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Abstract 

The understanding of the mechanical behavior of quasi-parallel fibers network is an important issue for 

the development of the manufacturing processes of fibers reinforced composite materials. This study 

presents a numerical model of quasi-parallel fiber networks, which consists of a realistic representation 

of the fiber network geometry, and a reliable simulation strategy to reproduce the main phenomena at 

the fiber scale. To obtain feedback on this approach, experimental compaction was performed on a 

bundle of polyester fibers. The experiment was combined with X-ray tomography scans of the specimen 

to extract the initial state and use it to create a CAD model, implemented in finite element simulations. 

Each fiber is modeled by 3D linear beam elements, and the contact law between the fibers is based on 

the Hertz contact model taking fiber friction into account. The comparison between numerical and 

experimental show good coherence, demonstrating the potential of the strategy. 
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Introduction 

The improvement of fibrous reinforced composite manufacturing processes is required in terms of cost, 

quality, and productivity rate. For instance, RTM (Resin Transfer Molding) is a closed-molding fabrication 

process that allows for automatic, high-quality and cost-effective production. The first step in the RTM 

process consists in performing a dry fibrous textile before injecting the resin. Depending on the desired 

shape of the final part, the fibrous textile undergoes different mechanical loads, which induce strains and 

damage to the fabric. As a result, the mechanical properties of the final parts are drastically impacted. It 

is therefore essential to predict the preforming process of composite parts and optimize the fabrication 

parameters. Two main approaches are possible to achieve this task: an experimental or a numerical 

approach. However, proceeding with experimental tests until the optimum parameters are found is long 

and expensive compared with an approach based on numerical simulations. In order to simulate the 

performing process, it is necessary to establish an appropriate mechanical behavior of the fibrous textile. 

This behavior is mainly a structural effect that depends essentially on the yarn interlacing and secondly 

on yarn behavior. Each yarn is composed of thousands of fibers, each of which can be considered a 

homogeneous material. Therefore, the reinforcement’s behavior depends on both the behavior of the 

fibers and their interactions inside the yarn. Consequently, the fiber scale can be considered the finest 

one to understand and model the reinforcement behavior. This task would be quickly and simply 

achievable by establishing a reliable numerical model at the fiber scale to model the fibers’ behavior and 

their interactions. Technical yarns with adjacent, quasi-parallel fibers are mostly used in the 

manufacturing of fibrous reinforcement composite materials. The main objective of the present paper is 

to develop a thorough numerical methodology to simulate the deformation of these types of fiber 

networks as they undergo different loading paths during the performing step. This approach will provide 

an extensive database for establishing yarn behavior at the mesoscopic scale, and then the fabric behavior 

at the macroscopic scale. The focus of this study is on the compaction load path, as it is the most 

representative complicated load path leading to fiber rearrangement, while others, such as tension lead 

to fiber deformation.  
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The mechanics of fibrous networks has been investigated in many experimental studies, for instance [1] 

discusses the character of the structure, [2] studies the compression with a maximum load of 100N, and 

[3] with a maximum compression load of 600N. They concluded that the mesoscopic response of fiber 

assemblies is non-linear and non-reversible due to fiber deformations, frictional sliding and irreversible 

rearrangement within the fiber assembly. These experimental studies have been confirmed by X-ray 

tomography, which has also been used to characterize compaction, taking advantage of the local 3D 

representation of the fiber assembly [4] [5]. Experimental studies have been crucial to explore different 

approaches to the behavior of fibrous media, for instance [6] [7]. 

From a numerical perspective, the compaction of fiber networks has been studied by two main 

approaches: rigid element simulations based on molecular dynamics and finite element simulations. 

Rodney et al. [8] used the first approach to model the compaction of quasi-parallel fibers; potential energy 

was used to model the fiber behavior. It took into account traction, bending stiffness, and the contact 

interactions between fibers. The non-penetration condition was included, but the friction coefficient was 

neglected. Based on this model, Rodney et al. were able to predict both the number of contacts per fiber, 

corresponding to the packing density and the energy per fiber as a function of the relative density. In a 

subsequent study, friction interactions were added to the model [9], and showed that friction shifts the 

densities to lower values. Subramanian and Picu [10] also used models based on molecular dynamics. 

Unlike the previous model in which the contact energy was defined by a Hertz potential, Subramanian 

and Picu defined the contact energy as a repulsion potential. They concluded that inter-penetration and 

sliding at contact points are the prevailing phenomena during the final steps of compaction. In addition, 

they both decrease as the friction coefficient increases. 

The following other studies modeled fibers by using different types of bar and beam elements. In [11], a 

fiber network model was developed with arbitrary initial orientation, fibers were modeled by beam 

elements with constant curvature, and the interactions at the contact points were provided by springs. 

The results showed a good agreement with the experimental tests. However, the fiber volume fraction 

was limited to 3% and the numerical model was limited to geometrically linear deformations. A recent 

study proposed a model of uniaxial compaction of quasi-parallel fiber networks [12]. The fiber assembly 
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was represented by a periodic unit cell in which each fiber was modeled by straight beam elements. This 

model was used to investigate the effect of simulation parameters, such as contact damping, material 

damping, and friction coefficient on the accuracy and robustness of calculations. Both the packing stress 

(i.e. the component of the stress tensor along the compaction direction) and the number of contacts 

corresponding to a friction coefficient of =1 were compared to those of van Wyk’s [13] and Toll’s [14] 

studies because they are based on the no sliding assumption. However, the results obtained for a 

meaningful friction coefficient were not compared to experimental data. Durville [15] [16] also obtained 

results in accordance with those of van Wyk using the Cosserat beam theory. His model was enhanced by 

a penalty law to manage fiber penetrations at the contact zones. For friction, the Coulomb law was 

adopted. He also estimated the number of fiber contacts  with respect to the fiber volume fraction  

: .  

Mathematical-computational approaches have also been used to study the compaction of fiber networks, 

N.Beil developed a fiber assembly model [17] [18] [19], and used it to simulate uniaxial compaction. The 

model contained fifty helix-shaped fibers randomly implemented in a unit cell. The fiber behavior was 

modeled by the Bernoulli-Euler theory of elastic rods. In addition, both repulsion and frictional forces 

were used to model interactions at fiber contact points. The model made it possible to investigate, for 

instance, the evolution of the pressure on the fiber assembly as it undergoes a loading-unloading cycle, 

the number of contacts between the fibers, the interaction forces at the contact points, and the fiber 

crimp effect. However, the previous fiber network compaction features were obtained at a low fiber 

volume fraction range ) [17].  

To summarize, the numerical studies cited above investigated some of the important microstructural 

parameters, such as packing density, fiber contacts, fiber penetration, initial orientation, fiber curvature, 

and friction coefficient, that are useful to extend our understanding of the mechanical behavior of fibrous 

media. However, these studies were not compared with experimental data, which is crucial to validate 

the numerical results. For this reason, recent studies have attempted to take the lead in the 

numerical/experimental dialogue and compare their numerical results with experimental data. 

Daelemans et al [20]. describe a solution that enables predictive compressive simulations through hybrid 
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virtual fibers. The authors simulated the compression of twill fabric layers with hybrid virtual fibers having 

bending stiffness based on the virtual fibers developed by the Dynamic Fabric Mechanical Analyzer 

(DFMA). The effect of the number of virtual fibers and the length-to-diameter ratio on the simulation 

results is discussed. However, most of these studies do not investigate in depth the mechanical behavior 

of yarns with quasi-parallel fibers. In fact, very few numerical studies have been carried out on 

unidirectional fibrous media [21] [22] [23] [24] [25]. Moreover, they did not attempt to model the yarn 

behavior. Furthermore, in [25], the friction coefficient between fibers was just identified to fit the 

experimental results. In addition, this study differs from [26] [27] [28], by the use of different numerical 

strategies. In these studies, the authors made the choice to use digital elements: bar elements linked by 

rigid knots. Whereas, in the present work, the choice was fixed on beam elements, on the one hand, 

because their potential was highlighted by other previous studies. On the other hand, the linear beam 

elements (B31) allow handling well the problems of a large number of contacts by using the general 

contact algorithm on Abaqus/Explicit. In addition, the experiment/simulation comparisons of the 

compaction curves encourage their use. Considering the following steps of the predefined approach, a 

significant gain is expected from the beam elements, especially in terms of computation time. 

The objective of the present study is to fill this gap in the literature and offer a quasi-parallel fiber network 

model with a reliable simulation strategy. This model is intended to simulate, comprehend and model the 

mechanical behavior of fiber yarns. The model is validated by theoretical and numerical test cases, and 

most importantly, it is compared with experimental results. The comparison is even more meaningful as 

the geometry model of the fiber assembly is representative of the real microstructure geometry, which is 

not the case for previous studies. Such a numerical model requires: (i) a realistic representation of the 

fiber network geometry and (ii) a reliable simulation strategy to model the main phenomena at the fiber 

scale. To feed this approach, compaction tests were conducted on fiber network specimens. The 

experiments were combined with X-ray tomography image analysis in order to: (i) extract the initial 

microstructure of the fibrous specimen before starting the compaction test; (ii) monitor the intermediate 

microstructure evolution at different stages of the experiment. 

The originality of this work is characterized and modeled the behavior of a fibrous medium at the micro-

scale. In addition, the proposal of a dialogue between an experimental approach and a numerical one 
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throughout the development and validation process of the simulation strategy. The numerical tests were 

performed on the same initial microstructures of the fibrous samples thanks to the use of X-ray 

tomography. This enhances the credibility of the validation process. This microstructure representation 

was enriched by data collected during compaction (load, displacement, and X-ray images of the 

specimen). 

1. Experimental and numerical tools 

1.1. Experimental tools  

A non-saturated specimen of polyester fibers ( ) was prepared for the compaction test. The 

fibers were initially curved because they were wound on a cylindrical spool. The specimen consists of 40 

fibers. The number of fibers was purposely limited because it is easier to characterize a fiber network 

behavior with fewer fibers rather than with numerous fibers. In addition, since establishing and validating 

a simulation strategy requires running a large number of simulations, a limited number of fibers is more 

beneficial to obtain practical CPU times. Each fiber has a diameter of and a length of

, the 3D maps of the real specimen as shown obtained by FIJI software in the figure 1(a).  

The specimen was subjected to a uniaxial confined compaction test, i.e. the lateral surfaces are not stress-

free. For this purpose, the fibers were placed on a rectangular plate (width=3mm, length=6mm as 

presented in figure 2(a)) which is fixed on a micro-press designed in the 3SR laboratory in Grenoble [5]. 

The micro press consists of two plates: (i) the rectangular one, which contains the fibers, and is connected 

to a micro-motor; the compaction is controlled by a displacement U; (ii) the upper plate is connected to 

a load cell (capacity = ) in order to record the compaction load F. The micro-press was placed on a 

micro-tomograph in order to scan the specimen at different compaction steps. 3D X-ray microtomography 

images, with the pixel size of , tube tension of  and tube intensity of , 

were thus obtained and were post-processed to reconstruct the specimen microstructure. The 

reconstructed 3D maps were used to obtain the skeleton of the specimen microstructure by uniformly 

reducing the fiber radius, in which each fiber is represented by its mid-line (Figure 1(b)). They can 

therefore be modelled by 3D beam elements. Before starting compaction, the specimen was carefully 

placed in contact with the upper plate without changing the position of the fibers, and then it was scanned 
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to obtain the initial microstructure. The specimen was compacted afterward. As the test progresses, the 

load cell records the compaction load. The compaction was interrupted whenever a significant change in 

the fiber positions was observed, so the relationship between loading force and time is stepwise. The 

total compaction experiment time is 30519.159s (508.65 min), which includes the upward 

movement time of the mandibular plate and the scanning time of the X-ray Tomograph. These 

interruptions are useful for two reasons: (i) measuring the plate displacement U and the corresponding 

load compaction F during the different stops in order to deduce the mechanical response of the fiber 

assembly as displayed in figure 2(b); (ii) rescanning the specimen’s microstructure and to obtain later the 

fiber positions at different steps, the curve of compression loading force with time is shown in Fig. 2(c). 

The compaction test above and its corresponding image analysis constitute the database that was then 

used to validate the numerical model via an experimental/numerical comparison.  

1.2. Numerical tools 

The present section introduces the methodology followed to define the simulation strategy regarding the 

computation convergence, reliability and efficiency. The simulations were performed on Abaqus/ Explicit 

because it is more suitable for this type of study in terms of convergence, contact algorithms and total 

CPU time. All the simulations in the present paper were executed using an Intel® Xeon® machine (CPU E5-

1650 v3, 3.5GHz). 

2. Numerical procedure 

Two main categories of elements are potentially usable: deformable finite elements and rigid discrete 

elements. As the fibers are initially curved, fiber deformation, especially bending, is one of the 

contributing factors to the fiber network compaction behavior. For this reason, finite elements appear to 

be an adequate choice. While the present study used 40 fibers for validation purposes, the approach 

adopted in this study is defined in two steps: the first one consists in defining a simulation strategy that 

will allow reproducing in an efficient and reliable way of the physical phenomena occurring during 

compaction. The validation of this simulation strategy will allow its use in the second step which consists 

in setting up a model of a hundred fibers to understand and model the law of behavior of entanglement 

of quasi-parallel fibers. During the first step presented in this paper, experimental and numerical tests 
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were performed to define the parameters of the simulation strategy, they were then validated by an 

experiment/simulation dialogue. The process of definition and validation of these parameters requires 

several numerical tests and data post-processing whose execution time depends on the number of fibers, 

hence the use of a limited number of fibers. This will allow performing the necessary and enough tests to 

identify the parameters of the simulation strategy while reducing the computation and post-processing 

times. On the other hand, this approach allowed to validate the ability of the simulation strategy to 

faithfully reproduce the physics of compaction on a limited number of fibers. It is easier to increase the 

number of fibers later to work on a model representative of real cases. 

3.1 Finite elements 

Thus, each fiber was modeled by 3D beam elements, as these types of elements are geometrically simple 

(one-dimensional line) and contain a small number of integration points (three at most for the cubic beam 

elements). In the process of mechanical analysis, it is generally divided into Timoshenko beams and Euler 

beams. Timoshenko beams (B21, B22, B31, etc.) consider bending deformation as the main deformation 

and shear deformation as the secondary deformation, which are flexible beams and more suitable for 

slender components. Therefore, it is more suitable for simulating fiber assemblies. Linear interpolation 

beam elements (i.e. B31 elements) are more suitable for simulations involving contacts [29], which is the 

case for fibrous media. They were therefore used in the present study. As mentioned earlier, fiber bending 

is as important as contacts, especially for initially curved fibers. Therefore, each fiber must be sufficiently 

meshed to avoid any misrepresentation of the fiber’s deflected shape. 

3.2 The contact behavior of beam elements. 

Concerning the real fibers of the compacted specimen, increasing the contact forces can generate a local 

strain as illustrated in figure 3(b), especially in the static phase. In the quasi-parallel fibers network, the 

main contact between the two fibers is oblique. Therefore, the resulting contact is localized. In addition, 

during compaction, the rearrangement of fibers is mainly observed and the contact force between fibers 

does not reach local deformation, so the local deformation is negligible. In this case, the contact stiffness 

depends on the deformability of the fiber cross section. However, as beam elements are based on the 

assumption of a rigid cross-section, the beam cross sections penetrate each other,  



10 
 

generating a penetration depth, denoted , instead of a local strain (cf. figure3(a)). For this reason, the 

aim of the present part is to provide a contact stiffness for beam elements that is sufficiently close to the 

contact stiffness obtained by deformable sections. Since the cross-section of beam elements is rigid, the 

local deformation was omitted, considering only the penetration between fibers in contact with each 

other. Then, the relationship between the penetration depth  and the contact force is controlled through 

a Hertz contact model.  

From a numerical perspective, Abaqus provides contact force-penetration relationships to define a 

contact model. Since the Hertz contact curve can be fitted by a power function, the suitable contact 

relationship would be a linear interpolation (n segments, i  [1, n] ) of a power function between the 

contact force and the penetration depth as presented in figure 4 [29].  is interpolation step,   and  

respectively the current penetration and the current stiffness at the segment  and  the default 

contact stiffness. Each time the current penetration  exceeds a multiple of the penetration measure  

(i.e. ), the contact stiffness  is scaled by a factor . The initial stiffness is set equal to the default 

contact stiffness  multiplied by a factor . Consequently, for each current penetration  in the 

segment , the stiffness  is expressed by equation 1. The simulation contact model is then 

identified using the parameters ,  and . 

          ( ) [29] (1) 

The specimen used in the present study is a quasi-parallel fiber network. Therefore, two types of fiber 

contact configurations could potentially be formed: (i) Parallel fiber contact where the contact area is 

rectangular (cf. figure 5(a)); (ii) Oblique fiber contact with a relative fiber orientation (cf. figure 5(b)) 

and an elliptic contact area. For the second case, the contact force-penetration relationship depends 

necessarily on the relative fiber orientation , which changes eventually for every two fibers in contact 

as the compaction progresses. However, the contact formulation provided by Abaqus does not consider 

this change in orientation. Instead, it identifies only one constant orientation. Hence, two extreme relative 

orientations and an average value between them were tested independently: , , 

and , using the contact model described earlier. Parallel and oblique contact forces between 

two fibers modelled by B31 elements are plotted respectively in figures 5(a) and 5(b) as a function of the 
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penetration depth  for each relative orientation.  Each contact force is modelled by Hertz’s law for 

parallel and oblique cylinders [30] [31] [32]. It can be observed that the numerical contact model 

accurately reproduces the analytical contact models (n 1000). Therefore, the assumption adopted here 

of controlling the contact stiffness through the penetration depth  seems reasonable. 

However, the relative orientation change between every two fibers is costly in terms of realization and 

CPU time. An alternative solution could be to identify one average relative orientation, and then apply it 

to the entire fiber network. This alternative is available only if some orientations are simulated 

independently, and each one of them offers similar compaction curves. For this reason, the identified 

relative orientations ,  and  were used to simulate the compaction test. The three 

simulations were also compared with the compaction curve obtained by the parallel contact model (

). The simulations were performed using the simulation strategy developed in this paper. The 

parameters used and the identification curves are given in table 1 and figure 6. The results obtained are 

displayed in figure 7 where the compaction load is plotted as a function of the displacement U used to 

control the compaction test. During the fiber rearrangement phase, the three relative orientations do not 

influence the global compaction behavior because the compaction load is not yet significant. However, 

the final compaction load depends on the contact relative orientation. As shown in the figure 7, the final 

compaction load for the parallel contact model (17 N) is 44% higher than the oblique contact load (9.5 N) 

(for  ). In fact, as explained earlier, the fibers are not all parallel, for example, in the 

figure 1; a certain percentage of oblique fiber contacts is always present in the fiber network and it must 

be taken into consideration, and vice versa when considering only the oblique fiber contact.  

3.3 Theoretical and numerical benchmarks 

The aim of this section is to present the analytical and numerical test cases used to identify accurate and 

reliable simulation parameters. The advantage of these test cases is that they are simple but crucial, and 

their reference solutions can be calculated analytically or obtained numerically. At the same time, they 

are also useful to gather meaningful and efficient information about the static and the kinematic behavior 

of the fibers in a reasonable CPU time.    

3.3.1 The dynamic phase: fiber rearrangement test case 
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Fiber rearrangement is an important phenomenon at the fiber scale because it reflects the effect of 

friction on the fiber kinematics. For this reason, the compaction experiment was performed at a low 

velocity ( ) to ensure a quasi-static test and avoid inertia effects, which could modify 

the fiber kinematics. From a numerical perspective, the simulation strategy must also provide quasi-static 

simulations. Therefore, a test case based on the rearrangement phase of the compaction test was 

developed and used to identify the appropriate parameters to ensure a quasi-static simulation. The test 

case attempts to study the rearrangement of three beams placed on an analytic rigid plate as displayed 

in figure 8. The upper beam is subjected to a displacement  along the z-axis. Then the displacements 

and  along the y-axis are calculated respectively for the other two beams (2 and 3) as a function 

of . A friction coefficient of  was used. This value was estimated experimentally using polyester 

fibers [33]. Since the analytical solution for such cases is not evident, an implicit dynamic analysis in 

Abaqus/Standard was used instead as a reference solution for the present test case. The results are 

automatically checked for accuracy in Abaqus/Standard analysis [29] since it is based on an implicit 

integration schema and the equilibrium equation is solved at every time increment. The displacements 

and  obtained for beams 2 and 3 were considered as a reference to validate those obtained by the 

dynamic explicit analysis. Since the test case model is symmetric relative to the plane ( ) (cf. Figure 

8), only the displacement  is plotted. The results of the reference solution are presented 

on figure 9 where the displacement  along the y-axis is plotted versus the displacement , and on 

figure 8(b) where the final configuration of the beams is displayed. It can be observed that beam 1 remains 

in contact with beams 2 and 3 at the end of the simulation. 

The CPU time needed to run a quasi-static analysis can be very long using an explicit schema as the 

simulation cost is proportional to the number of time increments n, which is expressed as follows:  

  (2) 

Where T is the time period of the simulation,  is the finite element size,  and  are the effective Lamé 

constants and  is the material density. A quasi-static event needs, naturally, a long time period T. In 

addition, linear beam elements (B31) are used (cf. section 3.1), so the mesh size used  is small (
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 corresponding to 50 elements per fiber) to properly simulate fiber bending. Therefore, according 

to equation 2, more time increments are needed in the present analysis, increasing the computational 

cost. The test case described earlier was used in order to illustrate this phenomenon. Different time 

periods T were tested, i.e. different velocities  were tested from , where  is the displacement 

applied on beam 1. It was concluded that a velocity of  enables exactly the same 

displacements to be obtained as with the reference solution, as displayed in figure 10(a). However, the 

simulation time is unacceptably long ( 12 hours) for only three beams. At this stage, it is worth asking 

how the fiber rearrangement in Abaqus/Explicit can be properly simulated in a reasonable CPU time. This 

is the objective of the present step of the simulation strategy development.  

 Based on equation 2, two classical procedures can be used:  Increasing the material density , or 

artificially reducing the time period T (i.e. increasing the loading velocity). Increasing the material density 

is not suitable because it will induce a change in the equilibrium of the fibrous assembly in the initial state: 

the higher the density, the more the microstructure is impacted by the gravitational and internal field. 

Therefore, the fibers’ initial positions are no longer the same as in the real specimen. For this reason, 

reducing the time period T was adopted in the present study. A reasonable CPU time, e.g. a couple of 

hours, must be targeted in view of the longer-term objectives of the study of using fiber assemblies with 

hundreds of fibers. Preliminary simulations of the compaction test, which consists of 40 fibers, were 

performed and it was concluded that a loading velocity in the range of  gives a CPU time of 

a couple of minutes, which is reasonable to reach the target CPU time.  was tested 

using the rearrangement test case described earlier. The results are presented in figure 10(a) where the 

obtained displacement  is compared with the reference solution.  

Figure 8(c) represents the final configuration of the beams using the velocity . It can be observed that 

the simulation is no longer quasi-static since the displacements  is not in accordance with the reference 

solution. Moreover, the beams do not remain in contact with one another as predicted by the reference 

simulation due to the inertia effects induced. To reduce the effect of inertia, a damping parameter is 

introduced according to the dynamic equilibrium equation (equation 3). In fact, Abaqus/Explicit is based 
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on the time integration of this dynamic equilibrium equation using a time increment  as expressed in 

inequality 4. 

  (3) 

and  are respectively the stiffness, the damping ,and the mass matrices. is the external 

forces vector. 

 
 (4) 

Using a small mesh size , as is the case here, induces smaller increment times. In addition, reducing the 

time period  automatically increases the loading velocity. On the other hand, integrating the equilibrium 

equation (equation 3) through small time increments increases the inertia term , especially when 

increasing the loading velocity, which induces significant inertia effects. For this reason, the inequality 5 

must be respected to maintain a quasi-static simulation [29]. 

  (5) 

where  is the kinetic energy and  is the strain energy. As explained earlier, the strain energy during 

the dynamic phase is lower than the kinetic energy. Reducing the absolute velocity  using numerical 

damping is among the options to overcome this problem since material damping generates damping 

forces that are opposed to inertia forces. Material and contact damping were already used in such cases 

in a previous study [12]. The values adopted in [12] were tested on the test case above, but they did not 

reduce the inertia effects. Different material damping coefficients were therefore tested on the same test 

case to identify the appropriate material damping parameters, and the results obtained are shown in 

figure 10(b). It can be seen that the resulting displacement  is in accordance with the reference solution, 

and  appears to be the appropriate value for the loading velocity . The strategy 

for reducing the computational time is essentially to increase the loading speed relative to the speed of 

the actual test. As a result of this increase, inertial forces appear and change the velocities and fiber paths 

compared to the actual test. Therefore, damping had to be added to oppose the inertial forces and reduce 

the speed of fiber movement. Although damping increases the CPU time slightly (table 2), it remains 
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nevertheless significantly below that of the quasi-static simulation ( 12h), with similar displacements. In 

addition, the fiber positions in the experiment and simulation are very close after adding damping (figure 

10(b)), which proves that adding proper fiber damping during the simulated compaction can control the 

CPU time cost and the simulation is close to the experimental results. The influence of adding material 

damping on contact forces in the static phase is discussed in the following section. 

3.3.2 The static phase: test case 

After studying the rearrangement phase, it is necessary to analyze the behavior of linear beam elements 

in the static phase. In the compaction experiment, the initially curved beams become straighter and more 

compressed. This state can be modelled by the test case illustrated in figure 11(a). It consists of three 

straights parallel beams modelled by B31 elements. The upper beam (beam 1) is in contact with the lower 

ones (beams 2 and 3). The centerlines of the lower beams are shifted from the centerline of the upper 

one by an angle  relative to the z-axis (figure 11(a)). The three beams are placed in a rectangular analytic 

rigid plate to carry out a confined compaction test. Forty polyester fibers have been compacted in order 

to validate the present simulation strategy. The test will be described forwards in the Experimental 

benchmark. 

According to the obtained compaction test curve (figure 2(b)), the forty fibers of the specimen undergo a 

total load of 12N. Therefore, the three beams in the test case undergo a total compaction load of   in 

addition to their own weight . A line-load equal to  (the fiber length is 15mm) is 

applied on the upper beam along the z-axis. 

Let  and  be the normal contact loads applied by beam 1 on respectively beam 2 and beam 3,  

and ’ the reaction forces applied by the analytic rigid plate on respectively beam 2 and beam 3 along 

the y-axis and the z-axis (cf. figure 11). The main objective of the present test case is to analyze the 

response of the normal contact loads   and  and the reaction forces  and  as a 

function of the external load . Since the problem is symmetric with respect to the plane , the 

normal force  is theoretically the same as . Likewise, the reaction force   is the same as 

. The results obtained will be used to verify: (i) the accuracy of contact forces and reaction forces in 
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the particular case of the static state of the compaction test; (ii) the influence of the material damping 

coefficient on the contact forces and reaction forces during the static case. The results are compared with 

the analytical solution of the same test case. In fact, particularly in this case, the normal contact behavior 

is defined as a “hard contact” to restrict the angle  variation. The test case can therefore be treated as a 

rigid solids problem. The application a static equilibrium led to determine the magnitude of  and 

: 

  (6) 

 
 

(7) 

 The numerical evolution of   and  as a function of and that of  and  are 

plotted in figure 11(b). The numerical results are compared with the analytical ones in both figures. 

Analytically, as  and  are linearly dependent on the compaction load (cf. Appendix), the 

same linearity evolution is predicted by linear beam elements (B31). The test case symmetry is also 

respected. Quantitatively, the marginal error between the analytical and the numerical values is negligible 

(cf. figure 11(b)), which means that the material damping used has no impact on the contact forces.  The 

term  in the dynamic equilibrium equation (cf. equation 3) is significantly low in the static phase 

relative to contact forces. Therefore, the damping forces are negligible compared to the contact forces. 

3.4 The simulation strategy: summary  

The CAD model of the fibrous microstructure is obtained by post-processing the X-ray tomography images 

of the real fiber network. Each fiber is modeled by 3D beam linear finite elements. The compaction plates 

are modelled by rigid analytical shells; the upper one is fixed, while the lower one is controlled by a 

displacement U. The loading velocity is  to reach a CPU time target of tens of minutes. A 

material damping coefficient of is used to control inertia effects. The general contact algorithm 

provided by Abaqus is used for the entire model, with a friction coefficient of  [33]. The normal 

contact behavior is defined as a power function between the contact force and the penetration . Some 

assumptions regarding the mechanical and the geometric model must be taken into account: (i) the 
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friction coefficient between two polyester fibers is difficult to estimate and depends on many variables 

[33], therefore an average value of 0.2 was used [33]; (ii) the coefficient of adhesion is assumed to be the 

same as the friction coefficient; (iii) the local strain between fibers is ignored because of the rigidity of the 

beams’ cross-section but its effect on rigidity is embedded in the contact law (cf. section 3.2 equation 1); 

(vi) the cross-section diameter is considered identical and constant for all the fibers. 

4 Results and discussion 

The compaction test was simulated using the simulation strategy developed in this paper. As explained in 

the previous section, both contact cases between the fibers – parallel and oblique contacts – take place 

during compaction (cf. section 3.2). Therefore, the results obtained by both contact models were 

compared with the experimental ones. The compaction load F as a function of the displacement U is 

presented in figure 12(a) for the parallel contact case, in figure 12(b) for the oblique contact case and in 

figure 12(c) for the identified contact model. In order to better understand the fiber behavior, it is 

interesting to analyze the simulation results from an energetic perspective as well. Figure 13 displays the 

evolution of the Kinetic energy , penalty work  and strain energy  of the whole model. The kinetic 

energy represents the fiber rearrangements, the penalty work is the work done by contact penalties (i.e. 

contact energy), and since the fibers are initially curved, the strain energy represents the elastic strain of 

the fibers due to bending.  

When the displacement is in the range of , the compaction load of both contact 

models, parallel and oblique, is too low ( 98% lower than the maximum load). In this compaction phase, 

the initial fiber fraction ( ) allows sufficient space for the fibers to move as rigid bodies. The 

fiber rearrangement in this particular case is characterized by a negligible strain energy relative to the 

total kinetic energy, as shown in figure 13. Consequently, in this case, the condition ensuring a quasi-static 

simulation is not respected. However, the identified damping coefficient seems to be adequate to control 

the fiber rearrangement and stabilize the simulation. As the strain energy remains negligible, the penalty 

work increases at , which means that the interaction between fibers, due mainly to friction, 

increases. For both contact models, starting from a displacement value of , the compaction 

load progressively increases, which means that the total stiffness of the fiber assembly increases relative 
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to the beginning of compaction. In fact, fiber bending begins to take place simultaneously with the fiber 

rearrangement, as is proven by the increase in the strain energy at the same displacement value (

). At this particular point, all the model energies are at the same level ( ), and it 

marks the beginning of a transition phase ( ) between fiber rearrangement and fiber 

locking. The locking of fibers is a logical consequence of the relative motion between the fibers.  It depends 

on (i) mechanical parameters: intrinsic (e.g., friction coefficient of the fibers) and non-intrinsic (e.g., 

loading velocity); and (ii) geometric parameters: fiber orientation, curvature, the distribution of contact 

points in the fiber network. This distribution allows the transfer of contact forces, which generate relative 

motion between the fibers. This relative motion leads to a change in the geometric position of the fibers, 

resulting in the closure of the pores between the fibers and the formation of locking. With increasing 

compression force, this locking persists or is released by the movement of one or more fibers. The 

transition phase is as crucial as the other phases; in fact, the fiber rearrangement, interactions and 

deformations occur simultaneously. Therefore, the numerical model must be able to reproduce, as closely 

as possible, these micro-mechanisms compared to the real compaction test. Based on the results from 

figure 12(a, b), the proposed model seems to reliably simulate the transition phase since the numerical 

compaction curve is in accordance with the experimental data. 

When the displacement reaches the value , the penalty work increases by almost 92% to its 

peak value, as shown in figure 13. Before reaching static equilibrium, the fiber network passes through a 

metastable state. Therefore, fiber interaction increases, causing an increase in the penalty work. 

Afterwards, a rearrangement of the fibrous microstructure takes place and a stable equilibrium is reached, 

which explains the decrease in the penalty work and the slight decrease observed in the compaction load 

( 9.8%) in both figures 15(a, b) at . Both parallel and oblique contact models give similar 

and accurate results concerning the rearrangement phase , and the transition phase

. Although the impact of fiber-fiber contacts during these two phases is non-negligible, it 

remains insufficient to cause a noticeable difference between the two contact models. However, a 

difference is observed concerning the final compaction load: The value predicted by the parallel contact 

model is 30% higher, and the value predicted by the oblique contact model is 19% lower (for the average 

value ) than the maximum experimental value. As explained earlier, the average angle was chosen 
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here for the simulation because: tested three extreme cases ( )) and the simulation results 

were approximated for each direction. Both contact cases are present within the fiber network due to the 

permanent change in the contact angle between two neighboring fibers, but this variation is very small. 

Therefore, considering only one contact case cannot model the effect of both contact cases together. 

However, it is important to recall that fiber assemblies of hundreds of fibers are targeted in further 

studies. Hence, in order to predict the exact experimental final compaction load the contact angle change 

needs to be taken into account, which would be expensive in terms of realization and CPU time. Therefore, 

it is possible to choose the average angle for subsequent simulations as a cost-saving option without 

introducing large errors. Instead, the proposed contact models with the proposed simulation strategy 

provides reasonable results in a total CPU time of 14mn42s for 40 fibers. Furthermore, the proposed 

model can be pushed further by identifying the contact parameters ( ,  and ) in order to reduce the 

difference between the numerical final compaction load and the experimental one. The compaction curve 

obtained is displayed in figure 12(c) where the difference is reduced to almost 11%. The identified 

parameters (cf. table 3) lead logically to a contact behavior within the zone between parallel contact and 

oblique contact behaviors as presented in figure 14. This shows that it is worthwhile investigating in 

greater depth in further studies and searching for a general contact model in order to combine both 

parallel and oblique contact behaviors. 

Although the developed model obtained by X-ray tomography predicts the same macroscopic behavior 

as the one obtained experimentally, the microscopic behavior should also be verified by comparing with 

the experimental results. To verify the accuracy of the initial fiber bundle model, gravity is added to it and 

only the effect of gravity on the fiber bundles is considered. As shown in the figure 15, comparing the real 

positions of the fiber bundles after adding gravity in the initial state, the change is negligible. The volume 

fraction of the initial state of the fiber bundle used for the experiment is 37.7%, which is calculated by 

MATLAB: the total volume of the fiber bundle divided by the volume of the compression cassette in which 

the fiber bundle is located. Thus, the model can be further simulated for compression experiments.  

The results of compaction test are presented in figure 16 where the fiber positions predicted by the model 

are compared with their real positions during the compaction test. In addition, quasi-parallel fibers have 



20 
 

a certain curvature. The average curvature projected on XY and YZ plane of fiber bundle in its initial state 

(at U=0mm) and after compaction (at U=1.15mm) was calculated by MATLAB as shown in the table 4. It 

can be seen that the curvature of the aligned parallel fiber bundles in the compression experiment has 

little effect. The results already be applied to simulations: the movement is locked in the fiber orientation 

(Boundary Conditions), which will more closely resemble the experimental results. Concerning the earlier 

stages of compaction (the second stage, i.e. , is taken as an example), the experimental and 

numerical positions of the fibers seem to be very close, the mean distance between simulation and 

experiment is 0.32 mm, in the finally state, which is 60% of the fiber’s diameter. At further levels of 

compaction (e.g.  at the eighth stage) the marginal error between the fibers will normally 

increase progressively, yet, it does not exceed the fiber diameter (0.5mm). At the final stage of 

compaction (  ), the fibers have regained their experimental position. In fact, as the fiber 

volume fraction increases, the fibers rearrange and converge to the experimental microstructure. Taking 

into account the difficulties of simulation at the fiber scale and the assumptions made, the 

experimental/numerical positions and orientations of the fibers can be considered accurate. The 

microscopic positions of the fibers can definitely be improved further, but they are accurately controlled. 

Furthermore, since the numerically predicted compaction curve is very close to the experimental one, this 

difference in the fiber position does not appear to have a significant effect on the behavior of the fiber 

network. In other words, a controlled disturbance of the fiber network microstructure does not 

significantly change its macroscopic behavior. 

5 Conclusion 

A numerical model has been proposed to simulate the compaction of quasi-parallel fiber assemblies at 

the fiber scale. A compaction test of forty polyester fibers was performed to enrich the development of a 

simulation strategy and validate the numerical results. The fiber assembly microstructure was 

reconstructed from the X-ray tomography images of the real specimen. A CAD model was then obtained, 

automatically and directly, from the input images, then used afterwards to simulate the compaction test 

based on the simulation strategy developed. This strategy includes the choice of the finite elements, the 

analysis platform, the fiber contact law and the analysis parameters to ensure an accurate fiber 
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rearrangement. Beam finite elements were chosen to model the fibers and optimize the calculation cost. 

The dynamic explicit analysis in Abaqus/explicit appears to be compatible with the characterization of 

fibrous media, which include a large number of contacts. The normal contact behavior between the fibers 

was accurately modelled using the contact stiffness scaling. This method seems to be suitable for the 

beam’s rigid cross-section, but it cannot take into consideration the permanent change of the fibers’ 

relative orientations. However, the alternative solution proposed of using one average relative orientation 

gives an accurate contact behavior. The contact tangential behavior was also modelled through the 

Coulomb friction model, and accurate fiber rearrangements were obtained using an appropriate material-

damping coefficient. 

The simulation strategy has been validated by comparing the mechanical response of the compaction 

experiment with the numerical one. The proposed model offers encouraging results in accordance with 

the real compaction test. In addition, the total CPU time of the compaction simulation is 14min42s for 

forty fibers, which is promising for the integration of more fibers (hundreds of fibers are targeted in 

further work). The proposed numerical method is directly related to the real microstructure evolution of 

the fiber assembly. Therefore, it can be used to predict, non-exhaustively, the fiber orientations and 

kinematics, the influence of friction on the rearrangement, the fiber-fiber interactions and other features 

that are difficult to explore experimentally at the fiber scale. More loading trajectories will be performed 

on a bundle of hundreds of fibers to gather more information at the microscopic scale (fiber scale), and 

then formulate a mechanical behavior at the mesoscopic scale (yarn scale).    
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Appendix: The static case 

In order to find the magnitude of  and  (figure 11(a)), the static equilibrium is applied as follows. 

The isolated groups. 

Let  be the first isolated group and  the second isolated 

group.  is subjected to the reaction forces  and  applied by the analytical plate along the z-

axis,  and  applied by the analytical plate along the y-axis, the load  along the z-axis and the 

weight .  is subjected to the normal force  applied by beam 1 along the vector , and the reaction 

forces  and   applied by the analytic rigid plate respectively along the z-axis and the y-axis. 

Application of the static equilibrium: 

The equations (A.1) and (A.2) bellow satisfies the static equilibrium of both isolated groups  and  

respectively. 

  (A.1) 

  (A.2) 

Scalar projections of equation (A.1) and (A.2) on the x-axis and the z-axis: 

The static equilibrium of G1 is projected on the z-axis as formulated in equation (A.3), and the static 

equilibrium of G2 is projected on the y-axis and the z-axis as formulated respectively in equation (A.4) and 

(A.5).  

  (A.3) 

  (A.4) 

 
 

(A.5) 
Basing on equations (A.3), (A.4) and (A.5), the analytical expressions of both normal force  and reaction 

force  and are expressed as follows.  

  (A.6) 

  (A.7) 
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  (A.8) 
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Figures 

 

Figure 1: (a) 3D X-ray tomography image of the fiber network specimen in its initial state. (b) The 

geometry model of the fiber network specimen consists of the fiber mid-lines 

 

 
  

(a) Scheme of the compaction test (b) Evolution of the compaction 

load F as a function of the lower 

plate displacement U 

(c) Evolution of the 

compaction load F as a 

function of the lower plate 

time  
 

 

Figure 2: The uniaxial confined compaction test 
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(a) Rigid cross-section (b)Deformable cross-section 

Figure 3: Contact behavior depending on the deformability of the cross-section 

 

 

Figure 4: Simulation contact model: scale factor contact force-penetration relationship [29]. 

 



29 
 

  
(a) Parallel contact model (b) Oblique contact model 

Figure 5: The contact models 

 

 

Figure 6: Identification of the simulated parallel ( =0°) and three different oblique contact model given 

by the analytical models (n 1000) 
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Figure 7: Simulation of the compaction test using the parallel contact model and the oblique contact 

model with three identified relative orientations 
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(a) Initial state (b) Quasi-static rearrangement 
obtained by a dynamic implicit 

analysis: reference solution, 
vz=0.23mm/min 

(c) Rearrangement obtained by 
the explicit dynamic analysis with 

inertia effects and contact loss, 
vz=1000mm/min, CPU time=27min 

Figure 8: Test case: rearrangement of three straight and parallel 3D beams 

 

 

Figure 9: Test case: the reference solution of the displacement  obtained by the dynamic implicit 

analysis 
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(a) Influence of the velocity (b) Influence of material damping on fiber 

rearrangement for vz=1000mm/min. 
Figure 10: Influence of parameters on the fiber rearrangement 

 

 

 

 

(a) the static case 
(b) Evolution of normal contact force (NF and NF’) 

and reaction force (RF and RF’) as a function 
of the compaction load q 

Figure 11: Contact between three straight parallel beams 
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(a) the parallel contact model (b) the oblique contact model of 
three different relative 

orientations 

(c) the identified contact 

model 

Figure 12: Experimental compaction test compared to the compaction simulation obtained with 

 

 

Figure 13: The Whole model strain energy, penalty work and kinetic energy during the compaction 

simulation 
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Figure14: The identified contact model compared to the parallel and the oblique analytical contact 

models 

 

Figure 15: Fiber positions with gravity in the developed model compared with their real position in the 

initial compaction test (with the volume fraction=37.7% in the initial experiment state) 
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Figure 16: Fiber positions predicted by the developed model compared with their real positions (with the 

different volume fraction in the experiment) during the compaction test 
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Tables 

  (mm)   

0°  1.0008 0.74 

2°  1.0101 0.021 

6°  1.0047 0.0087 

10°  1.0045 0.013 

Table 1: The simulation contact parameters given by the analytical models 

 

 0   

CPU time (s) 27 30 34 

Table 2: Influence of material damping on the CPU time of the test case in figure 8 

 

 

Table 3: The simulation contact parameters of the identified contact model 

 

Displacement Projected average curvature (m-1) 

XZ-plane YZ-plane 

U=0mm 0.241 0.248 

U=1.15mm 0.228 0.221 

Table 4: The average curvature projected on the XY and YZ plane in the initial and finial state of 

compaction. 

 

 

 (mm)   

 1.001 0.05 


