomputing them is completely out of reach,
making translation to the white-box model complex. The
McEliece cryptosystem, which embeds linear operations,
provides opportunities to address this issue.

1.2. State-of-the-art McEliece Cryptosystem Se-
curity

When exploring ciphers deemed reliable in a post-
quantum context, the McEliece cryptosystem is a frequent
candidate. In the fourth round of the aforementioned NIST
contest, which began at the end of 2016 [17], one candi-
date that still remained, Classic McEliece, was inspired by
the McEliece specification. In the meantime, PQCRYPTO,
a research group specialized in cryptography in the post-
quantum context, recommended the use of the original
McEliece cryptosystem, with only bigger keys than usual
to consider the threat of quantum-based attacks [20, sec-
tion 4]. Additionally, the Bundesamt für Sicherheit in der
Informationstechnik (BSI) also mentions it in its recom-
mendations concerning quantum-safe cryptography [14,
page 29].

In addition to its estimated robustness in a post-
quantum context, this cryptosystem provides good resis-
tance against attacks by leveraging fault injection. Indeed,
when exploiting the private key during the decryption
process, a major operation is decoding the intermediary
data using a linear code, as illustrated in Figure 1. If
one naively applies corruption during the computation,
the errors might be inherently corrected, thus voiding the
intrusion. On the one hand, this strength of the McEliece
cryptosystem is reflected in the scientific literature [7]
where authors focused on the theoretical resistance of
the algorithm against fault injection attack. They did not
succeeded in obtaining the private key. To the best of your

knowledge, this work is the only one where the original
McEliece cryptosystem algorithm is studied against hard-
ware fault attacks.

On the other hand, NIST candidate Classic McEliece,
has been the subject of such attacks [6] [19] [24]. The
Goppa codes of a Niederreiter cryptosystem, which are
derived from McEliece, have been the subject of a fault
injection based attack explained in [10]. These elements
make it opportune to follow the PQCRYPTO recommen-
dations and focus on the original McEliece cryptosystem.

1.3. The threat of hardware attacks on the White-
Box Cryptography model

The white-box security model assumes that attack-
ers possess complete control over an implementation,
requiring various features to impede secret extraction and
make it as challenging and costly as possible. Binary
obfuscation [22] is a feature that significantly complicates
reverse engineering. In the white-box model, robustness
is essential to enable implementations to maintain their
reliability over an extended period, resulting in fewer
replacements and lower usage of mobile networks.

Hardware attacks form the basis of many effective
offensives against white-boxes implementations [4]. When
these attacks are translated into the software world, they
can often bypass the complexity and obfuscation men-
tioned earlier, thereby jeopardizing the overall feasibility
of white-box implementations. As a result, what may have
taken days or weeks to break can be achieved in less than
one day. Differential Fault Analysis (DFA) on Advanced
Encryption Standard (AES) serves as an example and is
applicable to both hardware [11] and software [21]. From
perspective of an attacker, while the former provides an
offensive against an uncontrolled platform, the latter offers
a significant operational shortcut despite the controlled
platform.

Research about execution perturbation is essential to
reinforce today’s implementation prototypes. As part of
this effort, offensive investigations have been conducted
on the McEliece cryptosystem because preventing fault
attacks is crucial. To simulate fault injection attacks easily,
binary instrumentation tools such as Rainbow1 and QBDI2

can be employed. These tools enable the efficient scrutiny
of specific behaviors and precise modifications at specific
times. Moreover, these features can be leveraged to satisfy
user-specified real-time conditions.

1.4. Contribution

Our main contributions are divided into three parts:

1) we present a new fault injection based attack
against a typical, common implementation [18]
of the McEliece cryptosystem on ARM targets;

2) we discuss the applicability of this attack;
3) we propose a variant of the McEliece

cryptosystem expected to be intrinsically
resistant to our attack and thus more suitable for
use in uncontrolled environments as expected in

1. See github.com/Ledger-Donjon/rainbow
2. See github.com/QBDI/QBDI

the WBC model.

The remainder of this article is organized as follows.
In Section 2, we present an attack based on fault injec-
tion that targets ARM reference implementation [18] of
the McEliece cryptosystem. Section 3 discusses how our
findings impact McEliece implementations in the WBC
security model. In Section 4, we introduce a variant of
McEliece cryptosystem to be immuned to our attack.
Finally, Section 5 offers concluding remarks and describes
our future works.

2. Faulting McEliece implementation

We conducted an investigation into the vulnerability
of the McEliece cryptosystem for fault injection. As men-
tioned previously, this cipher is known for its robustness
against such efforts, and this aspect has already been
studied. However, because successful attempts are aimed
at the NIST candidate named Classic McEliece, or towards
the Niederreiter cryptosystem, we decided, to push further
the research into the original McEliece cryptosystem, to
target implementations. This initiative was linked to the
study of the possibility to implement it in uncontrolled en-
vironment. As explained in subsection 1.3, many success-
ful attacks on these implementations result from identical
attacks intended for application on hardware. Identifying
a vulnerability through a fault injection attack will require
protecting software implementation against exploitation of
this attack.

2.1. Obstacles against efficient fault injections
attacks

In [18], Petrvalsky et al. demonstrated that a side chan-
nel attack can be conducted during the decryption process
when matrix multiplications are implemented using the
conventional method. In the power traces, one can identify
the pattern corresponding to modulo 2 addition. When
a vector with a Hamming weight of 1 is inputted, it is
possible to infer the position of the only set bit of the
corresponding line in the permutation matrix owing to the
temporal position of this pattern. Once the permutation
matrix is recovered, the rest of the private key can be
mathematically computed.

We studied how matrix multiplication in the McEliece
cryptosystem reacts to fault injections. The main difficulty
for an attacker is that the recovery of information on
intermediate data seems impossible, as there are only two
possibilities that can be observed at the global output of
the decryption process: either (1) the decoding operation
corrects the errors, making it appear as if the fault never
happened, or (2) we have modified the data too much, re-
sulting in an invalid or corrupted output. To overcome this
difficulty, we developed an offensive process that allows
the acquisition of information based on the final output of
the algorithm, either a correct or an error message.

The first step of the decryption process involves ap-
plying a permutation matrix that has only one bit set in
each row or column. The attacker’s goal is to determine
the matrix. A fundamental property of these linear ap-
plications is that they do not alter the Hamming weight,

https://github.com/Ledger-Donjon/rainbow
https://github.com/QBDI/QBDI

which means that the output will have the same number
of set bits as the input. Furthermore, we know the size
of this matrix, which is the ciphered block, denoted by n.
Another important parameter of a specific implementation
of the McEliece cryptosystem is t, the maximum number
of bit errors the code can correct.

If we were able to scrutinize the output of this matrix,
its recovery would be easy. It would be sufficient to use
an input vectors with only one-bit set and to observe
where they end up in the output. However, this is not
possible because the internals of the algorithm are either
impossible to reach or intentionally complex. Therefore,
we investigated methods to infer information about this
part based on the state of the global output. However,
this possibility seems mathematically out of question,
because the McEliece cryptosystem specifies the use of a
scrambling matrix to provide diffusion in the data, along
with a decoding operation, which is a surjective function.

2.2. Attack methodology

Figure 2 illustrates the multiplication of a vector by
a permutation matrix, which should be considered. The
conventional method of implementation is to loop over
each bit element of the vector and perform, if the current
bit is set, a XOR operation between the corresponding
line of the matrix, and an accumulator. It is important to
use the XOR operation specifically rather than addition,
because we are working in the F2 finite field. As previ-
ously mentioned, the Hamming weight of the accumulator
vector at the end of this process should be the same
as that of the input. This way of implementing matrix
multiplications is common and is described in [18]. We
are targeting this implementation with the scope of fault
injection attacks.

0 0 0 0 1 0 0 1 0 0 0 0

[]

0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0




0 0 0 1 0 0 0 0 0 1 0 0

[]×

Figure 2: Illustration of multiplication between a vector and a
permutation matrix, here with n = 12.

As a side note, since the McEliece cryptosystem in-
volves keys with significant sizes, optimizing memory
management is paramount. For example, using the stan-
dard bool type, or a whole variable to store each of the
bits would be wasteful: on a 32-bit processor, it would
imply to ignore 31 out of the 32 bits of variables.

Instead, a preferred approach is to fill the whole vari-
ables with useful bits only, even if it means using bitwise
operations, and bit masking. This method is more efficient,
and becomes mandatory on a target platform with memory
limitations. This is often the case on 8-bit systems, which

have been targeted by some implementations [12]. While
these constraints are not as hard on more powerful or usual
platforms, such as computers based on a x86 processor,
wasting 31 bits out of 32 is still quite inefficient. In this
article, the size of the variables in bits will be denoted as
p.

In this attack, we target the XOR operation between
the accumulator and specific lines of the matrix. In the
ARM instruction set [1], instruction representation con-
tains a 4-bit long operation codes located between the
21st and 24th bits, as shown in Figure 3.

31 28 27 26 25 24 21 20 19 16 15 12 11 0

Cond 00 I OpCode S Rn Rd Operand 2

Figure 3: Representation of a 32-bits instruction designed for
ARM processors [1].

The operation code for XOR operation, called EOR,
has a value 0001. By making a single bit change, we
can switch it to an RSB instruction with the value 0011,
which performs subtraction between the operands. The
use of the XOR operation is responsible for preserving
the Hamming weight property, as there is only one bit set
in each row of the matrix. For each one in the input vector,
one and only one bit is set in the result. Replacing it with
subtraction eliminates this property. The XOR operation is
performed between the accumulator and specific lines of
the matrix. A naive implementation is shown in Listing 1,
with p = 32, and n = 1024. For each bit in the input
vector, we check if it is set, and if so, we XOR the
corresponding line of the matrix with the accumulator
variable by variable.

Listing 1: Naive vector-matrix multiplication in C-code.
uint32_t accu[1024/32] = {0};
for(int i = 0; i < 1024; i++) {

if(((vector[i/32] >> (31-(i%32))) & 0x01) != 0) {
for(int j = 0; j < (1024/32); j++) {

accu[j] = accu[j] ^ matrix[i*(1024/32)+j];
}}}

The ARM built version of Listing 1 is shown in
Listing 2. In this listing, the instruction of interest is
located at address 0x10698 (in red in Listing 2).

Listing 2: Built version of vulnerable code from Listing 1
into ARM-assembly.
@ | Instruction |
@ | Add. | bin. value | mnemonic |

10660 e51b300c ldr r3, [fp, #-12]
10664 e1a03103 lsl r3, r3, #2
10668 e24b2004 sub r2, fp, #4
1066c e0823003 add r3, r2, r3
10670 e5131024 ldr r1, [r3, #-36]
10674 e51b2008 ldr r2, [fp, #-8]
10678 e1a03002 mov r3, r2
1067c e1a03083 lsl r3, r3, #1
10680 e0832002 add r2, r3, r2
10684 e51b300c ldr r3, [fp, #-12]
10688 e0822003 add r2, r2, r3
1068c e59f30d8 ldr r3, [pc, #216]
10690 e08f3003 add r3, pc, r3
10694 e7933102 ldr r3, [r3, r2, lsl #2]
10698 e0212003 eor r2, r1, r3
1069c e51b300c ldr r3, [fp, #-12]
106a0 e1a03103 lsl r3, r3, #2
106a4 e24b1004 sub r1, fp, #4
106a8 e0813003 add r3, r1, r3
106ac e5032024 str r2, [r3, #-36]

By changing only one bit, we can shift from
EOR instruction (0xe0212003) to RSB instruction
(0xe0612003), whose provides a subtraction between
the operands.

Thus, our goal is to cause corruption at the end of
the global output, depending on attributes of the mul-
tiplication result. The considered fault model implies a
one-bit change in the program’s instructions, either before
they are loaded in volatile memory (in RAM), or in the
processor caches, because we have both temporal and
spatial proximity: the selected instruction is likely to be
in a for loop executed many times, with few other
manipulations inside.

An important property of linear correcting codes is
that a bit vector filled with zeros is inevitably a valid code.
Because the coding operation can be performed using only
matrix multiplication, it is necessary the case that a null
vector is the only code that can possibly represents a null
vector.

During normal operations, sending input vectors with
a Hamming weight of less than t should not provoke any
error or message corruption. With the modified instruction,
this is completely possible. We thus propose the following
approach:

1) send an input vector with an Hamming weight of⌈
t

p

⌉
;

2) observe the occurrence or absence of corruption
or error.

In step 1, the positions of the set bits can be randomly
selected. In step 2, the algorithm’s failure to produce
correct results indicates that the set bits in the rows of
the permutation matrix corresponding to the input vector
are not grouped together in the same p columns. Specif-
ically, if the set bits were in the same group, it would
be impossible to end up with an accumulator that has a
Hamming weight above t.

This approach provides crucial data about the permu-
tation matrix. By repeating it many times with different in-
puts, one can considerably reduce the size of the possible
matrices, and each of the remaining matrices can be tested
by decrypting valid vectors with a high Hamming weight
and looking for errors. If one knows the permutation
matrix, it becomes possible to attack the error-correcting
and scrambling matrices, as described in [18], enabling
complete recovery of the private key.

2.3. Details on a single iteration

In order to ease understanding, let’s focus on an exam-
ple multiplication with small parameters: n = 12, p = 4,
and t = 5. Since we have ⌈ 5

4⌉, we need to input vectors
with a Hamming weight of 2. This is shown in Figure 2,
which illustrates an unmodified process. As expected, the
output vector has the same Hamming weight as the input.

Now let’s consider a process that has encountered a
fault, indicated by the replacement of the XOR instruction
with an RSB. This operation is depicted in Figure 4. For
each row processed in the matrix, 4 bits will be subtracted
from the accumulator at a time. The Hamming weight of
the output vector has been modified. In Figure 4a, the

0 0 0 0 1 0 0 1 0 0 0 0

[]

0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0




1 1 1 1 0 0 0 0 1 1 0 0

[]RSB

(a)

0 0 0 0 1 0 0 0 0 1 0 0

[]

0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0




0 0 0 0 0 0 0 0 1 0 1 0

[]RSB

(b)

Figure 4: Illustration of faulty multiplications between a vector
and a permutation matrix, with EOR replaced by RSB. Figure 4a
triggers an error or corruption, whereas Figure 4b does not.

first bit set in the input vector now generates 2 ones,
because 0−4 = −4, and the second one generates 4 ones,
because 0−1 = −1. Note that in ARM, negative numbers
are represented using two’s complement. Conceptually, we
can also consider these as 4-bit unsigned variable. Despite
the integer overflow, the resulting bits are the same. Ad-
ditionally, carries are not applied between variables, so
empty groups will remain empty.

The Hamming weight of the output vector has in-
creased to 6, which is above t, and will result in an
error or corruption at the end of the global algorithm.
This indicates that the matrix’s lines corresponding to the
ones in the input vector have their set bits in different
4-bit columns. In Figure 4b, we illustrate a case where
the set bits of the relevant rows are in the same 4-bit
group, resulting in an output vector with only two set bits.
The maximum Hamming weight we could theoretically
have in the output is p, since only one variable would be
affected. In such a case, the correcting code would be able
to retrieve the null vector.

By reiterating this operation with various input vectors
with the same weight, one can group the matrix’s rows
going in the same group, without knowing which ones.
This represents a significant reduction in the space of the
possible permutation matrices.

2.4. Resulting metrics

By exploiting this attack, the key space can be sig-
nificantly reduced. The extent of reduction varies greatly
depending on the algorithm’s parameter and the size of

data on the target platform. As for the permutation ma-
trix, it has a size of n × n bits. Due to its nature, the
associated entropy is not log2(2

n2

) as it would be with
a regular matrix, but log2(n!), which is the number of
possible permutations of the elements of an n-bit vector.
In the McEliece cryptosystem, the original specification
provides example parameters with n = 1024 [15], but
today, bigger sizes are commonly used. The PQCRYPTO
recommendations mention parameters with n = 6960 [20,
section 4].

The above approach determines whether the selected
rows each have their set bit in different groups of p
columns. However, by repeatedly iterating it, sets of rows
having their set bit in the same group can be formed
without being able to identify which rows belong to which
set. With enough iterations, obtaining a complete partition
becomes achievable. In this case, the remaining entropy
is log2(p!

n
p × n

p !) when n
p is an integer.

8 16 32 64 ∅
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

p

E
nt

ro
py

in
bi

ts

Figure 5: Comparison of the permutation matrix’s entropy
before and after the attack, with multiple p values, for n = 1024.
The ∅ value occurred prior to the attack.

As expected, the entropy decreases with smaller vari-
ables size. Figure 5 shows entropy values for the param-
eter n = 1024, which is the one suggested in the original
McEliece specification, but for different variables size.
The ∅ value represents the entropy before the attack. Even
with 64-bit registers, a significant reduction in possibilities
occurs.

The relative proportions of remaining entropy remain
in the same order of magnitude even when n varies,
as observed in Figure 6, which shows the results for
n = 6960, the suggested size in the PQCRYPTO rec-
ommendations [20, section 4].

In our experiments, only the RSB instruction has been
considered as it is the only operation code reachable with
only one bit change having desirable effects. Indeed, AND
and TEQ cannot induce any Hamming weight change
in the accumulator variable. Such an injection has been
demonstrated as possible in hardware [6]. It is also repro-
ducible in software using binary instrumentation tools. In
the latter case, there is no reason to restrict the change
to one bit. Exploring all the other operation codes can
possibly lead to increased performances, by developing
and exploiting a different routine. In hardware attacks,

8 16 32 64 ∅
0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

p

E
nt

ro
py

in
bi

ts

Figure 6: Comparison of the permutation matrix’s entropy
before and after the attack, with multiple p values, for n = 6960.
The ∅ value occurred prior to the attack.

affecting multiple bits is plausible, and expecting bigger
changes in the operation code can be conceivable.

The transposition of this hardware-based attack to the
software context is not only feasible but raises many
questions, particularly on its impact over white-box im-
plementations.

3. Exploitation of the fault attack on imple-
mentation of the McEliece cryptosystem

We introduced the first fault injection based attack on
the McEliece cryptosystem. This presented attack in the
previous sections can be applied since an attacker is able
to shift a bit, on the one hand, on the typical implementa-
tion on a component through fault injection attack [5] or,
on the other hand, with binary instrumentation on software
application on an uncontrolled environment. Our attack
does not target the McEliece cryptosystem specification,
but rather a conventional method of implementing it [18],
specifically the depermutation of the input.

When one is in possession of an unobfuscated ex-
ecutable applying the decryption, recovering the key is
trivial. Hardware attacks are necessary when it is embed-
ded on a platform on which we cannot run debuggers, for
example. With the advent of the white-box security model,
however, many industrial actors released obfuscated exe-
cutables with anti-instrumentation measures, with the hope
that an attacker with binary exploitation tools could not
recover secrets. If these are not advanced enough, the
attack presented here can circumvent them.

Implementation of cryptographic algorithms following
the WBC security model are usually based on internal
encoding applied to precomputed tables. In such cases, an
attack based on data manipulation is called into question:
do the modifications still hold through random bijections?
When the attack is based on instructions manipulation,
it seems jeopardized when considering implementations
based on precomputation. The targeted instructions are
not in the executable, but are exploited in advance during
generation of the software. Therefore, it needs to be
converted to an attack based on data.

When considering a table of precomputed data, re-
computing it can be envisioned. Indeed, the results are
the content itself, and one of the two operands of the
associated operation is the corresponding index of each
value. Using the same example of the XOR instruction,
one can simply apply an exclusive-or between the re-
sult and its index to recover the second parameter, and
eventually recompute the whole table in a faulty way
as explained if necessary. This technique is applicable,
notably at the end of a WBC protected algorithm without
external encoding. It should be noted that it is possible
when an implementation follows an open specification:
the knowledge required is not only the result and one
operand, but also the operation applied itself.

An attack such as the one presented in this study is
very likely to affect naively obfuscated implementations
without precomputed intermediary results. Control-flow
obfuscation and the addition of useless calculation around
the desired one do not prevent the existence of the XOR
instruction, which is our target of choice.

These implications have major consequences in the
exploitation of embedded wireless network capabilities.
All industrial actors have interests in providing solutions
with a low use of the mobile network usage, as it is
expensive for the end-user and its availability cannot be
assumed. The existence of white spots makes it hard
to rely too much on such communications. The white-
box implementation of an algorithm is thus expected to
provide many features, such as low data size to reduce the
burden of its downloads and robustness, since an easily
attackable executable will need to be changed more often,
and this will imply more downloads too. These features
are all related to the stakes around telecommunications
use, and they draw a direct, consequential link between
security and mobile networks constraints.

4. A variant of the McEliece cryptosystem
immuned to our attack

Our work focuses on decryption in the McEliece
specification. Since encryption relies on a public key,
attempting to protect it with a WBC security model is
unproductive. Therefore, we aim at protecting the private
key during the deciphering process. As illustrated in Fi-
gure 1, this involves hiding the permutation matrix P , the
scrambling matrix S, and the generator matrix G of the
underlying linear code.

One might be tempted to simply merge the permu-
tation and scrambling matrices each with random linear
applications that could be cancelled outside of the al-
gorithm. However, this method introduces risks towards
attacks based on interpolation. To properly protect these
assets, the techniques used cannot rely exclusively on
linear fusions.

Linear mathematical operations, which make up al-
most all of the McEliece cryptosystem, are easily precom-
putable, despite the potentially large size of the associated
matrices. This was done, for example, in the original
proposition for a white-box version of the AES [9] when
considering the MixColumns operation.

The usual technique involves decomposing the entire
matrix into smaller ones, as shown in Figure 7, with a

matrix named M , where a is the number of submatrices
rows, and b is the number of submatrices columns. Their
corresponding linear applications are then precomputed.
The size of the submatrices is completely up to the
designer and will influence usability: larger submatrices
will result in larger precomputed tables and thus a larger
white-box implementation. Choosing a submatrix size that
is not a total matrix size divider is possible.



[]M0,0 []M0,1

[]M1,0

[]M0,b

[]Ma,0 []Ma,b

M =

Figure 7: Visualization illustrating the decomposition of a
matrix in order to make the precomputation of its associated
transformation possible.

The resulting tables can be used consecutively by
adding their results. If we consider a vector u multiplied
with M on its left, then resulting u×M is composed of
b concatenated subvectors:

u×M =

[
a∑

i=0

ui ×Mi,0 ∥
a∑

i=0

ui ×Mi,1 ∥ ...

... ∥
a∑

i=0

ui ×Mi,b

]
The addition themselves should also be precomputed,

so that the entire linear application consists solely of
tables. Each subvector thus becomes the root result of
a precomputed tree. In the context of the McEliece cryp-
tosystem, the XOR operations are used for additions. A
tables tree of this kind can be deployed to handle the
permutation and scrambling matrix.

However, precomputation is not possible on decoding
step in the decryption process, since it operates on an
input that is often at least 1024 bits long. As a result,
adaptation work is necessary to implement the McEliece
cryptosystem in a WBC security model.

One possible approach, illustrated in Figure 8, is to use
multiple small correcting codes instead of a single large
one. Each code would be associated with its own permuta-
tion, but they would all share a common scrambling matrix
that would mix the data across the subcodes. However,
implementing this method would require modifications not
only on the decryption side but also to the encryption
process. On the later, the differences are almost invisible
to the final user: the subcodes are embedded in the public
key, and encrypting still essentially consists in multiplying
by one large matrix. However, adding errors must be
applied considering each subcode.

×S

×G3

×G2

×G1

×P3

×P2

×P1

+E3

+E2

+E1

×P−1
3

×P−1
2

×P−1
1

Decoding 3

Decoding 2

Decoding 1

H H−1 ×S−1

Figure 8: Representation of the operational principles of one
explored McEliece cryptosystem modification. Above is the
encryption, below is the decryption. In this example, the number
of subcodes is set to 3.

To protect the private key during the deciphering step,
internal encoding based on random bijections, here named
H , could be applied at the end of the subcodes, with their
inverses at the beginning of the common unscrambling
application. The subpermutations and subcodes could be
merged and precomputed together, while the scrambling
matrix would be subdivided and precomputed alone.

One crucial aspect to consider in this approach is
that the permutation matrices, which are critical to the
security of the McEliece cryptosystem, may have less
entropy than the large equivalent one. This is due to the
fast growth of the factorial function that describes their
complexity based on their size. Therefore, the size of the
permutation matrices must be chosen carefully, taking into
account both security and usability constraints. To ensure
the robustness of this idea, many offensive approaches still
need to be undertaken.

In this section, we introduce a variant of McEliece
cryptosystem aiming at being protected against binary
instrumentation, our variant should now be proved to be
resistant. This complex part is still an ongoing work.

5. Conclusion

In this article, we described the first fault injection
based attack on ARM implementation of the McEliece
cryptosystem [18] where we are able to retrieve the private
key. Our attack can be exploited anywhere where one
can modify a bit: through hardware attack on component
or by binary instrumentation on software executed in an
uncontrolled environment. Our attack successfully allows
a substantial reduction of key space, regardless of the
chosen parameters.

We discussed how such an attack could be ported to
afflict implementations working in a WBC security model.
Given the numerous, powerful, and accessible binary
instrumentation tools available, we described how fault
injection and side channel attacks can be simulated and
their consequences, to find new vulnerability to mitigate.

We presented suggestions to mitigate the exploitability
of our attack in an uncontrolled environment. We also

proposed ideas of variants on the McEliece cryptosystem
expected to lead to immune implementations so that they
can protect keys for a time long enough to allow practical
use in real contexts, such as embedded open devices
fully mastered by malicious users. Network constraints
and limitations on binary updates sizes were major con-
siderations in our design process. However, precomputed
tables and their associated sizes can still represent a
downside for effective use, notably due to bandwidth
constraints. Addressing this issue is crucial to find the
most lightweight solution that can effectively hold against
binary instrumentation attacks.

Our proposed variant need further works to attest its
viability in terms of security. Also, more efforts could be
dedicated into the estimation and the management of this
implementation’s size: being able to make an informed
judgment about the trade-off between size, usability and
security would be very useful.

Acknowledgements

The authors wish to thank David Naccache for his
guidance and support all along this work. They would
also like to thank Aline Gouget and Sébastien Varrette
for their valuable comments.

References

[1] ARM Limited. ARMv8-A Architecture Reference Manual. ARM
Limited, Cambridge, United Kingdom, 2016.

[2] E. Berlekamp, R. J. McEliece, and H. van Tilborg. On the
inherent intractability of certain coding problems (Corresp.). IEEE
Transactions on Information Theory, 24(3):384–386, 1978.

[3] Estuardo Alpirez Bock and Alexander Treff. Security Assess-
ment of White-Box Design Submissions of the CHES 2017 CTF
Challenge. In Guido Marco Bertoni and Francesco Regazzoni,
editors, Constructive Side-Channel Analysis and Secure Design -
11th International Workshop, COSADE 2020, Lugano, Switzerland,
April 1-3, 2020, Revised Selected Papers, volume 12244 of Lecture
Notes in Computer Science, pages 123–146. Springer, 2020.

[4] Joppe W. Bos, Charles Hubain, Wil Michiels, and Philippe
Teuwen. Differential Computation Analysis: Hiding Your White-
Box Designs is Not Enough. In Benedikt Gierlichs and Axel Y.
Poschmann, editors, Cryptographic Hardware and Embedded Sys-
tems - CHES 2016 - 18th International Conference, Santa Barbara,
CA, USA, August 17-19, 2016, Proceedings, volume 9813 of Lec-
ture Notes in Computer Science, pages 215–236. Springer, 2016.

[5] Jakub Breier and Xiaolu Hou. How Practical Are Fault Injection
Attacks, Really? IEEE Access, 10:113122–113130, 2022.

[6] Pierre-Louis Cayrel. Habilitation à Diriger des Recherches.

[7] Pierre-Louis Cayrel and Pierre Dusart. McEliece/Niederreiter PKC:
Sensitivity to Fault Injection. In 2010 5th International Conference
on Future Information Technology, pages 1–6. ISSN: 2159-7014.

[8] Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van
Oorschot. A White-Box DES Implementation for DRM Applica-
tions. In Joan Feigenbaum, editor, Security and Privacy in Digital
Rights Management, ACM CCS-9 Workshop, DRM 2002, Washing-
ton, DC, USA, November 18, 2002, Revised Papers, volume 2696
of Lecture Notes in Computer Science, pages 1–15. Springer, 2002.

[9] Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van
Oorschot. White-Box Cryptography and an AES Implementation.
In Kaisa Nyberg and Howard M. Heys, editors, Selected Areas
in Cryptography, 9th Annual International Workshop, SAC 2002,
St. John’s, Newfoundland, Canada, August 15-16, 2002. Revised
Papers, volume 2595 of Lecture Notes in Computer Science, pages
250–270. Springer, 2002.

[10] Julian Danner and Martin Kreuzer. A fault attack on the Nieder-
reiter cryptosystem using binary irreducible Goppa codes. journal
of Groups, complexity, cryptology, Volume 12, Issue 1, mar 2020.

[11] Pierre Dusart, Gilles Letourneux, and Olivier Vivolo. Differential
Fault Analysis on A.E.S, 2003.

[12] Thomas Eisenbarth, Tim Güneysu, Stefan Heyse, and Christof
Paar. MicroEliece: McEliece for Embedded Devices. In Christophe
Clavier and Kris Gaj, editors, Cryptographic Hardware and Em-
bedded Systems - CHES 2009, 11th International Workshop, Lau-
sanne, Switzerland, September 6-9, 2009, Proceedings, volume
5747 of Lecture Notes in Computer Science, pages 49–64. Springer,
2009.

[13] Bundesamt für Sicherheit in der Informationstechnik (BSI). Migra-
tion zu Post-Quanten-Kryptografie. Technical report, Aug 2020.

[14] Bundesamt für Sicherheit in der Informationstechnik (BSI).
Quantum-safe cryptography – fundamentals, current developments
and recommendations. Technical report, May 2022.

[15] R.J. McEliece. A Public-Key Cryptosystem Based On Algebraic
Coding Theory.

[16] National Cybersecurity Agency of France (ANSSI). ANSSI views
on the Post-Quantum Cryptography transition. Technical report,
jan 2022.

[17] National Institute of Standards and Technology (NIST). Post-
Quantum Cryptography Standardization, 12 2016.

[18] Martin Petrvalsky, Tania Richmond, Milos Drutarovsky, Pierre-
Louis Cayrel, and Viktor Fischer. Countermeasure against the SPA
attack on an embedded McEliece cryptosystem. page pp. 462.

[19] Sabine Pircher, Johannes Geier, Julian Danner, Daniel Mueller-
Gritschneder, and Antonia Wachter-Zeh. Key-Recovery Fault In-
jection Attack on the Classic McEliece KEM. Cryptology ePrint
Archive, Paper 2022/1529, 2022. https://eprint.iacr.org/2022/1529.

[20] PQCRYPTO researchers forum. ICT-645622: Initial recommen-
dations of long-term secure post-quantum systems, 2015. https:
//pqcrypto.eu.org/docs/initial-recommendations.pdf.

[21] Eloi Sanfelix, Cristofaro Mune, and Job de Haas. Practical attacks
against Obfuscated Ciphers. page 38.

[22] Moritz Schlögel, Tim Blazytko, Moritz Contag, Cornelius As-
chermann, Julius Basler, Thorsten Holz, and Ali Abbasi. Loki:
Hardening Code Obfuscation Against Automated Attacks. In Kevin
R. B. Butler and Kurt Thomas, editors, 31st USENIX Security
Symposium, USENIX Security 2022, Boston, MA, USA, August 10-
12, 2022, pages 3055–3073. USENIX Association, 2022.

[23] Romain Thomas. DroidGuard: A Deep Dive into SafetyNet. In
Symposium sur la sécurité des technologies de l’information et des
communications (SSTIC), 2022.

[24] Keita Xagawa, Akira Ito, Rei Ueno, Junko Takahashi, and Naofumi
Homma. Fault-Injection Attacks against NIST’s Post-Quantum
Cryptography Round 3 KEM Candidates. Cryptology ePrint
Archive, Paper 2021/840, 2021. https://eprint.iacr.org/2021/840.

https://eprint.iacr.org/2022/1529
https://pqcrypto.eu.org/docs/initial-recommendations.pdf
https://pqcrypto.eu.org/docs/initial-recommendations.pdf
https://eprint.iacr.org/2021/840

	Introduction
	The McEliece Cryptosystem
	State-of-the-art McEliece Cryptosystem Security
	The threat of hardware attacks on the White-Box Cryptography model
	Contribution

	Faulting McEliece implementation
	Obstacles against efficient fault injections attacks
	Attack methodology
	Details on a single iteration
	Resulting metrics

	Exploitation of the fault attack on implementation of the McEliece cryptosystem
	A variant of the McEliece cryptosystem immuned to our attack
	Conclusion
	References

