Open cell foam materials as Pd reservoirs for

Suzuki-Miyaura coupling catalysis at ppb level

SUPPLEMENTARY INFORMATION

A. Jabbari-Hichri, A. Bourouina, P.F. Biard, A. Denicourt-Nowicki, A. Roucoux, F. Campoli, M.-L. Zanota, C. de Bellefon*, V. Meille*

Characterization of the metallic OCF

A 11,2 x 9,3 x 7,4 mm foam sample was analysed by X-ray tomography. From the gray level images (resolution 16 μ m), geometric properties of the foam were obtained with the use of Imoph software.

The global void fraction is about 0.9. The specific surface area of the analysed sample is $2700 \text{ m}^2/\text{m}^3$.

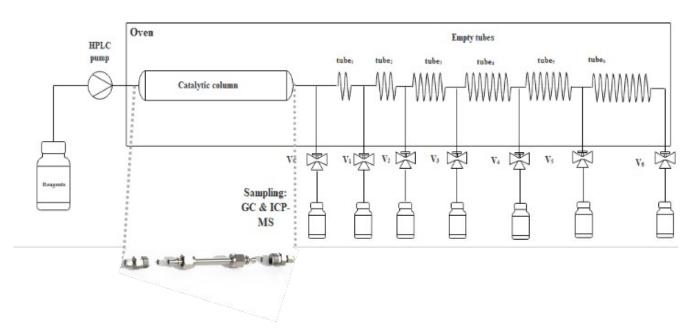
In the volume of foam analysed, 990 cells were detected, which makes possible to obtain a size distribution of the cells. The average radius of a ball that can be entirely contained in the cells is 480 \pm 40 μ m. Other characteristics such as the average window or the strut size are reported in Table_S 1.

Table_S 1: Principal structural and geometric characteristics of the FeCrAl OCF obtained by analyses of X-Ray tomography volume with Imorph.

Pore radius (included ball radius) [µm]	480 ± 40	
Cell radius (windows radius) [µm]	270 ± 80	
Strut thickness [µm]	140 ± 90	
Strut length [µm]	400 ± 200	
Void fraction (E)	0.89 ± 0.03	
Surface area [m².m ⁻³]	2700	

Detailed preparation of the Pd NPs @ glass foam:

First, the glass open cell foam (OCF) was produced, starting from 200 g of crushed and sieved glass powder (< 100 μ m). Then, 1.3 g of aluminium nitride (AlN), 2.5 g of titanium dioxide (TiO₂) and 10.4 g of manganese dioxide (MnO₂) were crushed and mixed with the glass powder. The mixture was introduced in a mold and pyrolysed at 850°C during 50 minutes (after a heating ramp of 10°C/min). The obtained material was characterized by helium pycnometry; a density of 0.34 kg/m³ and an open porosity of 84.6% were found.


To an aqueous solution (45 mL) of *N*,*N*-dimethyl-*N*-cetyl-*N*-(2-hydroxyethyl)ammonium chloride (HEA16Cl) salt (2.85×10^{-3} mol, 5.8 equiv.) was added 5 mL of a freshly prepared aqueous solution of sodium borohydride (1.42×10^{-3} mol, 2.9 equiv.). Then, this solution was quickly added under vigorous stirring to an aqueous solution (100 mL) of the sodium tetrachloropalladate(II) hydrate Na₂PdCl₄. 6H₂O (4.9×10^{-4} mol, 1.0 equiv.) to obtain a colloidal suspension of Pd(0). The reduction, indicated by a color change from yellow to black, occurred instantaneously. The suspension was kept under stirring during 12 h before use.

The glass foam was then dipped in the suitable volume of aqueous suspension according to the metal loading desired. 5 successive cycles (namely, dipping then drying at 95° C) were applied, resulting in a foam of 56 mm long and 16 mm diameter weighing 3.8 g and loaded at 0.1 wt-% of Pd. The resulting OCF is shown in Figure_S 1.

Figure_S 1: Pd NPs@glass OCF

Split-flow-test set-up

Figure_S 2: Schematic set-up of the split-flow reactor

The experimental split flow test set-up (see Figure_S 2) is composed of a preheated (60°C) catalytic column containing the OCF followed by a PFA tube section (1.7 mm i.d., 10 m length) divided in different lengths (0.5 m, 1 m, 1.5 m, 2 m, 2 m, and 3 m respectively). Both ends of the column were equipped with appropriate Swagelok fittings, including filters (4.6 mm i.d., pore size 2 μ m) (RESTEK).

The reagent solution is pumped with a previously fixed flow rate using HPLC pump. For each section of the set-up, a 2 mL sample of solution is taken to be analyzed by GC.

The residence time in tubes was calculated by using the following formula:

Residence time (min) = $\sum_{1}^{6} \frac{V_{Tube i} (ml)}{Flowrate (ml/min)}$

As an example for a flow rate of 1 mL/min the residence time for each section of the set-up is shown in Table_S 2.

	Tube1	Tube2	Tube3	Tube4	Tube5	Tube6	Total
Volume (mL)	0,99	1,99	2,99	3,98	3,98	5,97	19,9
Residence time (min)	0,99	1,99	2,99	3,98	3,98	5,97	19,9

Table S 2: Residence time in each tube at a flow rate of 1 mL/min

Results of the different tests with the Pd NPs@glass foam in the split flow reactor at a flow rate of 1 mL/min.

Table_S 3: Detailed results obtained with the Pd NPs@glass foam for different ArI concentrations

		Conversion at different residence times							
Time-on- stream (min)	[Arl]	At 9.5 min, X % (col.)	At 10.5 min, X % (tube 1)	At 12.5 min, X % (tube 2)	At 15.5 min, X % (tube 3)	At 19.5 min, X % (tube 4)	At 23.5 min, X % (tube 5)	At 29.5 min, X % (tube 6)	[Pd] in tube (ppb)
35	- C	73	81	87	95	98	98	98	31
70		68	75	78	89	94	98	99	33
105	- 1.5C	32	42	44	58	69	71	74	16
140	1.50	23	29	35	41	58	68	79	16
175	С	28	27	37	50	69	86	93	
210	2C	28	35	43	54	65	76	86	27
245	20	28	31	36	50	63	74	84	24
280	С	23	26	34	44	55	64	80	
315	2.5C	15	23	24	31	42	51	67	35
350	_ 2.5C	18	19	20	29	40	49	58	32
385	С	17	-	22	22	30	33	45	
420	20	14	18	22	33	45	53	63	29
455	3C	20	21	26	28	36	42	51	28

The values in red were the ones used in the main document with a mean value of Pd leaching of 30 ppb.

C is the reference concentration of 4-iodoacetophenone: 0.025 mol/L