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Fast, approximation‑free molecular 
simulation of the SPC/Fw water 
model using non‑reversible Markov 
chains
Philipp Höllmer 1, A. C. Maggs 2 & Werner Krauth 3,4*

In a world made of atoms, computer simulations of molecular systems such as proteins in water play 
an enormous role in science. Software packages for molecular simulation have been developed for 
decades. They all discretize Hamilton’s equations of motion and treat long‑range potentials through 
cutoffs or discretization of reciprocal space. This introduces severe approximations and artifacts that 
must be controlled algorithmically. Here, we bring to fruition a paradigm for molecular simulation that 
relies on modern concepts in statistics to explore the thermodynamic equilibrium with an exact and 
efficient non‑reversible Markov process. It is free of all discretizations, approximations, and cutoffs. 
We explicitly demonstrate that this approach reaches a break‑even point with traditional molecular 
simulation performed at high precision, but without any of its approximations. We stress the potential 
of our paradigm for crucial applications in biophysics and other fields, and as a practical approach to 
molecular simulation. We set out a strategy to reach our goal of rigorous molecular simulation.

Keywords Molecular simulation, Non-reversible Markov chains, Monte Carlo methods, Long-range 
interactions

The fact that all matter consists of atoms was described by R. P. Feynman as the greatest insight of  science1. The 
consequence that matter can be modeled on a computer by following the motion of its atoms leads to the found-
ing paradigm of molecular simulation. It tracks the dynamics and explores the thermodynamic equilibrium 
of complex molecular systems, for example, a peptide in an explicit water solution with tens of thousands of 
atoms, all interacting through classical empirical  potentials2. Molecular simulation is of enormous importance 
to numerous fields ranging from biology and physics to  engineering3,4. Powerful computer packages have been 
developed over decades. They all implement the molecular-dynamics  approach5–9, that is, compute the forces 
on all atoms at discretized time steps and then update the atomic positions and velocities to integrate Hamilton’s 
equations of motion. This approach may yield static and dynamic properties both in non-equilibrium and in 
thermodynamic equilibrium.

A voluminous literature is dedicated to the analysis and control of time-discretization errors in molecular-
dynamics simulations (see, e.g., Ref.10). Thermostats, understood as “necessary evils”11, mimic the effect of a 
coupled thermal reservoir and, in a symptomatic but non-curative treatment, hide the accumulated errors. The 
limiting factor in molecular dynamics is the computation of forces. The Lennard-Jones interaction is typically 
cut off beyond a certain distance so that only a few neighbors exert their force on any given atom. This cutoff (or 
a discretization of reciprocal space akin to the approximate mesh-based Ewald  methods12–16) has long appeared 
as a necessity to increase computational efficiency. It is, however, artificial. On the one hand, its long-range 
nature translates the physics of the London dispersion  force17. On the other hand, the phase diagram of the 
model depends strongly on the  cutoff18,19, so that results at different cutoffs have, in principle, to be extrapolated 
carefully. In the Lennard-Jones liquid, the surface tension and the Tolman length depend on the  cutoff20,21. 
The long-range nature of the Coulomb potential, which must be  preserved11, is usually treated through fast 
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mesh-based Ewald  methods12–16 that solve the Poisson equation in discretized reciprocal space. The error of 
the computation and, thus, of the sampling of configurations, depends on a target-precision parameter that, 
in principle, calls for a costly extrapolation in order to be eliminated. Beyond their inherent approximations, 
cutoffs, discretizations of reciprocal space, and thermostats can even introduce unphysical artifacts in molecular-
dynamics  simulations11,12,22 that complex algorithms aim to keep under control.

Our alternative paradigm for the molecular simulation of static properties in thermodynamic equilibrium 
is based on several modern concepts in  statistics23,24, namely the factorized Metropolis  filter25, the concept of 
 thinning26 as expressed in the cell-veto  algorithm27, that of continuous-time piecewise-deterministic Markov 
 processes28 as realized in the event-chain Monte Carlo  algorithm25,29,30 and, finally, Walker’s method of  aliases31 
that can be adapted to the fast sampling of long-range  interactions27,32. The paradigm is rigorously exact from the 
start and, by construction, strictly samples the canonical ensemble without thermostats. Deterministic trajec-
tories of atoms in continuous Monte-Carlo time follow an ordinary differential equation that can be integrated 
analytically. Trajectories are interrupted by events at random times. This non-reversible piecewise-deterministic 
Markov process violates the detailed-balance condition normally associated with thermal equilibrium, but still 
samples the Boltzmann distribution at each moment of its continuous-time evolution.

A particular algorithm that generates non-reversible Markov processes, event-chain Monte Carlo, has led to 
spectacular speedups of local Markov chains in statistical  physics33. In molecular systems, short- and long-range 
potentials are handled without any cutoffs or discretizations and, as we show in this paper, with competitive effi-
ciency. The Boltzmann weight π = exp(−βU) (with β the inverse temperature and U the potential) is expressed 
as a factorized product π =

∏
M exp(−βUM) of statistically independent factors M with factor potentials UM 

with 
∑

M UM = U  that each depend only on a small subensemble of  atoms25. Every factor stochastically gener-
ates a candidate event time when the piecewise-deterministic motion must be interrupted. The minimum of 
these times triggers an event, and determines the initial conditions for the next piece. The total potential U and 
the corresponding forces never need evaluating, yet the stationary state is rigorously the Boltzmann distribu-
tion. This circumvents the problem of the inaccurate evaluation of the long-range forces between all atoms in 
the molecular-dynamics approach that is nowadays mostly used even for static properties in thermodynamic 
equilibrium. In the context of molecular simulation, the paradigm of non-reversible and event-driven Markov 
processes was up to now a mere theoretical possibility that converge only for the tiniest molecular  systems23,24.

The present paper is based on essential new developments in the event-driven paradigm. In particular, we 
generalize a particular non-reversible Markov-chain Monte Carlo algorithm for hard spheres, Newtonian event-
chain Monte  Carlo30, to the factor potentials of molecular simulation. We implement this modified algorithm 
in demonstration software for N flexible SPC/Fw water  molecules34 interacting with the long-range Coulomb 
potential. As a benchmark, we concentrate on sampling the electric  polarization35 (the electric dipole moment of 
the simulation cell). Fluctuations in this quantity determine the dielectric properties of water. For large system 
sizes, we show that our demonstration software confirms the theoretical  expectation23 that the non-reversible 
Markov process decorrelates the polarization in a computer time that scales as N logN , similar to state-of-the-art 
mesh-based Ewald methods in the molecular-dynamics  approach13 but without a prefactor that diverges with 
the target precision for the force evaluations. Moreover, the generalized Newtonian event-chain Monte Carlo 
algorithm greatly reduces autocorrelation times compared to the previously considered event-chain Monte 
Carlo  variant23. This allows us to actually equilibrate large molecular systems. We show that our non-reversible 
algorithm overcomes the slow diffusive dynamics of reversible Monte Carlo algorithms, while the factorization 
does not penalize the dynamics in comparison to the molecular-dynamics approach. In terms of computer time, 
our approximation-free code reaches a break-even point with respect to a standard molecular-dynamics code 
that is run at a different target precisions for the long-range Coulomb interaction below machine precision. The 
considerable performance difference between event-chain Monte Carlo variants evidences the greater algorith-
mic freedom in our non-reversible Markov-process approach compared to the molecular-dynamics approach. 
Furthermore, we point out how our demonstration software can be improved in the future. Practical molecular 
simulations based on our paradigm are within reach, and we set out an interdisciplinary research strategy for 
sampling the Boltzmann distribution without any bias and for using non-reversible Markov chains as a gold 
standard for molecular simulation, in particular in the presence of long-range interactions.

Results
Modern‑statistics paradigm for SPC/Fw water
In a molecular system with long-range interactions, the force on an atom depends on the position of all other 
atoms, rendering its evaluation tedious unless one introduces cutoffs or one discretizes reciprocal space. In 
contrast, we implement a piecewise-deterministic Markov process through the event-chain Monte Carlo algo-
rithm, where a single atom moves with constant velocity at any given  moment25,29,36. The deterministic motion 
of this atom is interrupted by an event that stops it and sets off a similar motion of a new atom. Factors M in 
the SPC/Fw water model describe O–H bonds, the bending of H–O–H opening angles, O–O intermolecular 
Lennard-Jones interactions, and the Coulomb interaction between two water molecules (see Methods section). 
In a non-homogeneous Poisson process, each factor M proposes an independent candidate event time where 
an exponentially distributed random number is equal to the integrated factor event rate, that is, the cumulative 
increments of the factor potential UM induced by the moving atom [see Eqs. (1) and (2) in the Methods sec-
tion]. The minimum over all the candidate event times then realizes the next event, and motion is transferred 
to another atom contributing to the corresponding factor potential UM . This succession of events takes place in 
continuous Monte Carlo time, and the Boltzmann distribution is sampled at all  times28,36. In comparison to the 
usual Metropolis  algorithm37, our formulation replaces rejections by transfers of motion.
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In our implementation of the non-reversible Markov-chain paradigm in the jellyfysh  application24, posi-
tions and velocities of atoms define the global state of the physical system. To impose coherency of the physical 
system, the global state is accessed only through a central mediator38 that dispatches physically independent 
computations of candidate events to event handlers. A scheduler weeds through candidate events. It identifies the 
unique event and the corresponding event handler that provides the subsequent transfer of motion, leading to an 
update of the global state (see Fig. 1). The event handlers within the mediator architecture mirror the statistical 
independence of the factors composing the physical system. This allows us to compose complex interactions in 
a transparent and independent manner. The pseudocode in Algorithm 1 in the Methods section summarizes 
the general implementation of an event computation within jellyfysh (including the cell-veto algorithm that 
is described in the next section).

A number of inequivalent options have been constructed for the update of active particles within event-chain 
Monte  Carlo23,39. Similar flexibility is possible in the updating of  velocities29,30,40,41, as well as in parallelizing the 
 algorithm24,42. The original straight variant is most efficient for simple hard  disks29,33, but is completely inappro-
priate for hard-disk  dipoles41 and water  molecules43 that require the exploration of internal rotational degrees of 
freedom. In this paper, we generalize Newtonian event-chain Monte  Carlo30 from systems akin to the hard-disk 
system to molecular systems (see Methods section). It requires no fine-tuning and again exactly samples the 
canonical Boltzmann distribution. For the SPC/Fw water model, this paper shows that generalized Newtonian 
event-chain Monte Carlo is much more efficient than the fine-tuned straight variant. Piecewise-deterministic 
Markov processes offer an even wider choice of options for the management of events, the selection of factors, 
and the piecewise-deterministic trajectories, that may well apply to molecular simulation in the approximation-
free non-reversible Markov-chain framework and may achieve further unforeseeable speedups.

Implementation for SPC/Fw water: Cell‑veto—Fibonacci sphere
In the event-driven implementation of our method (see Fig. 1), a single atom moves among the other atoms and 
molecules, so that O(N) long-range factors are changing with time and, in principle, yield independent events 
that would require sorting and managing. The cell-veto algorithm, as discussed below, allows one to bundle most 
of the long-range Coulomb and Lennard-Jones factors and, in the SPC/Fw water model, the mediator interacts 

Figure 1.  jellyfysh implementation of our Markov-chain paradigm. The mediator splits the global state into 
statistically independent factors. Factors communicate independent candidate event times, the earliest of which 
defines the next event. Factors for long-range interactions are bundled using the cell-veto algorithm, so that the 
number of event handlers remains limited. Candidate event times are collected by the mediator and then treated 
in the scheduler. The factor triggering the event then updates the global state, again via the mediator.
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with only ∼ 50 event handlers that propose candidate event times to the scheduler (see Fig. 2a). This number 
contains the two event handlers for the bundled long-range factors. In addition, it contains the event handlers 
for the bond and bending factors, and for the Coulomb and Lennard-Jones factors between nearby water mol-
ecules that were specifically excluded to minimize computer time (see Methods section). The bundling allows 
the processing of each event in constant computer time (for large N) while treating the long-range interactions 
without approximations.

In our context of the SPC/Fw water model, the cell-veto  algorithm27 upper-bounds the factor event rates for 
pairs of molecules interacting with the Coulomb potential by precomputed, time-independent bounds for these 
molecules somewhere within a pair of cells (see Fig. 2b). The full set of these cell bounds corresponds to the set of 
bundled factors of the long-range interaction. Walker’s method of  aliases31 conserves the cell bounds in a Walker 
table. In the event-driven evolution of the piecewise-deterministic Markov process, the set of cell bounds in the 
Walker table provides a single candidate event time for the entire set of bundled factors, and Walker’s method 
samples an associated single cell bound—and thus a single associated factor—with constant algorithmic complex-
ity. The overestimation of the factor event rate by the cell bound is exactly corrected in a procedure akin to the 
thinning of non-homogeneous Poisson  processes26 by confirming the transfer of motion in the event (see Fig. 2d 
and Algorithm 1). This thinning is performed with the actual positions of the atoms and the actual velocity of 
the moving atom, leading to an exact treatment of the long-range interaction that is independent of the set of cell 
bounds (see Ref.44 for a simple example on how the thinning procedure exactly corrects for the overestimation 
of the cell bounds with respect to the underlying factor event rates).

The factor event rates, and hence the cell bounds, depend on the velocity of the moving atom. In all previous 
applications of the cell-veto algorithm in conjunction with the original straight event-chain Monte Carlo variant, 
there was only a small number of possible velocities and a Walker table was built for each of  them23,24,27. In order 
to use the cell-veto algorithm with our generalized Newtonian event-chain Monte Carlo variant, we discretize 
its continuous velocity space for the precomputation of the cell bounds. We build separate Walker tables for 
multiple directions of the velocity of the moving atom corresponding to Fibonacci vectors on the unit sphere (see 
Fig. 2c and Methods section). During the simulation, the actual velocity of the moving atom is mapped to the 
closest Fibonacci vector. The thinning procedure again exactly corrects for this discretization of velocity space.

Benchmarking for SPC/Fw water
For our benchmark, we release a new major version of the jellyfysh  application24 that implements generalized 
Newtonian event-chain Monte Carlo and, consequently, the cell-veto algorithm with a discretized velocity space. 
Only the new version actually succeeds in equilibrating large configurations of N SPC/Fw water molecules in a 
periodic box at standard density and temperature. We implement long-range molecular Coulomb factors with 
Walker tables that we also adopt for the Lennard-Jones interaction (see Methods section for details). We find that 
generalized Newtonian event-chain Monte Carlo, for large N, requires a computer time per event that remains 
constant (see Fig. 3a). A large number of unconfirmed events stems from the overestimated cell bounds which, 
e.g., do not account for the relative orientation of molecules (see inset of Fig. 3a). Since every unconfirmed event 
requires a high-precision evaluation of a long-range interaction between two water molecules, reducing this 
number will much reduce computer times. While the computer time per event is constant, the number of events 
per Ångström (that is, per unit Monte-Carlo time) increases logarithmically with N for the Coulomb factors 

Figure 2.  Long-range interactions with constant computer time per event. (a) The number of candidate events 
(event handlers) is constant for increasing system sizes. (b) Walker table from which a target cell is sampled 
according to its cell bound with respect to the active cell containing the moving atom. (c) Different Walker 
tables for Fibonacci vectors on the unit sphere. The active atom obtains cell bounds from the nearest vector. (d) 
The thinning procedure confirms (✓) or rejects (✕) the event using the actual factor event rate of the molecules 
in the active and target cell.
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(see Fig. 3b), as predicted by  theory23. In summary, our approach requires a computer time scaling as N logN to 
advance N water molecules by a constant distance. This matches the complexity of mesh-based Ewald methods 
in the molecular-dynamics  approach13, but without their slowdown as the target precision is increased because 
jellyfysh treated long-range interactions exactly to begin with.

For concreteness, we compare the decorrelation of the polarization of the water system within jellyfysh to 
molecular-dynamics simulations within the lammps  software8 on a single processor with default parameters 
and a 1 fs time step (see Methods section). To decorrelate this local quantity, both lammps and jellyfysh must 
move the atoms of any water molecule by a characteristic distance (see Fig. 3c and Methods section for details). 
This characteristic distance lacks a clear physical interpretation for the Metropolis and event-chain Monte Carlo 
algorithms because of their ad-hoc dynamics for exploring sample space. However, it provides a fair measure of 
the distance in sample space that separates independent samples (“lower” means “faster”). Different variants of 
event-chain Monte Carlo vary in their efficiency, and our generalized Newtonian variant is an order of magni-
tude faster than the original straight variant as the characteristic distance is reduced from 13465 Å to 2202 Å. In 
comparison to molecular dynamics with the smallest characteristic distance of 674 Å, the non-reversible Markov 
process only moves a single atom at any point in time which may explain the slightly larger characteristic distance 
of generalized Newtonian event-chain Monte Carlo. The reversible Metropolis algorithm with analogous single-
atom moves (that, in principle, also reaches an N logN  scaling45 by using a recent variant of the fast multipole 
 method46), as implemented in the dl_monte software  package47, is clearly inferior to our non-reversible methods 
with a characteristic distance of 17489 Å.

In the molecular-dynamics simulations that we benchmark our approach against, we use a state-of-the-art 
mesh-based Ewald method to treat the long-range Coulomb interaction. Its implementation in lammps sets a 
target accuracy based on analytic error estimates obtained from a specific charge  distribution15,48,49. To accelerate 
the evaluation of the reciprocal sum in the Ewald method, the charges of atoms (which live in continuous space) 
are mapped onto a grid using an interpolation scheme. Finer grids and higher interpolation orders yield higher 
target accuracies. For various system sizes, we estimate the required computer times for different target accura-
cies by changing the grid spacing, using the lammps defaults. Naturally, higher target accuracies require more 
computer time (see Fig. 4a). Because of the underlying factorization of the Boltzmann distribution, event-chain 
Monte Carlo is rigorously approximation-free. It only explicitly considers the Coulomb interaction between two 
SPC/Fw water molecules (mostly when candidate events from the cell-veto algorithm are confirmed). Our imple-
mentation in jellyfysh uses the historic Ewald summation in continuous space for this interaction between a 
small number of charges that stays constant with increasing system size. We tune it to machine precision without 
any assumptions on the global charge distribution. In comparison to the molecular-dynamics approach at dif-
ferent target accuracies for the long-range Coulomb interaction as implemented in lammps, our non-reversible 
piecewise-deterministic Markov process, specifically the generalized Newtonian event-chain Monte Carlo as 
implemented in jellyfysh, reaches the break-even point well below machine precision (see Fig. 4b).

Discussion
In this paper, we benchmarked an implementation of a modern-statistics paradigm for molecular simulations 
of static properties in thermodynamic equilibrium in the standard SPC/Fw water model. The time dependence 
of the corresponding Markov process differs from the physical dynamics yet it exactly approaches thermal 
equilibrium on time scales that are potentially faster than in nature. Its remarkable efficiency (that we expressed 
as an N logN  computer time to decorrelate a local observable, the polarization) is rooted in three paradoxes. 
First, the Markov process is non-reversible (that is, effectively out-of-equilibrium), yet its steady state coincides 
with the equilibrium Boltzmann  distribution50. In contrast to standard Monte Carlo algorithms that satisfy the 
detailed-balance condition and only move diffusively, it features finite probability flows, making it capable of 
moving ballistically. This has already led to considerable speedups in a variety of fields ranging from physics 

Figure 3.  Event rates and decorrelation in the SPC/Fw water model. (a) Computer time per event in jellyfysh. 
Inset: Number of unconfirmed events per event for different factor types. (b) Event rate in jellyfysh for 
different factor types. (c) Distance to decorrelate the polarization for different sampling algorithms (for 
molecular dynamics: sum over the average displacements of all atoms per time step).
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to statistics and machine learning (see, e.g., Refs.36,51–53). In statistical mechanics, a decrease in the dynamical 
scaling exponents was demonstrated in a number of interacting particle models in one and higher dimensions, 
resulting in speedups with respect to reversible Markov chains and to molecular dynamics that diverge with the 
system  size54,55. It remains to be seen whether non-local observables as, for example, large-scale hydrodynamic 
modes, macroscopic conformations, and order parameters can similarly, in chemical physics, benefit from non-
reversibility. The second paradox in our approach is that the Boltzmann distribution exp(−βU) is sampled 
without any approximation and with great efficiency although the total potential U and its derivatives, the forces, 
are never evaluated. This sidesteps all the problems with limited-precision calculations of energies and forces. 
The third paradox is the bundling of O(N) independent decisions to interrupt the straight-line trajectory of the 
piecewise-deterministic Markov process into an expression that can be evaluated in constant time. The Walker 
tables bundle a multitude of long-range Coulomb factors and of Lennard-Jones factors into two candidate events, 
one for long-range Coulomb, one for long-range Lennard-Jones, which allows us to handle a complex decision 
(a conjunction of O(N) factor-wise decisions of independent factor potentials UM ) in a few operations, even in 
the N → ∞ limit.

Our software jellyfysh is openly available and fully functional, although it has only the status of demonstra-
tion software. It implements the interactions of SPC/Fw water, and provides all necessary configuration files to 
replicate the simulations of this paper out-of-the-box. In the Methods section, we further provide the detailed 
simulation protocol of event-chain Monte Carlo in jellyfysh. The flexible mediator-based architecture of jel-
lyfysh allows for simple extensions to molecular systems beyond water molecules. Although it is still mostly 
written in the relatively slow Python language, the new major version that we have described in this paper is of 
practical use for molecular simulation. Our method is exact from the very beginning and our application becomes 
competitive with the traditional molecular-dynamics code lammps at high intrinsic precision. Optimizing jel-
lyfysh in the same way that lammps was optimized over decades will greatly reduce the break-even point. 
In addition, future research will be able to concentrate on the most efficient ones among a large choice of cell 
bounds, factorizations, Fibonacci vectors and variants of the piecewise-deterministic Markov processes. The most 
efficient application to non-homogeneous systems and to non-homogeneous (for example, corrugated) boundary 
conditions will be other interesting directions of research. The parallelization of our method to a large number 
of active particles has for the moment been implemented only for hard-disk  potentials42. The generalization to 
arbitrary potentials presents an outstanding challenge. Clearly, more interdisciplinary research from statistics 
to computational chemistry will clarify whether all of this provides a sufficiently strong basis for an alternative 
approach for practical molecular simulation.

With its guarantee for the unbiased sampling of the Boltzmann distributions, our paradigm may serve as 
a gold standard for molecular simulation in general, capable of identifying artifacts and approximations that 
may not have been totally eliminated through the symptomatic algorithmic approach in molecular-dynamics 
simulations. Furthermore, given the greater algorithmic freedom for the Markov-chain approach than for the 
molecular-dynamics approach, it may actually become faster than molecular dynamics to explore thermodynamic 
equilibrium. Several orders of magnitude in numerical speed can certainly be gained by re-engineering our soft-
ware, which would then be able to tackle the peptide-in-water benchmark  problem2 that has had a major influ-
ence over the last decade. The great simplicity of our approach and its present implementation in the jellyfysh 
software may well facilitate further developments. Ultimately, our paradigm may yield independent equilibrium 

Figure 4.  lammps–jellyfysh benchmark for the SPC/Fw water model. (a) Computer time per step of lammps 
for different target accuracies of its particle–particle particle–mesh solver. (b) Computer time used by lammps 
to decorrelate the polarization depends on the target accuracy and the number of water molecules N. jellyfysh 
is exact up to machine precision. The break-even precision is indicated.
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samples that then serve, in synergy with long-established molecular-dynamics software, as starting configurations 
for parallel molecular dynamics calculations in order to access high-precision dynamical correlation functions.

Methods
Generalized Newtonian event‑chain Monte Carlo
Event-chain Monte Carlo is a family of local non-reversible Markov-chain Monte Carlo algorithms that imple-
ment piecewise-deterministic Markov processes. All variants are event-driven and move a single atom along a 
straight-line trajectory at any time. They differ only in their update of the moving atom and its velocity in the 
transfers of motion at event times. Straight event-chain Monte Carlo is the original variant and proved to be 
most efficient for the hard-disk  model29,33. Its generalization to the translationally invariant factor potentials of 
molecular  systems23,25 is implemented in the version 1.0 of jellyfysh24.

We develop version 2.0 of jellyfysh56 for this paper. The pseudocode in Algorithm 1 provides a high-level 
summary of its general implementation of a piecewise-deterministic Markov process. This pseudocode comple-
ments the mathematical description in the following, and Fig. 5 in Ref.24 that introduced the basic architecture 
of jellyfysh. Besides the straight variant, version 2.0 of jellyfysh also implements the generalized Newtonian 
event-chain Monte Carlo algorithm. Newtonian event-chain Monte Carlo was originally only formulated for 
the hard-sphere model that contains peculiar stepwise-changing two-body factor  potentials30. Among various 
event-chain Monte Carlo variants, it was shown to escape faster from sparse hard-disk  packings57 and to produce 
favorable rotation dynamics in tethered hard-disk  dipoles41. Its superiority is confirmed for the rotation dynamics 
of SPC/Fw water molecules in this paper, but requires its generalization to smooth factor potentials that depend 
on an arbitrary number of atom positions.

procedure next event in mediator

get moving atom i and its velocity vi from global state
for each bundle Mb of factors do # number of Mb ∼constant





if ( i ∈ Mb ) then{
get candidate event time tev,Mb

from event handler EMb

send tev,Mb
to scheduler

for each non-bundled factor Mnb do # number of Mnb ∼constant




if ( i ∈ Mnb ) then{
get candidate event time tev,Mnb

from event handler EMnb

send tev,Mnb
to scheduler

1 get smallest candidate event time tev and event handler Eev from scheduler
if ( Eev treats bundle Mb of factors ) then





get single sampled factor Mev ∈ Mb from Eev # O(1) complexity
# thinning leads to exact treatment of factors Mb

if ( Eev confirms event by thinning ) then




send new position xi → xi + vitev of i to global state
get new moving atom j and velocity v′ from Eev
send j and v′ to global state
return # event realized

else # event of factor Mev ∈ Mb not confirmed




# next candidate event time is always bigger than the old one
get next candidate event time tev,Mb

from event handler EMb

send tev,Mb
to scheduler

goto 1 # find smallest candidate event time again
else # Eev treats non-bundled factor Mnb = Mev





# thinning leads to exact treatment of factor Mnb

if ( Eev treats Mev without overestimated factor event rate
or Eev confirms event by thinning ) then





send new position xi → xi + vitev of i to global state
get new moving atom j and velocity v′ from Eev
send j and v′ to global state
return # event realized

else # event of factor Mnb = Mev not confirmed




# next candidate event time is always bigger than the old one
get next candidate event time tev,Mnb

from event handler EMnb

send tev,Mnb
to scheduler

goto 1 # find smallest candidate event time again

Algorithm 1.  Procedure that realizes the next event in the jellyfysh  implementation. The mediator com-
municates with the global state, the event handlers, and the scheduler. Factors for long-range interactions are 
bundled to achieve a constant number of event handlers that compute candidate event times. Thinning exactly 
corrects for candidate event times that were computed based on overestimated factor event rates.

We follow the initial introduction of non-reversible event-chain Monte Carlo as a lifted continuous-time 
Markov  process25 (see also the formulation as a piecewise-deterministic Markov process in Ref.58). Consider Na 
atoms and let x = (x1, . . . , xNa ) ∈ R

3Na be the physical all-atom configuration that collects all three-dimensional 
atom positions xi ∈ R

3 with i ∈ {1, . . . ,Na} . For generalized Newtonian event-chain Monte Carlo, the lifting 
 framework59,60 (see also  Refs36  and61, Appendix A) extends the physical all-atom configuration x to (x, v, i) , 
with auxiliary lifting variables that represent an all-atom velocity v and an activity label i, respectively. The 
physical sample space x ∈ � is extended to the lifted sample space (x, v, i) ∈ �̂ = �× V3Na (Ekin)×N  , where 
N = {1, . . . ,Na} is the set of atom indices, and V3Na (Ekin) = {v ∈ R

3Na : vT Mv = 2Ekin} with a positive-
definite symmetric mass matrix M and conserved total kinetic energy Ekin . The Markov process targets the 
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lifted stationary distribution π̂(x, v, i) = π(x)× µV (v)× µN (i) that separates into the factorized Boltzmann 
distribution π(x) ∝ exp[−βU(x)] =

∏
M exp[−βUM(x)] , and the uniform distributions µV (v) on V3Na , and 

µN (i) on N  . Since the kinetic energy is fixed throughout a simulation of generalized event-chain Monte Carlo, 
its kinetic-energy distribution does not coincide with that of the canonical ensemble. The all-atom “velocity” 
lacks a physical meaning.

Given a lifted configuration (x(t0), v(t0), i) at time t0 , Newtonian event-chain Monte Carlo continuously moves 
the single active atom i starting from its position xi(t0) with its constant velocity vi = vi(t0) up to an event at time 
tev > t0 , which interrupts the motion: xi(t) = xi(t0)+ vi (t − t0) for t0 ≤ t < tev . The velocities vj of all other 
atoms j  = i in the all-atom velocity v are, at this point, hypothetical, that is, mere labels. The time-dependent 
event rate �(t) , that is, the probability density to interrupt the piecewise-deterministic motion of the active atom 
i, is given by a sum of factor event rates �M(t):

All factors M can be considered as statistically independent. Each of them stochastically generates a candidate 
event time tev,M in an inhomogeneous Poisson process based on its factor event rate �M(t) ≥ 0 (that is only 
nonzero for factor potentials UM that are actually changed by the motion of the active atom):

Here, ranM(0, 1) is a uniformly distributed random number between 0 and 1 that is drawn separately for each 
factor M. In Eq. (2), the cumulative increments of the factor potential UM under the motion of the active atom 
with its velocity vi since t0 are equal to an exponentially distributed random number with mean 1/β at the time 
tev,M . If the computation of tev,M from Eq. (2) is tedious or even impossible, a Poisson thinning procedure replaces 
the factor event rate �M(t) by an upper bound �̃M(t) that satisfies �̃M(t) ≥ �M(t) for all t26,36. Superfluous events 
from the increased factor event rate are thinned out by first confirming an event at the sampled candidate event 
time tev,M with probability �M(tev,M)/�̃M(tev,M) ≤ 1.

At the (confirmed) event time tev = minM tev,M , the motion of the active atom i is interrupted at the lifted 
configuration (x = x(tev), v, i) . An event changes the lifting variables and sets the initial lifted configuration 
(x, v′, j) for the next piece in the piecewise-deterministic Markov process. The event is realized by a unique event 
factor Mev = argminM tev,M . Generalized Newtonian event-chain Monte Carlo proposes an update of the all-
atom velocity v → v′ at time tev with a “force kick” in the direction of the gradient of the event-factor potential:

This force kick leaves the kinetic energy 2Ekin = vT Mv invariant and applying it twice yields the original v62. 
The event-factor potential only acts on a small subensemble k ∈ Mev of atoms, and thus only the velocities vk of 
these contributing atoms are possibly modified. For the simple choice of an identity mass matrix M = I , Eq. (3) 
may be written as

In generalized Newtonian event-chain Monte Carlo, only a single active atom moves with its velocity at any time. 
At an event, it must choose the next active atom k ∈ Mev from the event factor. It also chooses to either change 
the velocity v → v′ of all contributing atoms according to Eq. (3), or to keep the all-atom velocity constant 
v → v . Generalized Newtonian event-chain Monte Carlo offers two schemes to treat events. The Newtonian-
general scheme applies to general mass matrices M and factors that depend on an arbitrary number of atoms. The 
Newtonian-pair scheme only applies to distance-dependent pair potentials and an identity mass matrix M = I.

In the Newtonian-general scheme, the probability for each possible choice (k, v′) or (k, v) of the lifting variables 
is given by max[0,−∇xkUMev · v′k]/C or max[0,−∇xkUMev · vk]/C , respectively. Here, C is a common normaliza-
tion factor. If the force kick is not applied and v stays constant, the active atom always changes because the factor 
event rate was positive at the time of the event [see Eqs. (1) and (2)]. Likewise, if the event-factor potential only 
depends on a single atom (as for external potentials), the force kick is always applied.

In the Newtonian-pair scheme for distance-dependent pair potentials between two atoms a and b, 
UMev = UMev(|xa − xb|) , and an identity mass matrix M = I , we alternatively exploit the inherent translational 
invariance to treat the event deterministically. We always apply the force kick in Eq. (4) to modify both va and 
vb , and always change the active atom within the event factor. In this case, Eq. (4) is equivalent to an elastic New-
tonian collision between two particles of equal mass. This alternative scheme recovers the original formulation 
of Newtonian event-chain Monte Carlo for the hard-sphere  model30.

Samples of all-atom configurations x that can be used to compute observables are taken at periodic time 
 intervals30. Furthermore, Newtonian event-chain Monte Carlo requires resampling of the all-atom velocity v 
and the active atom i at periodic time intervals τchain in order to be  irreducible41. We sample v and i from their 
respective stationary distributions µV (v) and µN (i) . For the all-atom velocity v , this is equivalent to sampling a 
multivariate Gaussian distribution with mean µ = 0 and covariance matrix � = M−1 , followed by corrections 

(1)�(t) =
∑

M

�M(t) =
∑

M

βmax
[
0,∇xiUM(x(t)) · vi

]
.

(2)ranM(0, 1) = exp

[
−
∫ tev,M

t0

�M(t) dt

]
.

(3)v′ = v − 2
v ·∇xUMev

(∇xUMev)
T M−1 ∇xUMev

M−1
∇xUMev .

(4)v′k = vk − 2

∑
j∈Mev

vj ·∇xjUMev

∑
j∈Mev

∣∣∣∇xjUMev

∣∣∣
2
∇xkUMev .
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of the sampled total velocity so that 1 · v=0 and vT Mv=2Ekin . The activity label i is sampled uniformly from 
the set N = {1 . . .Na}.

Proof of correctness of generalized Newtonian event‑chain Monte Carlo
In order to prove the correctness of the Newtonian event-chain Monte Carlo algorithm for general smooth 
interactions, we show that the global balance condition is satisfied. The total probability flow into any lifted 
configuration (x, v, i) ∈ �̂ consists of a physical flow Fphys(x, v, i) and a lifting flow F lift(x, v, i) , and must equal 
its statistical weight π̂(x, v, i):

The physical flow into (x, v, i) stems from the continuous movement of the active atom i that was not interrupted 
by an event with the event rate given in Eq. (1). With x′ = (x1, . . . , xi − vidt, . . . , xNa ) , we get

where the second line uses the detailed-balance property of the factorized Metropolis filter that yields the event 
rates in Eq. (1) and allows treating all factors as being statistically  independent25. The lifting flow into (x, v, i) 
stems from interrupted motions of lifted configurations (x, v′, j) with different lifting variables v′ and j but the 
same physical all-atom configuration x:

Here, p(v′ ,j),(v,i) is the probability to change the lifting variables (v′, j) to (v, i) . For every factor M, the lifting flow 
F lift
M (x, v, i) in Eq. (7) exactly cancels the physical flow Fphys

M (x, v, i) in Eq. (6) so that the global-balance condi-
tion in Eq. (5) is satisfied. A trivial (inefficient) solution would be to simply invert the velocity of the active atom 
i in an event while keeping it active: pM(v′ ,j),(v,i) = δij δ

(3)(vi − v′i).
We presented two schemes for the update of the lifting variables in an event of generalized Newtonian event-

chain Monte Carlo. The first stochastic Newtonian-general scheme applies for a general number of atoms on the 
event factor. The second deterministic Newtonian-pair scheme exploits the translational invariance of distance-
dependent pair potentials. For the Newtonian-general scheme, we get

where the first term applies the force kick, while the second does not. From the necessary condition

it follows that

(5)π̂(x, v, i) = F
phys(x, v, i)+ F

lift(x, v, i).

(6)

F
phys(x, v, i) = π̂(x′, v, i)

{
1− β

∑

M

max
[
0,∇x

′
i
UM · vi

]}

= π̂(x, v, i)

{
1− β

∑

M

max
[
0,−∇xiUM · vi

]
}

= π̂(x, v, i)+
∑

M

F
phys
M (x, v, i),

(7)

F
lift(x, v, i) = β

∑

M

∑

j∈N

∫

V3Na (Ekin)
d3Nav

′Oπ(x, v′, j)max
[
0,∇xjUM · v′j

]
pM(v′ ,j),(v,i)

=
∑

M

F
lift
M (x, v, i).

(8)

pM(v′ ,j),(v,i) =
max

[
0,−∇xiUM · vi

]

C

[

δ(3Na)

(
v − v′ + 2

v′ ·∇xUM

(∇xUM)T M−1 ∇xUM
M−1

∇xUM

)

+ δ(3Na)
(
v − v′

)]

=
max

[
0,−∇xiUM · vi

]

C

[

δ(3Na)

(
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v ·∇xUM

(∇xUM)T M−1 ∇xUM
M−1
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)

+ δ(3Na)
(
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,

(9)1 =
∑

k∈N

∫

V3Na (Ekin)
d
3Nav pM(v′ ,j),(v,k),
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The second equation here follows from expressing the equality

as a sum over k ∈ N  and from grouping the positive and negative terms separately. The normalization factor 
C in pM(v′ ,j),(v,i) is the same for every possible next active atom i. Because of the δ(3Na)-functions in Eq. (8), the 
normalization factor C can also be written in terms of the velocity v after the force kick by replacing v′ → v in 
Eq. (10). This yields

where we used that the velocity v and activity label i are uniformly distributed over their sample spaces V3Na (Ekin) 
and N  , respectively. Equation (12) concludes the proof that the presented Newtonian-general scheme for the 
update of the lifting variables in an event by a general factor potential satisfies the global-balance condition of 
Eq. (5). The  reflective29 and  forward40 event-chain Monte Carlo variants can likewise be generalized to factor 
potentials depending on an arbitrary number of atoms.

For the Newtonian-pair scheme for distance-dependent pair potentials and identity mass matrix M = I , we get

With i, j ∈ M and i  = j , this yields

Here, we again used the uniform distributions of v and i and the translational invariance ∇xiUM = −∇xjUM . 
Thus, also the Newtonian-pair scheme satisfies the global-balance condition of Eq. (5).

Fibonacci vectors
The cell-veto algorithm was previously only used for the straight variant of event-chain Monte  Carlo23,24,27. Its 
finite set of possible velocities D of the single active atom a allows one to calculate a Walker table for every veloc-
ity va ∈ D . For instance, for factor pair potentials between the active atom a and another atom b at positions xa 
and xb , UM(x) = UM(xa, xb) , every cell bound qcellM (Ca, Cb, va) for the pair of cells Ca and Cb in the Walker table 
may be written as

(10)

C =
∑

k∈N

{
max

[
0,−∇xkUM ·

(
v′k − 2

v′ ·∇xUM

(∇xUM)T M−1 ∇xUM
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)
k

)]
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[
0,−∇xkUM · v′k

]}
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.
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In principle, a Walker table must be precomputed for every velocity va ∈ D and for every possible cell Ca of 
the active atom. Symmetries, such as a translational invariance of the factor potential, may heavily reduce the 
necessary number of Walker  tables23. During an actual simulation with the straight event-chain Monte Carlo 
algorithm, the relevant Walker table is determined by the cell of the currently active atom and its velocity. The 
generalization of Eq. (15) to more complex factors is straightforward. For example, in order to treat the Coulomb 
interaction between two water molecules in the SPC/Fw water model, the position and orientation of the water 
molecule containing the active atom may be varied in Ca , while the position and orientation of the other molecule 
is varied in Cb . From a practical point of view, the cell bounds qcellM (Ca, Cb) are usually not computed exactly but 
rather approximated, e.g., by considering a finite set of positions xa ∈ Ca and xb ∈ Cb , and including a corrective 
multiplicative  prefactor24. As long as the approximated cell bound satisfies q̃cellM (Ca, Cb, va) ≥ qcellM (Ca, Cb, va) , a 
Poisson thinning procedure corrects any  overestimate26. The quality of q̃cellM (Ca, Cb, va) , however, does influence 
the performance. Higher cell bounds in the cell-veto algorithm yield more events per unit distance that have to 
be confirmed by computing the actual event rate.

The inherent discretization of the continuous-position space in Eq. (15) can be translated to a continuous 
velocity space, as it appears, e.g., in generalized Newtonian event-chain Monte Carlo. Consider a finite number 
of unit vectors v̂d on the two-dimensional unit sphere, and let Vd be the associated Voronoi cells under some 
distance function. We can then formally compute the cell bounds for every Voronoi cell as

The results are used to precompute Walker tables for every Voronoi cell Va and for every cell Ca , where sym-
metries may again heavily reduce the number of actually necessary tables. During the generalized Newtonian 
event-chain Monte Carlo simulation, the relevant Walker table is determined by finding the cell of the currently 
active atom and the Voronoi cell of its normalized velocity va/|va| . We can then correct all cell bounds in the 
relevant Walker table to the actual speed of the active atom by multiplying them with |va|.

In this paper, as proof of concept, we map a generalized Fibonacci lattice onto a two-dimensional unit sphere 
by the Lambert cylindrical equal-area projection to generate D unit vectors v̂fibd :

where 0 ≤ d < D and

with the golden ratio ϕ = (1+
√
5)/263–65. The empirical choice of the parameter ε = 0.36 optimizes the average 

nearest-neighbor distance of the Fibonacci vectors v̂d . As a distance function to construct the Voronoi cells Vd , 
we use the quick-to-evaluate cosine distance. Equations (17) and (18) efficiently generate an arbitrary number 
of Fibonacci vectors with a nearly uniform distribution. However, there is no efficient inverse mapping from 
a general velocity va to the closest Fibonacci vector v̂d . This is not a problem in this paper because we choose 
D = 10 small. Then, v̂d can be found by brute force. If considerably larger values of D become necessary, other 
point configurations on the two-dimensional unit sphere may be  considered65,66. For the uniform SPC/Fw water 
systems in this paper, the Walker tables do not strongly depend on the respective Fibonacci vector. The proper 
discretization of velocity space will, however, impact the performance of Newtonian event-chain Monte Carlo 
in nonuniform systems.

SPC/Fw water model
This paper benchmarks the event-chain Monte Carlo algorithm, molecular dynamics, and the Metropolis algo-
rithm for molecular simulations of the atomistic flexible simple point-charge SPC/FW water  model34. It defines 
a water molecule by three charged interaction sites that represent the oxygen and hydrogen atoms. We treat the 
canonical ensemble in a cubic box with periodic boundary conditions, i.e., N water molecules with Na = 3N 
atoms in a periodically repeated cubic box of side length L at a given temperature T ∼ 300K . Within any water 
molecule i ∈ {1, . . . ,N} , the intramolecular interactions of the SPC/Fw model consist of two harmonic bond 
potentials Ui,1

bond and Ui,2
bond that lead to fluctuations of the O–H bond lengths around their equilibrium length. 

Likewise, a harmonic bending potential Ui
bend yields a fluctuation of the H–O–H opening angle around an equi-

librium value. The intermolecular interactions between two different water molecules i and j consist of a Lennard-
Jones potential Uij

LJ between the two oxygen atoms, and a Coulomb potential Uij
C between all nine pairs of charged 

atoms. The intermolecular potentials explicitly include the interactions between all periodic images of the two 
involved water molecules. The total potential U of an all-atom configuration x is a sum of these factor potentials:

(15)qcellM (Ca, Cb, va) = max
xa∈Ca ,xb∈Cb

βmax
[
0,∇xaUM(xa, xb) · va

]
.

(16)qcellM (Ca, Cb,Va) = max
xa∈Ca ,xb∈Cb ,va∈Va

βmax
[
0,∇xaUM(xa, xb) · va

]
.

(17)v̂fibd = (cosφd sin θd , sin φd sin θd , cos θd)
T ,

(18)
φd = 2πd

ϕ
,

θd = arccos
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1− 2(d + ε)

D − 1+ 2ε

)
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The bond and Lennard-Jones factor potentials depend on two atomic positions; the bending and Coulomb factor 
potentials depend on three and six atomic positions, respectively (see also Ref.23, Section V A). The empirical 
parameters of the different potentials of the SPC/Fw water model are as in Ref.34.

Simulation protocols—molecular dynamics
We use the feature release from February 8, 2023, of lammps8,67 for the molecular-dynamics simulations of the 
SPC/Fw water model in this paper. We employ a spherical cut-off for the Lennard-Jones potential. The Coulomb 
potential is treated by a particle–particle particle–mesh solver 12. Unless explicitly specified otherwise (as, e.g., in 
Fig. 4b), the solver uses a target accuracy of 10−6 . Coulomb interactions are partly treated in discretized recipro-
cal space, whereby the grid size is chosen to meet the target accuracy based on analytic error estimates obtained 
from a specific global charge  distribution15,48,49. Thermostatting is achieved by integrating the Nosé–Hoover-chain 
equations of motion for the canonical  ensemble68 with a time-reversible measure-preserving Verlet  integrator69. 
The time step is 1 fs , and the temperature is relaxed in a timespan of roughly 300 time steps. This simulation 
protocol for molecular dynamics in lammps is validated by comparing numerical results for N = 2 SPC/Fw 
water molecules of all sampling methods of this paper (see Fig. 5).

Simulation protocols—Metropolis algorithm
We use version 2.07 of the dl_monte software  package47,70,71 to sample the canonical ensemble of the SPC/Fw 
water model with the reversible Metropolis  algorithm37, and minimally amended the software to output the 
electric polarization. We employ a spherical cut-off for the Lennard-Jones potential. The Coulomb interaction 
is treated by an Ewald  summation72 with a target-accuracy tolerance of 10−6 . The simulations with the non-
reversible event-chain Monte Carlo algorithm in this paper move a single atom at a time. For a direct compari-
son to the dynamics of the reversible Metropolis algorithm (see Fig. 3c), each trial proposes a new position of a 
single random atom in a proposal cube around its original position. The new position is accepted with the usual 
Metropolis criterion based on the change of energy. The size of the proposal cube is separately adapted for the 
hydrogen and oxygen atoms during the simulation to obtain a target acceptance rate of 37% . This simulation 
protocol for the Metropolis algorithm in dl_monte is validated by comparing numerical results for N = 2 SPC/
Fw water molecules of all sampling methods of this paper (see Fig. 5).

Simulation protocols—event‑chain Monte Carlo
We develop version 2.0 of jellyfysh24,56 for the event-chain Monte Carlo simulations of the SPC/Fw water 
model in this paper. In addition to the straight variant implemented in versions < 2.0 , version 2.0 implements 
the generalized Newtonian event-chain Monte Carlo variant. We use the factorization in Eq. (19). In particular, 
we group all the charge–charge Coulomb interactions between two water molecules into a single factor. Theory 
then predicts an optimal logarithmic increase in the number of events from these molecular Coulomb  factors23 
that is numerically confirmed in Fig. 3b.

Straight event-chain Monte Carlo (used in Fig. 3c) periodically aligns the unit velocity |va| = 1 of the active 
atom with the coordinate axes. We change the velocity after a chain time of τchain = 0.2N43. In an event triggered 
by a factor M, the velocity is transferred to another atom which belongs to M. For factors with more than two 
atoms, the next active atom is chosen according to the ratio lifting  scheme23,39.

Generalized Newtonian event-chain Monte Carlo assigns a velocity label to every atom, but only moves a 
single one at any time. The velocities are initialized so that the average speed of the active atom during the simula-
tion is approximately one: �|va|� ≈ 1 . This is possible because the velocities have no kinematic meaning as they 
have in molecular dynamics. The physical temperature only rescales the event rates [see Eq. (1)]. The velocities 
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Figure 5.  Validation for the SPC/Fw water model. Cumulative distribution function of the absolute value of the 
electric polarization of N = 2 SPC/Fw water molecules in a cubic box of side length L = 20 Å.
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are resampled in large time intervals of τchain = 10000N . This is because Newtonian event-chain Monte Carlo 
rotates dipoles most efficiently in the limit τchain → ∞ , while a finite value of τchain ensures  irreducibility41,57. 
Although our generalized Newtonian event-chain Monte Carlo can consider a general mass matrix of the atoms 
in its events, we set the masses of all atoms to be equal. Then, the events of factors M of two atoms can be treated 
with the deterministic Newtonian-pair scheme in which the two involved velocities and the active atom always 
change. For factors M of more than two atoms, we apply the stochastic Newtonian-general scheme that cor-
responds to a generalized ratio lifting scheme.

The events of the bond factors are computed exactly [see Eq. (2)], while the bending factors are treated with 
a piecewise-linear bounding potential followed by a Poisson thinning procedure (see Ref.24, Section 4.4.5). The 
cell-veto  algorithm27 bundles most molecular Coulomb factors and relies on a cell-occupancy system that tracks 
the molecular barycenters (we generally adapt the setup described in Ref.24, Section 5.3.4). Very close molecule 
pairs or surplus molecules in the cell-occupancy system are separately treated with a piecewise-linear bounding 
potential. The cell bounds for 10 different Fibonacci vectors are estimated by varying the position of an atom in 
one cell, and the position of a dipole in the other cell. Here, the dipole is aligned with the direction of the gradient 
of the charge–dipole Coulomb interaction. The maximum event rate multiplied by an empirical prefactor yields 
the cell bound. During the simulation, the cell bounds in the Walker table are rescaled to the actual speed and 
charge of the active atom. Events from the cell-veto algorithm are confirmed with a Poisson thinning procedure 
that compares the actual event rate of the Coulomb interaction between two molecules with the sampled cell 
bound. To compute the real event rate, we compute the gradients of the Coulomb potential between the nine pairs 
of charged atoms [see also Eq. (1)] with an Ewald  summation72 that is tuned to machine precision without any 
assumption on the global charge distribution. We also use the cell-veto algorithm to treat most Lennard-Jones 
factors, although we cut off the interaction beyond the closest images for consistency with the other sampling 
algorithms. We carefully checked that an alternative spherical cut-off does not change the results of this paper. The 
cell-veto algorithm for the Lennard-Jones interaction relies on a cell-occupancy system that tracks oxygen atoms. 
Very close or surplus oxygen pairs are treated directly [see Eq. (2)]. The cell bounds for 10 different Fibonacci 
vectors are estimated by varying the oxygen positions evenly in the two cells, and again including an empirical 
prefactor. The parameters of the cell-occupancy systems, as the cell sizes and the number of nearby cells that are 
excluded from the cell-veto algorithm, are tuned to minimize computer time. As a rule of thumb, the largest pos-
sible cells that do not yield any surplus water molecules, and two excluded layers are found to be a good choice.

These simulation protocols for straight and generalized Newtonian event-chain Monte Carlo in jellyfysh 
are validated by comparing numerical results for N = 2 SPC/Fw water molecules of all sampling methods of 
this paper (see Fig. 5).

Simulation protocols—creation of initial configurations
We create initial configurations in the range from N = 64 to N = 2744 SPC/Fw water molecules with hydrogen 
mass mH = 1.0079Da and oxygen mass mO = 15.9994001Da at a density of ρ = 0.97 g cm−3 using the software 
package playmol73 (commit 67eb56c from 26 November 2019). Initial configurations are equilibrated using a 
molecular-dynamics simulation of lammps in the isothermal–isobaric ensemble at pressure P = 1 atm . Similar to 
thermostatting, barostatting is achieved by integrating the appropriate Nosé–Hoover-chain equations of motion 
with a Verlet  integrator68,69 with a time step of 1 fs . This results in initial configurations for the simulations in 
the canonical ensemble with the different sampling algorithms at slightly different densities for different N. We 
confirmed that these small density variations do not influence the results of this paper.

Analysis of electric polarization
We sample the electric polarization P (or the total electric dipole moment P =

∑N
i=1 pi , where pi is the molecular 

dipole moment of the water molecule i) of the SPC/Fw water system with the different sampling algorithms. The 
generated “time”-series P(t) (where the “time” t only has a physical meaning in molecular dynamics) yields the 
normalized autocorrelation function

where we explicitly assume that �P� = 0 for t → ∞ . The first part of each trajectory in the canonical ensemble is 
not considered in the equilibrium average. We observe an exponential decay in all sampling algorithms and fit 
an exponential ∼ exp(−τ/τ�) to extract the time constant τ� and its standard error (see also Ref.34). We naïvely 
parallelize the Metropolis and event-chain Monte Carlo algorithms by running 20 to 50 independent simulations 
(where the number of runs grows with N). For every τ , we then compute the median autocorrelation function 
�P(τ ) and estimate its error with the bootstrap method. These errors are then considered in the least-squares fit.

The units of the autocorrelation time τ� for the different sampling algorithms are physical time for molecular 
dynamics, Monte-Carlo trials for the Metropolis algorithm, and continuous Monte-Carlo time for the event-
chain Monte Carlo algorithms. As a first measure of the efficiency of the different dynamics, we compare the 
autocorrelation distances d� (see Fig. 3c). It gives the average cumulative distance moved by the atoms in each 
of the sampling schemes. Since only a single atom moves in our implementation of the event-chain Monte Carlo 
algorithm, it follows that dECMC

� = �|va|�ECMC τECMC
�  , where �|va|�ECMC is the average speed of the active atom 

during the simulation. For molecular dynamics, we can compute the average speed of the hydrogen and oxygen 
atoms t ∈ {H ,O} with the Maxwell–Boltzmann distribution:

(20)�P(τ ) =
�P(t) · P(t + τ)�t
�P(t) · P(t)�t

,
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which yields dMD
� = N(2�|vH |�MD + �|vO|�MD) τMD

�  . In the Metropolis algorithm, each trial samples a random 
displacement vector dt = [ ran (−δt , δt), ran (−δt , δt), ran (−δt , δt)]T for a random atom, where δt is tuned inde-
pendently for the oxygen and hydrogen atoms t ∈ {H ,O} to accept the displacement with probability p ≈ 0.37 . 
We can compute the average length �|dt |�Met of the sampled displacement vector as

Neglecting correlations between rejection probability and the displacement for this first measure of efficiency, 
we get dMet

� = p (2�|dH |�Met/3+ �|dO|�Met/3) τMet
� .

The computer autocorrelation time of our generalized Newtonian event-chain Monte Carlo algorithm (see 
Fig. 4b) is obtained by combining the autocorrelation distance (see Fig. 3c), the event rates (see Fig. 3b), and the 
computer time per event in jellyfysh (see Fig. 3a). Similarly, we measure the computer time per time step of 
molecular dynamics in lammps for different target accuracies of its particle–particle particle–mesh solver (see 
Fig. 4a). This is then combined with the autocorrelation time in the number of time steps.

Code availabilty
The jellyfysh software is made available under the GNU GPLv3 license at https:// github. com/ jelly fysh. All 
configuration files for the simulations of this paper are part of jellyfysh.
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