Duality of Codes over Non-unital Rings of Order Four

Adel Alahmadi, Asmaa Melaibari, Patrick Solé

To cite this version:

Adel Alahmadi, Asmaa Melaibari, Patrick Solé. Duality of Codes over Non-unital Rings of Order Four. IEEE Access, 2023, 30, pp.1-1. 10.1109/ACCESS.2023.3261131 . hal-04089525v3

HAL Id: hal-04089525
 https://hal.science/hal-04089525v3

Submitted on 5 May 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Duality of Codes over Non-unital Rings of Order Four

ADEL ALAHMADI ${ }^{1}$, ASMAA MELAIBARI ${ }^{2}$, AND PATRICK SOLÉ ${ }^{3}$
${ }^{1}$ Math Department, King Abdulaziz University, Jeddah, Saudi Arabia (e-mail: analahmadi@kau.edu.sa)
${ }^{2}$ University of Jeddah, Jeddah, Saudi Arabia \& King Abdulaziz University, Jeddah, Saudi Arabia (e-mail: amelaibari@uj.edu.sa)
${ }^{3}$ I2M, (Aix Marseille Univ., CNRS, Centrale Marseille), Marseilles, France. (e-mail: sole@enst.fr)
Corresponding author: Adel Alahmadi (e-mail: analahmadi@kau.edu.sa).

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, Saudi Arabia under grant no. (KEP-PhD-66-130-42). The authors, therefore, acknowledge with thanks DSR technical and financial support.

Abstract

In this paper, we present a basic theory of the duality of linear codes over three of the nonunital rings of order four; namely I, E, and H as denoted in (Fine, 1993). A new notion of duality is introduced in the case of the non-commutative ring E. The notion of self-dual codes with respect to this duality coincides with that of quasi self-dual codes over E as introduced in (Alahmadi et al, 2022). We characterize self-dual codes and LCD codes over the three rings, and investigate the properties of their corresponding additive codes over \mathbb{F}_{4}. We study the connection between the dual of any linear code over these rings and the dual of its associated binary codes. A MacWilliams formula is established for linear codes over E.

INDEX TERMS Additive codes, LCD codes, non-unital rings, self-dual codes

I. INTRODUCTION

THERE are, up to isomorphism, exactly eleven rings of order four [9], [18]. The only unital ones amongst these are $\mathbb{F}_{4}, \mathbb{Z}_{4}, \mathbb{F}_{2} \times \mathbb{F}_{2}$, and $\mathbb{F}_{2}+u \mathbb{F}_{2}$. Before [4], these were the only rings of order four used as alphabets in Coding Theory [19]. In a series of papers [2]-[4], self-orthogonal codes over three of the non-unital rings among the eleven rings were investigated; namely I, E, and H, as per the notation of Fine [9]. Let \mathcal{R} be one of the rings I, E, or H. Throughout this paper, if the statement does not depend on which ring we are using, we shall denote the ring by \mathcal{R}. The goal of this paper is to lay down the foundations of the study of duality of linear codes over these three rings. In particular, the classes of self-dual codes and LCD codes are considered.
Self-dual codes have been given much attention in Coding Theory and have been widely studied for codes over finite fields and codes over rings [11, Chapter 4], [16, Chapter 3], [12], [14]. Due to technical hurdles, the study of self-dual codes over \mathcal{R} was replaced by that of Quasi Self-Dual codes (QSD codes) in the series of papers mentioned above. In the present paper, we initiate the study of self-dual codes over \mathcal{R}. In the case of the alphabet E, the new notion of self-dual codes coincides with that of QSD codes.

We then consider another class of codes that can be described in terms of their relationship with their dual. More precisely, it is the class of Linear codes with Complementary

Dual (LCD codes). The notion of LCD codes was introduced by Massey in [13] on codes over finite fields. It was the object of much attention in recent years due to its application in Boolean masking, a powerful countermeasure for cryptographic algorithms [8]. The study of LCD codes over non-unital rings first appeared in [20] where the authors investigated left LCD codes over E. We study LCD codes over E and H, and explain why no nontrivial LCD codes over I exist.

We show that self-dual codes and LCD codes over \mathcal{R} can be characterized in terms of their associated binary codes. Moreover, we study the duality of the corresponding additive codes over \mathbb{F}_{4} with respect to the trace inner product.

To discuss the notions of self-dual codes and LCD codes, we address general properties of the dual of linear codes over \mathcal{R}. Through our investigation of duality, we prove a MacWilliams formula [12], which relates the weight enumerator of a linear code to that of its dual, for codes over the non-commutative non-unital ring E, where the dual is our two-sided dual.

The paper consists of seven sections. Section II recalls some background material on binary codes and additive codes over \mathbb{F}_{4} as well as general terminologies on linear codes over \mathcal{R}. Sections III, IV, and V are devoted to studying codes over I, E, and H, respectively. As a preparation for the study of the main topic, we begin each of these three
sections by taking a closer look at the structure of linear codes over each particular ring. Then we proceed to study the duality of codes and prove various specific results on self-dual codes and LCD codes. Section VI summarizes the relationships among different classes of codes over \mathcal{R}. Section VII concludes the article.

II. DEFINITIONS AND NOTATIONS

A. RINGS OF ORDER FOUR

We describe the main properties of the rings I, E, and H of order four. These rings are defined by relations on two generators a and b. We shall write $c=a+b$ for all three rings.

The ring I is defined by

$$
I=\left\langle a, b \mid 2 a=2 b=0, a^{2}=b, a b=0\right\rangle
$$

It is a non-unital commutative ring with characteristic two. The ring is local with maximal ideal $\{0, b\}$. Its multiplication table is given in Table 1.

TABLE 1. Multiplication table for the ring I

\times	0	a	b	c
0	0	0	0	0
a	0	b	0	b
b	0	0	0	0
c	0	b	0	b

The ring E is defined by

$$
E=\left\langle a, b \mid 2 a=2 b=0, a^{2}=a, b^{2}=b, a b=a, b a=b\right\rangle
$$

It is a non-unital non-commutative ring with characteristic two. The ring is local with maximal ideal $\{0, c\}$. Its multiplication table is given in Table 2.

TABLE 2. Multiplication table for the ring E

\times	0	a	b	c
0	0	0	0	0
a	0	a	a	0
b	0	b	b	0
c	0	c	c	0

The ring H is defined by
$H=\left\langle a, b \mid 2 a=2 b=0, a^{2}=0, b^{2}=b, a b=b a=0\right\rangle$.
It is a non-unital commutative ring with characteristic two. The ring is semi-local with two maximal ideals $\{0, a\}$ and $\{0, b\}$. Its multiplication table is given in Table 3.

TABLE 3. Multiplication table for the ring H

\times	0	a	b	c
0	0	0	0	0
a	0	0	0	0
b	0	0	b	b
c	0	0	b	b

For further details on the properties of \mathcal{R}, we refer the reader to [2]-[4].

B. CODES

We recall some preliminary notions and terminologies of binary codes, additive codes over \mathbb{F}_{4}, and codes over \mathcal{R}.

1) Binary linear codes

An $[n, k]$ binary code C of length n and dimension k is a subspace of \mathbb{F}_{2}^{n}. The (Hamming) weight $\mathrm{wt}(\mathbf{x})$ of $\mathbf{x} \in C$ is the number of nonzero coordinates in \mathbf{x}. The dual C^{\perp} of C is an $[n, n-k]$ code defined as

$$
C^{\perp}=\left\{\mathbf{y} \in \mathbb{F}_{2}^{n} \mid \mathbf{x} \cdot \mathbf{y}=0 \text { for all } \mathbf{x} \in C\right\}
$$

where $\mathbf{x} \cdot \mathbf{y}=\sum_{i=1}^{n} x_{i} y_{i}$ denotes the standard inner product in \mathbb{F}_{2}^{n}. A binary linear code C is self-orthogonal if $C \subseteq C^{\perp}$ and self-dual if $C=C^{\perp}$. The length n of a self-dual code is even and its dimension is $n / 2$. A binary code C is linear with complementary dual ($L C D$) if $C \cap C^{\perp}=\{0\}$. Two binary codes are permutation equivalent if there is a permutation of coordinates that maps one to the other.

2) Additive codes over \mathbb{F}_{4}

Consider the finite field \mathbb{F}_{4} consisting of the four elements $\left\{0,1, \omega, \omega^{2}\right\}$ where $\omega^{2}=1+\omega$. An $\left(n, 2^{k}\right)$ additive code over \mathbb{F}_{4} of length n and size 2^{k} is an additive subgroup of \mathbb{F}_{4}^{n}. The trace inner product $\langle\mathbf{u}, \mathbf{v}\rangle_{T}$ of vectors $\mathbf{u}, \mathbf{v} \in \mathbb{F}_{4}^{n}$ is defined as

$$
\langle\mathbf{u}, \mathbf{v}\rangle_{T}=\operatorname{Tr}\left(\mathbf{u} \cdot \mathbf{v}^{2}\right)=\operatorname{Tr}\left(\sum_{i=1}^{n} u_{i} v_{i}^{2}\right)
$$

where $\operatorname{Tr}: \mathbb{F}_{4} \rightarrow \mathbb{F}_{2}$ is the trace map defined by $\operatorname{Tr}(u)=u+u^{2}$. The trace dual $C^{\perp_{T}}$ of an additive code C of length n over \mathbb{F}_{4} is defined as

$$
C^{\perp_{T}}=\left\{\mathbf{v} \in \mathbb{F}_{4}^{n} \mid\langle\mathbf{u}, \mathbf{v}\rangle_{T}=0 \text { for all } \mathbf{u} \in C\right\}
$$

If C is an $\left(n, 2^{k}\right)$ additive code over \mathbb{F}_{4}, then $C^{\perp_{T}}$ is an $\left(n, 2^{2 n-k}\right)$ additive code over \mathbb{F}_{4}. An additive code C over \mathbb{F}_{4} is trace self-orthogonal if $C \subseteq C^{\perp_{T}}$ and trace self-dual if $C=C^{\perp_{T}}$. An additive code C over \mathbb{F}_{4} is additive with complementary dual (ACD) if $C \cap C^{\perp_{T}}=\{\mathbf{0}\}$.

Remark 2.1. Any $[n, k]$ binary code can be regarded as an $\left(n, 2^{k}\right)$ additive code over \mathbb{F}_{4} since \mathbb{F}_{2}^{n} is an additive subgroup of \mathbb{F}_{4}^{n}.

3) Codes over \mathcal{R}

A linear code of length n over \mathcal{R} is a left \mathcal{R}-submodule of \mathcal{R}^{n}. The (Hamming) weight $\mathrm{wt}(\mathbf{x})$ of $\mathbf{x} \in \mathcal{R}^{n}$ is the number of nonzero coordinates in \mathbf{x}. The inner product of $\mathbf{x}=x_{1} x_{2} \ldots x_{n}$ and $\mathbf{y}=y_{1} y_{2} \ldots y_{n}$ in \mathcal{R}^{n} is defined by $\mathbf{x} \cdot \mathbf{y}=\sum_{i=1}^{n} x_{i} y_{i}$.

The left dual $C^{\perp_{L}}$ of a linear code C is the left module defined by

$$
C^{\perp_{L}}=\left\{\mathbf{y} \in \mathcal{R}^{n} \mid \mathbf{y} \cdot \mathbf{x}=0 \text { for all } \mathbf{x} \in C\right\}
$$

The right dual $C^{\perp_{R}}$ of a linear code C is the right module defined by

$$
C^{\perp_{R}}=\left\{\mathbf{y} \in \mathcal{R}^{n} \mid \mathbf{x} \cdot \mathbf{y}=0 \text { for all } \mathbf{x} \in C\right\}
$$

A linear code C is self-orthogonal if for any $\mathbf{x}, \mathbf{y} \in C$, $\mathbf{x} \cdot \mathbf{y}=0$. Thus, any self-orthogonal code C satisfies the inclusion $C \subseteq C^{\perp_{L}} \cap C^{\perp_{R}}$. A linear code of length n is quasi self-dual $(Q S D)$ if it is self-orthogonal and of size 2^{n}. A QSD code where all of its codewords have even weight is called Type IV. A linear code C is left self-dual (respectively, right self-dual) if $C=C^{\perp_{L}}$ (respectively, $C=C^{\perp_{R}}$). A linear code C of length n is left nice (respectively, right nice) if $|C|\left|C^{\perp_{L}}\right|=4^{n}$ (respectively, $|C|\left|C^{\perp_{R}}\right|=4^{n}$).

When \mathcal{R} is commutative, $C^{\perp_{R}}=C^{\perp_{L}}$ and thus we omit the adjectives left and right and simply say dual and denote it by C^{\perp}. We do the same for the notions of self-dual and nice.

Two linear codes over \mathcal{R} are permutation equivalent if there is a permutation of coordinates that maps one to the other.

We note that in the upcoming sections, \oplus denotes the direct sum of vector spaces over \mathbb{F}_{2}. This concept is used to represent linear codes over \mathcal{R} as additive codes over \mathcal{R}; where an additive code of length n over \mathcal{R} is an additive subgroup of \mathcal{R}^{n}.

III. RESULTS ON LINEAR CODES OVER I

We begin this section by summarizing facts and notions essential to our study for linear codes over I. A detailed introduction on such codes can be found in [3].

To every linear code C of length n over I, there is an additive code $\phi_{I}(C)$ over \mathbb{F}_{4} such that ϕ_{I} is defined by the alphabet substitution

$$
0 \rightarrow 0, a \rightarrow \omega, b \rightarrow 1, c \rightarrow \omega^{2}
$$

extended in the natural way to a map from C to \mathbb{F}_{4}^{n}.
There are two binary linear codes of length n associated canonically with every linear code C of length n over I :

1) the residue code $\operatorname{res}(C)$ defined by

$$
\operatorname{res}(C)=\{\alpha(\mathbf{y}) \mid \mathbf{y} \in C\}
$$

where $\alpha: I \rightarrow \mathbb{F}_{2}$ is the map defined by $\alpha(0)=\alpha(b)=0$ and $\alpha(a)=\alpha(c)=1$, extended componentwise from C to \mathbb{F}_{2}^{n},
2) the torsion code tor (C) defined by

$$
\operatorname{tor}(C)=\left\{\mathbf{x} \in \mathbb{F}_{2}^{n} \mid b \mathbf{x} \in C\right\}
$$

The two binary codes satisfy the inclusion $\operatorname{res}(C) \subseteq \operatorname{tor}(C)$ and their sizes are related to the size of C by $|C|=|\operatorname{res}(C)||\operatorname{tor}(C)|$. Throughout this section, we let $k_{1}=\operatorname{dim}(\operatorname{res}(C))$ and $k_{2}=\operatorname{dim}(\operatorname{tor}(C))-k_{1}$. The linear code C is said to be of type $\left(k_{1}, k_{2}\right)$. We say that a linear code is free if and only if $k_{2}=0$. Equivalently, C is free if and only if $\operatorname{res}(C)=\operatorname{tor}(C)$. A QSD code C is quasi Type IV if tor (C) is even.

A. STRUCTURE OF LINEAR CODES

As noted in [3, Section 4], two distinct linear codes over I may share the same residue and torsion codes. This means that codes over I do not have a unique algebraic representation via their two associated binary codes. Nevertheless, these two binary codes are useful when studying the structure of codes over I and their dual.

The following theorem gives a connection between any linear code over I and its residue code.

Theorem 3.1. If C is a linear code of length n over I, then the following hold:

1) Every codeword $\mathbf{c} \in C$ can be written as $\mathbf{c}=a \mathbf{u}+b \mathbf{v}$ for some $\mathbf{u} \in \operatorname{res}(C)$ and $\mathbf{v} \in \mathbb{F}_{2}^{n}$.
2) If $\mathbf{u} \in \operatorname{res}(C)$, then $a \mathbf{u}+b \mathbf{v}$ is a codeword in C for some $\mathbf{v} \in \mathbb{F}_{2}^{n}$.
Proof. Let $\mathbf{c} \in C$. We can write \mathbf{c} in a b-adic decomposition form as $\mathbf{c}=a \mathbf{u}+b \mathbf{v}$ where $\mathbf{u}, \mathbf{v} \in \mathbb{F}_{2}^{n}$. Since $\alpha(\mathbf{c})=\alpha(a \mathbf{u}+b \mathbf{v})=\mathbf{u}, \mathbf{u} \in \operatorname{res}(C)$. This proves (1).
Now let $\mathbf{u} \in \operatorname{res}(C)$. Then there exists $\mathbf{c} \in C$ such that $\alpha(\mathbf{c})=\mathbf{u}$. We can write \mathbf{c} in a b-adic decomposition form as $\mathbf{c}=a \mathbf{w}+b \mathbf{v}$ where $\mathbf{w}, \mathbf{v} \in \mathbb{F}_{2}^{n}$. Observe that $\alpha(a \mathbf{w}+b \mathbf{v})=\mathbf{w}$. On the other hand, $\alpha(a \mathbf{w}+b \mathbf{v})=\alpha(\mathbf{c})=\mathbf{u}$. Hence, $\mathbf{w}=\mathbf{u}$ and so $a \mathbf{u}+b \mathbf{v}$ is a codeword in C. This proves (2).

The following corollary determines, from the residue code, when a linear code is self-orthogonal.

Corollary 3.2. A linear code C of length n over I is selforthogonal if and only if $\operatorname{res}(C)$ is a binary self-orthogonal code.

Proof. For any $\mathbf{u}_{1}, \mathbf{u}_{2} \in \operatorname{res}(C)$ and $\mathbf{v}_{1}, \mathbf{v}_{2} \in \mathbb{F}_{2}^{n}$,

$$
\left(a \mathbf{u}_{1}+b \mathbf{v}_{1}\right) \cdot\left(a \mathbf{u}_{2}+b \mathbf{v}_{2}\right)=b\left(\mathbf{u}_{1} \cdot \mathbf{u}_{2}\right)
$$

Due to this and the relation between C and $\operatorname{res}(C)$ given in Theorem 3.1, it follows that C is self-orthogonal if and only if $\operatorname{res}(C)$ is self-orthogonal.

Now we study the close connection between the minimum distance of any linear code over I and that of its torsion code.

Theorem 3.3. If C is a nonzero linear code over I, then the minimum distance of C equals the minimum distance of $\operatorname{tor}(C)$.
Proof. Let d be the minimum distance of C and let d_{t} be the minimum distance of $\operatorname{tor}(C)$. Then there exists a nonzero
$\mathbf{t} \in \operatorname{tor}(C)$ such that $\mathrm{wt}(\mathbf{t})=d_{t}$. Since $b \operatorname{tor}(C) \subseteq C$ and $\mathrm{wt}(b \mathbf{t})=\mathrm{wt}(\mathbf{t})=d_{t}, d \leq d_{t}$.
Now we prove that $d \geq d_{t}$. Let $\mathbf{x} \in C$ such that $\mathrm{wt}(\mathbf{x})=d$. By Theorem 3.1, $\mathbf{x}=a \mathbf{u}+b \mathbf{v}$ where $\mathbf{u} \in \operatorname{res}(C)$ and $\mathbf{v} \in \mathbb{F}_{2}^{n}$. Since C is nonzero, we have the following three cases depending on \mathbf{u} and \mathbf{v} :

- If $\mathbf{u}=\mathbf{0}$ and $\mathbf{v} \neq \mathbf{0}$, then we have $\mathbf{v} \in \operatorname{tor}(C)$ and $\mathrm{wt}(\mathbf{x})=\mathrm{wt}(b \mathbf{v})=\mathrm{wt}(\mathbf{v}) \geq d_{t}$.
- If $\mathbf{u} \neq \mathbf{0}$ and $\mathbf{v}=\mathbf{0}$, then $\mathrm{wt}(\mathbf{x})=\mathrm{wt}(a \mathbf{u})=\mathrm{wt}(\mathbf{u})$.
- If $\mathbf{u}, \mathbf{v} \neq \mathbf{0}$, then $\mathrm{wt}(\mathbf{x}) \geq \mathrm{wt}(a \mathbf{x})=\mathrm{wt}(b \mathbf{u})=\mathrm{wt}(\mathbf{u})$.

Since $\mathbf{u} \in \operatorname{res}(C) \subseteq \operatorname{tor}(C)$, it follows that $\operatorname{wt}(\mathbf{u}) \geq d_{t}$. Thus, in all cases, $d=\mathrm{wt}(\mathbf{x}) \geq d_{t}$.
Since $d \leq d_{t}$ and $d \geq d_{t}$, it follows that $d=d_{t}$.

B. DUALITY

The following theorem presents properties of the residue and torsion codes of the dual of linear codes over I.

Theorem 3.4. If C is a linear code of length n over I, then the following hold:

1) $\operatorname{res}\left(C^{\perp}\right)=\operatorname{res}(C)^{\perp}$.
2) $\operatorname{tor}\left(C^{\perp}\right)=\mathbb{F}_{2}^{n}$.

Proof. To prove (1), let $\mathbf{u} \in \operatorname{res}\left(C^{\perp}\right)$. By Theorem 3.1, $a \mathbf{u}+b \mathbf{v}$ is a codeword in C^{\perp} for some $\mathbf{v} \in \mathbb{F}_{2}^{n}$. Let $\mathbf{x} \in \operatorname{res}(C)$. By Theorem 3.1, $a \mathbf{x}+b \mathbf{y}$ is a codeword in C for some $\mathbf{y} \in \mathbb{F}_{2}^{n}$. By definition of C^{\perp},

$$
0=(a \mathbf{u}+b \mathbf{v}) \cdot(a \mathbf{x}+b \mathbf{y})=b(\mathbf{u} \cdot \mathbf{x})
$$

Hence, $\mathbf{u} \cdot \mathbf{x}=0$ which implies that $\mathbf{u} \in \operatorname{res}(C)^{\perp}$. Therefore, $\operatorname{res}\left(C^{\perp}\right) \subseteq \operatorname{res}(C)^{\perp}$.
Now assume $\mathbf{u} \in \operatorname{res}(C)^{\perp}$. Let $\mathbf{c} \in C$. By Theorem 3.1, $\mathbf{c}=a \mathbf{x}+b \mathbf{y}$ where $\mathbf{x} \in \operatorname{res}(C)$ and $\mathbf{y} \in \mathbb{F}_{2}^{n}$. Observe that

$$
a \mathbf{u} \cdot \mathbf{c}=a \mathbf{u} \cdot(a \mathbf{x}+b \mathbf{y})=b(\mathbf{u} \cdot \mathbf{x})=0
$$

Hence, $a \mathbf{u} \in C^{\perp}$ and $\alpha(a \mathbf{u})=\mathbf{u}$ which yields $\mathbf{u} \in \operatorname{res}\left(C^{\perp}\right)$. Therefore, $\operatorname{res}(C)^{\perp} \subseteq \operatorname{res}\left(C^{\perp}\right)$. This proves (1).
To prove (2), we will show that $\mathbb{F}_{2}^{n} \subseteq \operatorname{tor}\left(C^{\perp}\right)$. Let $\mathbf{u} \in \mathbb{F}_{2}^{n}$ and let $\mathbf{c} \in C$. By Theorem 3.1, $\mathbf{c}=a \mathbf{x}+b \mathbf{y}$ where $\mathbf{x} \in \operatorname{res}(C)$ and $\mathbf{y} \in \mathbb{F}_{2}^{n}$. Observe that

$$
\mathbf{c} \cdot b \mathbf{u}=(a \mathbf{x}+b \mathbf{y}) \cdot b \mathbf{u}=0
$$

Hence, $b \mathbf{u} \in C^{\perp}$ which gives $\mathbf{u} \in \operatorname{tor}\left(C^{\perp}\right)$. Therefore, $\mathbb{F}_{2}^{n}=\operatorname{tor}\left(C^{\perp}\right)$. This proves (2).

The dual of a linear code of length n over I can be written uniquely in terms of the dual of its residue code and the binary vector space \mathbb{F}_{2}^{n} as the following theorem shows.

Theorem 3.5. If C is a linear code of length n over I, then $C^{\perp}=a \operatorname{res}(C)^{\perp} \oplus b \mathbb{F}_{2}^{n}$.
Proof. Let $\mathbf{z} \in C^{\perp}$. Applying Theorems 3.1 and 3.4, we have $\mathbf{z}=a \mathbf{x}+b \mathbf{y}$ where $\mathbf{x} \in \operatorname{res}\left(C^{\perp}\right)=\operatorname{res}(C)^{\perp}$ and $\mathbf{y} \in \mathbb{F}_{2}^{n}$. This proves that $C^{\perp} \subseteq a \operatorname{res}(C)^{\perp}+b \mathbb{F}_{2}^{n}$.
Now assume that $\mathbf{w}:=a \mathbf{u}+b \mathbf{v} \in a \operatorname{res}(C)^{\perp}+b \mathbb{F}_{2}^{n}$. Let
$\mathbf{c} \in C$. By Theorem 3.1, $\mathbf{c}=a \mathbf{r}+b \mathbf{s}$ where $\mathbf{r} \in \operatorname{res}(C)$ and $\mathbf{s} \in \mathbb{F}_{2}^{n}$. Observe that

$$
\mathbf{w} \cdot \mathbf{c}=(a \mathbf{u}+b \mathbf{v}) \cdot(a \mathbf{r}+b \mathbf{s})=b(\mathbf{u} \cdot \mathbf{r})=0
$$

Hence, $\mathbf{w} \in C^{\perp}$. Therefore, $a \operatorname{res}(C)^{\perp}+b \mathbb{F}_{2}^{n} \subseteq C^{\perp}$. This proves that $C^{\perp}=a \operatorname{res}(C)^{\perp}+b \mathbb{F}_{2}^{n}$. Since

$$
\left|C^{\perp}\right|=\left|\operatorname{res}\left(C^{\perp}\right)\right|\left|\operatorname{tor}\left(C^{\perp}\right)\right|=\left|\operatorname{res}(C)^{\perp}\right|\left|\mathbb{F}_{2}^{n}\right|
$$

by Theorem 3.4, the sum is direct.
The size of the dual of any type $\left(k_{1}, k_{2}\right)$ linear code of length n over I equals $2^{2 n-k_{1}}$. Thus, we have the following result.

Proposition 3.6. The only nice code over I is the zero code.

Proof. Suppose C is a type $\left(k_{1}, k_{2}\right)$ nice code of length n. By the definition of nice codes and Theorem 3.5,

$$
4^{n}=|C|\left|C^{\perp}\right|=2^{2 n+k_{1}+k_{2}}
$$

which holds if and only if $k_{1}+k_{2}=0$. Since $k_{1}, k_{2} \geq 0$, it follows that C is nice if and only if $k_{1}=k_{2}=0$. Hence, the only nice code over I is the zero code.

An interesting fact about the families of QSD codes and self-dual codes of length n over I is the following.

Proposition 3.7. Let \mathcal{Q} be the family of all $Q S D$ codes of length n over I and let \mathcal{S} be the family of all self-dual codes of length n over I. Then $\mathcal{Q} \cap \mathcal{S}=\emptyset$.
Proof. Suppose that a linear code C over I is QSD and selfdual. Then C is nonzero and $|C|=\left|C^{\perp}\right|=2^{n}$ which implies that C is nice. By Proposition 3.6, no such codes exist. This means that a linear code over I can never simultaneously be both QSD and self-dual.

1) Self-dual codes

Self-dual codes over I are characterized by means of their residue and torsion codes as the following theorem shows.

Theorem 3.8. A linear code C of length n over I is selfdual if and only if the following two conditions are satisfied:

1) $\operatorname{res}(C)$ is a self-dual binary code,
2) $\operatorname{tor}(C)=\mathbb{F}_{2}^{n}$.

Proof. Suppose that C is self-dual. Then $C=C^{\perp}$. Consequently, $\operatorname{res}(C)=\operatorname{res}\left(C^{\perp}\right)$ and $\operatorname{tor}(C)=\operatorname{tor}\left(C^{\perp}\right)$. By Theorem 3.4, $\operatorname{res}(C)=\operatorname{res}(C)^{\perp}$ and $\operatorname{tor}(C)=\mathbb{F}_{2}^{n}$.
Conversely, suppose that res (C) is self-dual and $\operatorname{tor}(C)=\mathbb{F}_{2}^{n}$. By Theorems 3.1 and 3.5,

$$
C \subseteq a \operatorname{res}(C)+b \mathbb{F}_{2}^{n}=a \operatorname{res}(C)^{\perp}+b \mathbb{F}_{2}^{n}=C^{\perp}
$$

As $|C|=|\operatorname{res}(C)||\operatorname{tor}(C)|=\left|\operatorname{res}(C)^{\perp}\right|\left|\mathbb{F}_{2}^{n}\right|=\left|C^{\perp}\right|$, it follows that $C=C^{\perp}$ and hence C is self-dual.

Corollary 3.9. If B is a self-dual binary code of length n, then B is a residue code of a self-dual code over I.

Proof. Since B is self-dual and $B \subseteq \mathbb{F}_{2}^{n}$, by [3, Theorem 4], the linear code C defined by $C=a B+b \mathbb{F}_{2}^{n}$ is a selforthogonal code over I with $\operatorname{res}(C)=B$ and $\operatorname{tor}(C)=\mathbb{F}_{2}^{n}$. By Theorem 3.8 and the self-duality of B, it follows that C is self-dual.

By Theorem 3.8 and Corollary 3.9, self-dual codes over I exist only for even lengths and there are as many type $(n / 2, n / 2)$ self-dual codes of length n over I as there are [$n, n / 2$] binary self-dual codes.

Theorem 3.10. Two self-dual codes over I are permutation equivalent if and only if their residue codes are permutation equivalent.

Proof. Let C and C^{\prime} be two permutation equivalent codes over I. Then there is a permutation matrix P such that $C^{\prime}=C P$. Since $\alpha\left(C^{\prime}\right)=\alpha(C P)=\alpha(C) P$, it follows that $\operatorname{res}(C)$ and $\operatorname{res}\left(C^{\prime}\right)$ are permutation equivalent.
Conversely, suppose that C and C^{\prime} are self-dual codes over I where $\operatorname{res}(C)$ and $\operatorname{res}\left(C^{\prime}\right)$ are permutation equivalent. Then there is a permutation matrix P such that $\operatorname{res}\left(C^{\prime}\right)=\operatorname{res}(C) P$. As $\mathbb{F}_{2}^{n}=\mathbb{F}_{2}^{n} P$, we have

$$
\begin{equation*}
a \operatorname{res}\left(C^{\prime}\right)+b \mathbb{F}_{2}^{n}=a \operatorname{res}(C) P+b \mathbb{F}_{2}^{n} P \tag{1}
\end{equation*}
$$

Since C and C^{\prime} are self-dual, by Theorems 3.5 and 3.8, we have $C=a \operatorname{res}(C) \oplus b \mathbb{F}_{2}^{n}$ and $C^{\prime}=a \operatorname{res}\left(C^{\prime}\right) \oplus b \mathbb{F}_{2}^{n}$. By (1), we obtain $C^{\prime}=C P$, proving that C and C^{\prime} are permutation equivalent.

The following example shows that Theorem 3.10 may not hold if the codes over I are not self-dual.

Example 3.11. The linear codes C and C^{\prime} with generator matrices

$$
\left(\begin{array}{ccc}
a & a & b \\
0 & b & b
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{ccc}
a & a & 0 \\
0 & b & b
\end{array}\right)
$$

respectively, have the same residue code. In particular, $\operatorname{res}(C)=\operatorname{res}\left(C^{\prime}\right)=\{000,110\}$. However, C and C^{\prime} are not permutation equivalent as shown in the classification of QSD codes in [3, Section 6]. Note that C and C^{\prime} are not self-dual, by Proposition 3.7.

From the results of this subsection, we see that there is a one-to-one correspondence between inequivalent self-dual binary codes and inequivalent self-dual codes over I of the same length. In other words, classifying self-dual codes over I, up to permutation equivalence, is equivalent to classifying self-dual binary codes, up to equivalence. All binary self-dual codes have been classified, up to equivalence, for length n with $2 \leq n \leq 32$ [10], [15], [17]. Using this classification along with Theorem 3.8 and Corollary 3.9, the classification of all self-dual codes over I of the same lengths is immediate. We remark that by Theorems 3.3 and 3.8, all self-dual codes over I have minimum distance equals 1 .

To conclude this subsection, we note that the image of any self-dual code over I under the map ϕ_{I} is never an additive
trace self-dual code over \mathbb{F}_{4}. However, the trace dual of this image is an additive trace self-orthogonal code over \mathbb{F}_{4}.

Proposition 3.12. If C is a self-dual code of length $2 n$ over I, then $\phi_{I}(C)^{\perp_{T}}$ is trace self-orthogonal of size 2^{n}; in particular, $\phi_{I}(C)$ is not trace self-dual.

Proof. By Theorems 3.5 and 3.8, the self-duality of C implies that $C=a \operatorname{res}(C) \oplus b \operatorname{tor}(C)$ with $|\operatorname{res}(C)|=2^{n}$ and $|\operatorname{tor}(C)|=\left|\mathbb{F}_{2}^{2 n}\right|=2^{2 n}$. Then, $\left|\phi_{I}(C)\right|=|C|=2^{3 n}$ and $\left|\phi_{I}(C)^{\perp_{T}}\right|=2^{n}$. Comparing cardinalities, we see that $\phi_{I}(C) \neq \phi_{I}(C)^{\perp_{T}}$ which shows that $\phi_{I}(C)$ is not trace selfdual.
We claim that $\operatorname{res}(C)=\phi_{I}(C)^{\perp_{T}}$. Let $\mathbf{u} \in \operatorname{res}(C)$ and let $\mathbf{x} \in \phi_{I}(C)$. Then, there exists a codeword $a \mathbf{r}+b \mathbf{t}$ in C where $\mathbf{r} \in \operatorname{res}(C)$ and $\mathbf{t} \in \operatorname{tor}(C)$ such that $\mathbf{x}=\phi_{I}(a \mathbf{r}+b \mathbf{t})=\omega \mathbf{r}+\mathbf{t}$. Observe that

$$
\begin{aligned}
\langle\mathbf{x}, \mathbf{u}\rangle_{T} & =\langle\omega \mathbf{r}+\mathbf{t}, \mathbf{u}\rangle_{T} \\
& =\langle\omega \mathbf{r}, \mathbf{u}\rangle_{T}+\langle\mathbf{t}, \mathbf{u}\rangle_{T} \\
& =\operatorname{Tr}(\omega \mathbf{r} \cdot \mathbf{u})+\operatorname{Tr}(\mathbf{t} \cdot \mathbf{u})
\end{aligned}
$$

Since C is self-dual, by Theorem 3.8, $\operatorname{res}(C)$ is self-dual and therefore $\mathbf{r} \cdot \mathbf{u}=0$ which gives $\operatorname{Tr}(\omega \mathbf{r} \cdot \mathbf{u})=0$. As $\mathbf{t} \cdot \mathbf{u} \in\{0,1\}, \operatorname{Tr}(\mathbf{t} \cdot \mathbf{u})=0$. Thus, $\langle\mathbf{x}, \mathbf{u}\rangle_{T}=0$ proving that $\mathbf{u} \in \phi_{I}(C)^{\perp_{T}}$ and consequently $\operatorname{res}(C) \subseteq \phi_{I}(C)^{\perp_{T}}$. The fact that $|\operatorname{res}(C)|=2^{n}=\left|\phi_{I}(C)^{\perp_{T}}\right|$ implies that $\operatorname{res}(C)=\phi_{I}(C)^{\perp_{T}}$ as claimed. Now observe that since $\operatorname{res}(C) \subseteq \operatorname{tor}(C)$, for any $\mathbf{v} \in \operatorname{res}(C), b \mathbf{v} \in C$ and thus $\mathbf{v}=\phi_{I}(b \mathbf{v}) \in \phi_{I}(C)$. Hence, we obtain $\operatorname{res}(C) \subseteq \phi_{I}(C)$. In particular, $\phi_{I}(C)^{\perp_{T}} \subseteq \phi_{I}(C)$ which proves that $\phi_{I}(C)^{\perp_{T}}$ is trace self-orthogonal.

2) LCD codes

Based on the following proposition, nontrivial LCD codes over I do not exist.

Proposition 3.13. If C is a nonzero linear code of length n over I, then $C \cap C^{\perp} \neq\{\mathbf{0}\}$.

Proof. Suppose that x is a nonzero codeword in C. By Theorem 3.1, $\mathbf{x}=a \mathbf{u}+b \mathbf{v}$ where $\mathbf{u} \in \operatorname{res}(C)$ and $\mathbf{v} \in \mathbb{F}_{2}^{n}$. We have two cases depending on \mathbf{u}.

- If $\mathbf{u}=\mathbf{0}$, then $\mathbf{x}=b \mathbf{v}$. Since $b \mathbb{F}_{2}^{n} \subseteq C^{\perp}$ and $\mathbf{x} \in C$, it follows that $\mathbf{x} \in C \cap C^{\perp}$.
- If $\mathbf{u} \neq \mathbf{0}$, then $a \mathbf{x}=b \mathbf{u}$ is a nonzero codeword in C. Since $b \mathbb{F}_{2}^{n} \subseteq C^{\perp}$ and $a \mathbf{x} \in C$, we have $a \mathbf{x} \in C \cap C^{\perp}$. This proves that $C \cap C^{\perp} \neq\{\mathbf{0}\}$.

IV. RESULTS ON LINEAR CODES OVER E

We begin this section by summarizing facts and notions essential to our study for linear codes over E. A detailed introduction on such codes can be found in [4].

To every linear code C of length n over E, there is an additive code $\phi_{E}(C)$ over \mathbb{F}_{4} such that ϕ_{E} is defined by the alphabet substitution

$$
0 \rightarrow 0, a \rightarrow \omega, b \rightarrow \omega^{2}, c \rightarrow 1
$$

extended in the natural way to a map from C to \mathbb{F}_{4}^{n}.
There are two binary linear codes of length n associated canonically with every linear code C of length n over E :

1) the residue code res (C) defined by

$$
\operatorname{res}(C)=\{\alpha(\mathbf{y}) \mid \mathbf{y} \in C\}
$$

where $\alpha: E \rightarrow \mathbb{F}_{2}$ is the map defined by $\alpha(0)=\alpha(c)=0$ and $\alpha(a)=\alpha(b)=1$, extended componentwise from C to \mathbb{F}_{2}^{n},
2) the torsion code tor (C) defined by

$$
\operatorname{tor}(C)=\left\{\mathbf{x} \in \mathbb{F}_{2}^{n} \mid c \mathbf{x} \in C\right\}
$$

The two binary codes satisfy the inclusion $\operatorname{res}(C) \subseteq \operatorname{tor}(C)$ and their sizes are related to the size of C by $|C|=|\operatorname{res}(C)||\operatorname{tor}(C)|$. Throughout this section, we let $k_{1}=\operatorname{dim}(\operatorname{res}(C))$ and $k_{2}=\operatorname{dim}(\operatorname{tor}(C))-k_{1}$. The linear code C is said to be of type $\left(k_{1}, k_{2}\right)$. We say that a linear code is free if and only if $k_{2}=0$. Equivalently, C is free if and only if $\operatorname{res}(C)=\operatorname{tor}(C)$.

A. STRUCTURE OF LINEAR CODES

The following two results improve Lemma 3 and Theorem 6 of [4] by removing the QSD requirement from their statements.

Lemma 4.1. If C is a linear code of length n over E, then $a \operatorname{res}(C) \subseteq C$.
Proof. Let $\mathbf{u} \in \operatorname{res}(C)$. Then there exists $\mathbf{c} \in C$ such that $\alpha(\mathbf{c})=\mathbf{u}$. We can write \mathbf{c} in a c-adic decomposition form as $\mathbf{c}=a \mathbf{x}+c \mathbf{y}$ where $\mathbf{x}, \mathbf{y} \in \mathbb{F}_{2}^{n}$. Now observe that $\mathbf{u}=\alpha(\mathbf{c})=\alpha(a \mathbf{x}+c \mathbf{y})=\mathbf{x}$. Hence, $\mathbf{c}=a \mathbf{u}+c \mathbf{y}$. By linearity of C, we have $a \mathbf{c} \in C$ and thus $a \mathbf{u} \in C$. Therefore, $a \operatorname{res}(C) \subseteq C$.

Theorem 4.2. If C is a linear code of length n over E, then $C=a \operatorname{res}(C) \oplus c \operatorname{tor}(C)$.

Proof. Let $\mathbf{c} \in C$. We can write \mathbf{c} in a c-adic decomposition form as $\mathbf{c}=a \mathbf{x}+c \mathbf{y}$ where $\mathbf{x}, \mathbf{y} \in \mathbb{F}_{2}^{n}$. Since $\alpha(\mathbf{c})=\alpha(a \mathbf{x}+c \mathbf{y})=\mathbf{x}$, it follows that $\mathbf{x} \in \operatorname{res}(C)$. By Lemma 4.1, $a \mathbf{x} \in C$. By linearity of $C, c \mathbf{y} \in C$ and hence $\mathbf{y} \in \operatorname{tor}(C)$. This proves that $C \subseteq a \operatorname{res}(C)+c \operatorname{tor}(C)$. The inclusion a res $(C)+c$ tor $(C) \subseteq C$ follows from the linearity of C together with the facts that $a \operatorname{res}(C) \subseteq C$ and $c \operatorname{tor}(C) \subseteq C$. Hence, $C=a \operatorname{res}(C)+c \operatorname{tor}(C)$. The sum is direct since $|C|=|\operatorname{res}(C)||\operatorname{tor}(C)|$.

Corollary 4.3. A linear code C over E is self-orthogonal if and only if $\operatorname{res}(C) \subseteq \operatorname{tor}(C)^{\perp}$.
Proof. From [4, Lemma 2], if C is self-orthogonal, then $\operatorname{res}(C) \subseteq \operatorname{tor}(C)^{\perp}$.
For the converse suppose that $\operatorname{res}(C) \subseteq \operatorname{tor}(C)^{\perp}$ and let $\mathbf{x}, \mathbf{y} \in C$. Then, by Theorem 4.2, $\mathbf{x}=a \mathbf{r}_{1}+c \mathbf{t}_{1}$ and $\mathbf{y}=a \mathbf{r}_{2}+c \mathbf{t}_{2}$ where $\mathbf{r}_{1}, \mathbf{r}_{2} \in \operatorname{res}(C)$ and $\mathbf{t}_{1}, \mathbf{t}_{2} \in \operatorname{tor}(C)$. Observe that
$\mathbf{x} \cdot \mathbf{y}=\left(a \mathbf{r}_{1}+c \mathbf{t}_{1}\right) \cdot\left(a \mathbf{r}_{2}+c \mathbf{t}_{2}\right)=a\left(\mathbf{r}_{1} \cdot \mathbf{r}_{2}\right)+c\left(\mathbf{t}_{1} \cdot \mathbf{r}_{2}\right)$.

Since $\quad \operatorname{res}(C) \subseteq \operatorname{tor}(C)^{\perp} \subseteq \operatorname{res}(C)^{\perp}, \quad$ it follows that $\left(\mathbf{r}_{1} \cdot \mathbf{r}_{2}\right)=\left(\mathbf{t}_{1} \cdot \mathbf{r}_{2}\right)=0$ and thus $\mathbf{x} \cdot \mathbf{y}=0$. This proves that C is self-orthogonal.

The following theorem is the analogue of Theorem 3.3.
Theorem 4.4. If C is a nonzero linear code over E, then the minimum distance of C equals the minimum distance of $\operatorname{tor}(C)$.

Proof. Let d be the minimum distance of C and let d_{t} be the minimum distance of tor (C). Then there exists a nonzero $\mathbf{t} \in \operatorname{tor}(C)$ such that $\mathrm{wt}(\mathbf{t})=d_{t}$. Since $c \operatorname{tor}(C) \subseteq C$ and $\mathrm{wt}(c \mathbf{t})=\mathrm{wt}(\mathbf{t})=d_{t}, d \leq d_{t}$.
Now we prove that $d \geq d_{t}$. Let $\mathbf{x} \in C$ such that $\mathrm{wt}(\mathbf{x})=d$. By Theorem 4.2, $\mathbf{x}=a \mathbf{u}+c \mathbf{v}$ where $\mathbf{u} \in \operatorname{res}(C)$ and $\mathbf{v} \in \operatorname{tor}(C)$. Since C is nonzero, we have the following three cases depending on \mathbf{u} and \mathbf{v} :

- If $\mathbf{u}=\mathbf{0}$ and $\mathbf{v} \neq \mathbf{0}$, then $\mathrm{wt}(\mathbf{x})=\mathrm{wt}(c \mathbf{v})=\mathrm{wt}(\mathbf{v})$.
- If $\mathbf{u} \neq \mathbf{0}$ and $\mathbf{v}=\mathbf{0}$, then $\mathrm{wt}(\mathbf{x})=\mathrm{wt}(a \mathbf{u})=\mathrm{wt}(\mathbf{u})$.
- If $\mathbf{u}, \mathbf{v} \neq \mathbf{0}$, then $\mathrm{wt}(\mathbf{x}) \geq \mathrm{wt}(a \mathbf{x})=\mathrm{wt}(a \mathbf{u})=\mathrm{wt}(\mathbf{u})$. Since $\mathbf{u} \in \operatorname{res}(C) \subseteq \operatorname{tor}(C)$ and $\mathbf{v} \in \operatorname{tor}(C)$, it follows that $\mathrm{wt}(\mathbf{u}), \mathrm{wt}(\mathbf{v}) \geq d_{t}$. Therefore, in all cases $d=\mathrm{wt}(\mathbf{x}) \geq d_{t}$. Since $d \leq d_{t}$ and $d \geq d_{t}$, it follows that $d=d_{t}$.

B. DUALITY

The following theorem presents properties of the residue and torsion codes of the one-sided duals of linear codes over E.

Theorem 4.5. If C is a linear code of length n over E, then the following hold:

1) $\operatorname{res}\left(C^{\perp_{L}}\right)=\operatorname{tor}\left(C^{\perp_{L}}\right)=\operatorname{res}(C)^{\perp}$.
2) $\operatorname{res}\left(C^{\perp_{R}}\right)=\operatorname{tor}(C)^{\perp}$.
3) $\operatorname{tor}\left(C^{\perp_{R}}\right)=\mathbb{F}_{2}^{n}$.

Proof. To prove (1), it suffices to show that

$$
\operatorname{tor}\left(C^{\perp_{L}}\right) \subseteq \operatorname{res}(C)^{\perp} \subseteq \operatorname{res}\left(C^{\perp_{L}}\right)
$$

Let $\mathbf{v} \in \operatorname{tor}\left(C^{\perp_{L}}\right)$. Then, $c \mathbf{v} \in C^{\perp_{L}}$. Let $\mathbf{x} \in \operatorname{res}(C)$. By Lemma 4.1, $a \mathbf{x} \in C$. By definition of $C^{\perp_{L}}$,

$$
0=c \mathbf{v} \cdot a \mathbf{x}=c(\mathbf{v} \cdot \mathbf{x})
$$

Hence, $\mathbf{v} \cdot \mathbf{x}=0$ which implies that $\mathbf{v} \in \operatorname{res}(C)^{\perp}$, proving that

$$
\operatorname{tor}\left(C^{\perp_{L}}\right) \subseteq \operatorname{res}(C)^{\perp}
$$

Now assume $\mathbf{u} \in \operatorname{res}(C)^{\perp}$. Let $\mathbf{c} \in C$. By Theorem 4.2, $\mathbf{c}=a \mathbf{r}+c \mathbf{t}$ where $\mathbf{r} \in \operatorname{res}(C)$ and $\mathbf{t} \in \operatorname{tor}(C)$. Observe that

$$
a \mathbf{u} \cdot \mathbf{c}=a \mathbf{u} \cdot(a \mathbf{r}+c \mathbf{t})=a(\mathbf{u} \cdot \mathbf{r})=0
$$

So, $a \mathbf{u} \in C^{\perp_{L}}$. Since $\alpha(a \mathbf{u})=\mathbf{u}, \mathbf{u} \in \operatorname{res}\left(C^{\perp_{L}}\right)$. Hence,

$$
\operatorname{res}(C)^{\perp} \subseteq \operatorname{res}\left(C^{\perp_{L}}\right)
$$

Thus, $\operatorname{tor}\left(C^{\perp_{L}}\right) \subseteq \operatorname{res}(C)^{\perp} \subseteq \operatorname{res}\left(C^{\perp_{L}}\right)$. This, together with the fact that $\operatorname{res}\left(C^{\perp_{L}}\right) \subseteq \operatorname{tor}\left(C^{\perp_{L}}\right)$ yield

$$
\operatorname{res}\left(C^{\perp_{L}}\right)=\operatorname{tor}\left(C^{\perp_{L}}\right)=\operatorname{res}(C)^{\perp}
$$

To prove (2), assume $\mathbf{u} \in \operatorname{res}\left(C^{\perp_{R}}\right)$. By Lemma 4.1, $a \mathbf{u} \in C^{\perp_{R}}$. Let $\mathbf{x} \in \operatorname{tor}(C)$. Then, $c \mathbf{x} \in C$. By definition of $C^{\perp_{R}}, 0=c \mathbf{x} \cdot a \mathbf{u}=c(\mathbf{x} \cdot \mathbf{u})$. Hence, $\mathbf{x} \cdot \mathbf{u}=0$ which implies that $\mathbf{u} \in \operatorname{tor}(C)^{\perp}$. Therefore, $\operatorname{res}\left(C^{\perp_{R}}\right) \subseteq \operatorname{tor}(C)^{\perp}$.
Now assume $\mathbf{v} \in \operatorname{tor}(C)^{\perp}$. Let $\mathbf{c} \in C$. By Theorem 4.2, $\mathbf{c}=a \mathbf{r}+c \mathbf{t}$ where $\mathbf{r} \in \operatorname{res}(C) \subseteq \operatorname{tor}(C)$ and $\mathbf{t} \in \operatorname{tor}(C)$. Observe that

$$
\mathbf{c} \cdot a \mathbf{v}=(a \mathbf{r}+c \mathbf{t}) \cdot a \mathbf{v}=a(\mathbf{r} \cdot \mathbf{v})+c(\mathbf{t} \cdot \mathbf{v})=0
$$

So, $a \mathbf{v} \in C^{\perp_{R}}$. Since $\alpha(a \mathbf{v})=\mathbf{v}, \mathbf{v} \in \operatorname{res}\left(C^{\perp_{R}}\right)$. Hence, $\operatorname{tor}(C)^{\perp} \subseteq \operatorname{res}\left(C^{\perp_{R}}\right)$. Thus we obtain the equality $\operatorname{res}\left(C^{\perp_{R}}\right)=\operatorname{tor}(C)^{\perp}$.
To prove (3), we need to show that $\mathbb{F}_{2}^{n} \subseteq \operatorname{tor}\left(C^{\perp_{R}}\right)$. Let $\mathbf{u} \in \mathbb{F}_{2}^{n}$ and $\mathbf{c} \in C$. By Theorem 4.2, $\mathbf{c}=a \mathbf{x}+c \mathbf{y}$ where $\mathbf{x} \in \operatorname{res}(C)$ and $\mathbf{y} \in \operatorname{tor}(C)$. Observe that

$$
\mathbf{c} \cdot c \mathbf{u}=(a \mathbf{x}+c \mathbf{y}) \cdot c \mathbf{u}=0
$$

Hence, $c \mathbf{u} \in C^{\perp_{R}}$ and so $\mathbf{u} \in \operatorname{tor}\left(C^{\perp_{R}}\right)$. Therefore, we have $\mathbb{F}_{2}^{n}=\operatorname{tor}\left(C^{\perp_{R}}\right)$.

Corollary 4.6. If C is a linear code of length n over E, then the following hold:

1) $C^{\perp_{L}}=a \operatorname{res}(C)^{\perp} \oplus c \operatorname{res}(C)^{\perp}$.
2) $C^{\perp_{R}}=a \operatorname{tor}(C)^{\perp} \oplus c \mathbb{F}_{2}^{n}$.

Proof. The result follows immediately from Theorems 4.2 and 4.5.

As a consequence of this corollary, we obtain the following two propositions.

Proposition 4.7. A linear code C of length n over E is both left nice and right nice if and only if C is zero.

Proof. Suppose that C is a type $\left(k_{1}, k_{2}\right)$ code of length n over E. By Corollary 4.6,

$$
|C|\left|C^{\perp_{L}}\right|=2^{2 n+k_{2}} \quad \text { and } \quad|C|\left|C^{\perp_{R}}\right|=2^{2 n+k_{1}}
$$

Hence, C is both left nice and right nice if and only if $k_{1}=$ $k_{2}=0$. Equivalently, C is both left nice and right nice if and only if C is zero.

Proposition 4.8. If C is a nonzero linear code of length n over E, then $C^{\perp_{R}} \neq C^{\perp_{L}}$.
Proof. Suppose that $C^{\perp_{R}}=C^{\perp_{L}}$. By Corollary 4.6, we have $\operatorname{tor}(C)^{\perp}=\operatorname{res}(C)^{\perp}=\mathbb{F}_{2}^{n}$ which implies that $\operatorname{tor}(C)=\operatorname{res}(C)=\{\mathbf{0}\}$ and so C is zero.

This shows that no self-dual codes nor nontrivial nice codes over E, as defined in [4], exist. This motivates us to modify the conditions of these classes of codes. Thus we define the two-sided dual of a code over E and redefine the self-duality and the nice property accordingly as follows:

Definition 4.9. Let C be a linear code of length n over E.

- The two-sided dual of C, denoted by C^{\perp}, is defined as $C^{\perp}=C^{\perp_{L}} \cap C^{\perp_{R}}$.
- C is self-dual provided that $C=C^{\perp}$.
- C is nice provided that $|C|\left|C^{\perp}\right|=4^{n}$.

Similar to Theorem 4.5, the following theorem presents properties of the residue and torsion codes of the two-sided dual of linear codes over E.

Theorem 4.10. If C is a linear code of length n over E, then the following hold:

1) $\operatorname{res}\left(C^{\perp}\right)=\operatorname{tor}(C)^{\perp}$.
2) $\operatorname{tor}\left(C^{\perp}\right)=\operatorname{res}(C)^{\perp}$.

Proof. By Theorem 4.5 and the fact that $\operatorname{res}(C) \subseteq \operatorname{tor}(C)$, it follows that

$$
\begin{aligned}
\operatorname{res}\left(C^{\perp}\right) & =\operatorname{res}\left(C^{\perp_{L}} \cap C^{\perp_{R}}\right) \\
& =\operatorname{res}\left(C^{\perp_{L}}\right) \cap \operatorname{res}\left(C^{\perp_{R}}\right) \\
& =\operatorname{res}(C)^{\perp} \cap \operatorname{tor}(C)^{\perp} \\
& =\operatorname{tor}(C)^{\perp} .
\end{aligned}
$$

Also by Theorem 4.5, we have

$$
\begin{aligned}
\operatorname{tor}\left(C^{\perp}\right) & =\operatorname{tor}\left(C^{\perp_{L}} \cap C^{\perp_{R}}\right) \\
& =\operatorname{tor}\left(C^{\perp_{L}}\right) \cap \operatorname{tor}\left(C^{\perp_{R}}\right) \\
& =\operatorname{res}(C)^{\perp} \cap \mathbb{F}_{2}^{n} \\
& =\operatorname{res}(C)^{\perp}
\end{aligned}
$$

Corollary 4.11. If C is a linear code over E, then $C^{\perp}=a \operatorname{tor}(C)^{\perp} \oplus c \operatorname{res}(C)^{\perp}$.

Proof. By Theorems 4.2 and 4.10,

$$
C^{\perp}=a \operatorname{res}\left(C^{\perp}\right) \oplus c \operatorname{tor}\left(C^{\perp}\right)=a \operatorname{tor}(C)^{\perp} \oplus c \operatorname{res}(C)^{\perp}
$$

Corollary 4.12. Let C be a linear code of length n over E. The following are equivalent:

1) C is free.
2) C is left nice.
3) $C^{\perp}=C^{\perp_{L}}$.

Proof. By Theorem 4.2 and Corollary 4.6, we have $|C|\left|C^{\perp_{L}}\right|=2^{2 n+k_{2}}$. Hence, C is free if and only if C is left nice; proving that (1) and (2) are equivalent. By Corollaries 4.6 and 4.11, $C^{\perp}=C^{\perp_{L}}$ if and only if $\operatorname{tor}(C)^{\perp}=\operatorname{res}(C)^{\perp}$ or equivalently C is free; hence (1) and (3) are equivalent.

Corollary 4.13. Let C be a linear code of length n over E. The following are equivalent:

1) $\operatorname{res}(C)=\{\mathbf{0}\}$.
2) C is right nice.
3) $C^{\perp}=C^{\perp_{R}}$.

Proof. By Theorem 4.2 and Corollary 4.6, we have $|C|\left|C^{\perp_{R}}\right|=2^{2 n+k_{1}}$. Hence, C is right nice if and only if $k_{1}=0$ or equivalently $\operatorname{res}(C)=\{\mathbf{0}\}$; proving that (1) and (2) are equivalent. By Corollaries 4.6 and $4.11, C^{\perp}=C^{\perp_{R}}$ if and only if $\operatorname{res}(C)^{\perp}=\mathbb{F}_{2}^{n}$ or equivalently $\operatorname{res}(C)=\{\mathbf{0}\}$; hence (1) and (3) are equivalent.

Corollary 4.14. Every right nice code over E is selforthogonal.

Proof. Suppose that C is right nice. By Corollary 4.13, $\operatorname{res}(C)=\{\mathbf{0}\}$. Hence, $\operatorname{res}(C) \subseteq \operatorname{tor}(C)^{\perp}$. By Corollary 4.3, C is self-orthogonal.

The following two identities do not hold in general for codes over other non-unital rings of order four.

Corollary 4.15. If C is a linear code over E, then $\left(C^{\perp}\right)^{\perp}=C$.

Proof. By Theorem 4.10 and Corollary 4.11, $\left(C^{\perp}\right)^{\perp}=$ $a \operatorname{tor}\left(C^{\perp}\right)^{\perp} \oplus c \operatorname{res}\left(C^{\perp}\right)^{\perp}=a \operatorname{res}(C) \oplus c \operatorname{tor}(C)=C$.

Corollary 4.16. If C is a linear code of length n over E, then C is nice.

Proof. By Theorem 4.2 and Corollary 4.11,

$$
|C|\left|C^{\perp}\right|=\left|\operatorname{res}(C)\|\operatorname{tor}(C)\| \operatorname{res}(C)^{\perp} \| \operatorname{tor}(C)^{\perp}\right|=4^{n}
$$

By definition, C is nice.

Remark 4.17. In view of Definition 4.9, the notions of QSD codes and self-dual codes over E are equivalent. To see this, suppose that C is a QSD code of length n. Then $C \subseteq C^{\perp}$ and $|C|=2^{n}$. By Corollary 4.16, $\left|C^{\perp}\right|=4^{n} / 2^{n}=2^{n}=|C|$. Hence, $C=C^{\perp}$ and therefore C is self-dual. Conversely, if C is a self-dual code of length n, then $C=C^{\perp}$ and $|C|=\left|C^{\perp}\right|$. By Corollary 4.16, $|C|^{2}=4^{n}$. Hence $|C|=2^{n}$ and therefore C is QSD.

To prepare for investigating the MacWilliams formula for linear codes over E, we recall from [7], [12] that the weight enumerator of any linear or additive code C is the polynomial $W(x, y)=\sum_{i=0}^{n} A_{i} x^{n-j} y^{j}$ where the sequence A_{0}, \ldots, A_{n} is the weight distribution of C. That is, A_{i} is the number of codewords in C of weight i. We state the following useful theorem from [7] without proof.

Theorem 4.18. [7, Theorem 5]. If C is an $\left(n, 2^{k}\right)$ additive code over \mathbb{F}_{4} with weight enumerator $W(x, y)$, the weight enumerator of the trace dual code $C^{\perp_{T}}$ is given by $2^{-k} W(x+3 y, x-y)$.

To establish the MacWilliams formula for linear codes over E, we also need the following identity.

Theorem 4.19. If C is a linear code of length n over E, then $\phi_{E}\left(C^{\perp}\right)=\phi_{E}(C)^{\perp_{T}}$.

Proof. Let $\phi_{E}(\mathbf{y}) \in \phi_{E}\left(C^{\perp}\right)$ and $\phi_{E}(\mathbf{x}) \in \phi_{E}(C)$. By Corollary 4.11 and Theorem 4.2, $\mathbf{y}=a \mathbf{u}+c \mathbf{v}$ and
$\mathbf{x}=a \mathbf{r}+c \mathbf{t}$ such that $\mathbf{u} \in \operatorname{tor}(C)^{\perp}, \mathbf{v} \in \operatorname{res}(C)^{\perp}, \mathbf{r} \in \operatorname{res}(C)$, and $\mathbf{t} \in \operatorname{tor}(C)$. Observe that

$$
\begin{aligned}
\left\langle\phi_{E}(\mathbf{x}), \phi_{E}(\mathbf{y})\right\rangle_{T} & =\operatorname{Tr}\left(\phi_{E}(\mathbf{x}) \cdot\left(\phi_{E}(\mathbf{y})\right)^{2}\right) \\
& =\operatorname{Tr}\left(\phi_{E}(a \mathbf{r}+c \mathbf{t}) \cdot\left(\phi_{E}(a \mathbf{u}+c \mathbf{v})\right)^{2}\right) \\
& =\operatorname{Tr}\left((\omega \mathbf{r}+\mathbf{t}) \cdot(\omega \mathbf{u}+\mathbf{v})^{2}\right) \\
& =\operatorname{Tr}\left((\omega \mathbf{r}+\mathbf{t}) \cdot\left(\omega^{2} \mathbf{u}+\mathbf{v}\right)\right) \\
& =\operatorname{Tr}\left(\mathbf{r} \cdot \mathbf{u}+\omega \mathbf{r} \cdot \mathbf{v}+\omega^{2} \mathbf{t} \cdot \mathbf{u}+\mathbf{t} \cdot \mathbf{v}\right) \\
& =\mathbf{r} \cdot \mathbf{v}+\mathbf{t} \cdot \mathbf{u} \\
& =0
\end{aligned}
$$

This proves that $\phi_{E}\left(C^{\perp}\right) \subseteq \phi_{E}(C)^{\perp_{T}}$. Since

$$
\left|\phi_{E}\left(C^{\perp}\right)\right|=\left|C^{\perp}\right|=2^{2 n-\left(2 k_{1}+k_{2}\right)}=\left|\phi_{E}(C)^{\perp_{T}}\right|
$$

it follows that $\phi_{E}\left(C^{\perp}\right)=\phi_{E}(C)^{\perp_{T}}$.
Theorem 4.20. If C is a linear code of type $\left(k_{1}, k_{2}\right)$ over E with weight enumerator $W_{C}(x, y)$, then the weight enumerator of the dual code C^{\perp} is given by

$$
W_{C^{\perp}}(x, y)=\frac{1}{2^{\left(2 k_{1}+k_{2}\right)}} W_{C}(x+3 y, x-y)
$$

Proof. Since C is a linear code of type $\left(k_{1}, k_{2}\right)$ over E, $\phi_{E}(C)$ is an $\left(n, 2^{2 k_{1}+k_{2}}\right)$ additive code over \mathbb{F}_{4} with

$$
W_{C}(x, y)=W_{\phi_{E}(C)}(x, y)
$$

and

$$
W_{C^{\perp}}(x, y)=W_{\phi_{E}\left(C^{\perp}\right)}(x, y)=W_{\phi_{E}(C)^{\perp} T}(x, y)
$$

by Theorem 4.19. Hence, by Theorem 4.18,

$$
W_{C^{\perp}}(x, y)=\frac{1}{2^{\left(2 k_{1}+k_{2}\right)}} W_{C}(x+3 y, x-y) .
$$

1) Self-dual codes

The following two theorems characterize (one-sided) selfdual codes over E.

Theorem 4.21. If C is a linear code of length n over E, then the following hold:

1) C is left self-dual if and only if C is free and $\operatorname{res}(C)$ is self-dual.
2) C is right self-dual if and only if C is of type $(0, n)$.

Proof. We use Theorem 4.2 and Corollary 4.6 to establish the results. Observe that $C=C^{\perp_{L}}$ if and only if $\operatorname{res}(C)=\operatorname{res}(C)^{\perp}=\operatorname{tor}(C)$. Thus (1) holds. Now observe that $C=C^{\perp_{R}}$ if and only if $\operatorname{res}(C)=\operatorname{tor}(C)^{\perp}$ and $\operatorname{tor}(C)=\mathbb{F}_{2}^{n}$. Equivalently, $C=C^{\perp_{R}}$ if and only if $\operatorname{res}(C)=\{0\}$ and tor $(C)=\mathbb{F}_{2}^{n}$. Thus (2) now follows.

Theorem 4.22. A linear code C over E is self-dual if and only if $\operatorname{res}(C)=\operatorname{tor}(C)^{\perp}$.

Proof. The result follows immediately from Theorem 4.2 and Corollary 4.11.

Corollary 4.23. Let C be a linear code of length n over E. If C is either left self-dual or right self-dual, then C is self-dual.

Proof. If C is left self-dual, then by Theorem 4.21, $\operatorname{res}(C)=\operatorname{res}(C)^{\perp}=\operatorname{tor}(C)$. In particular, $\operatorname{res}(C)=\operatorname{tor}(C)^{\perp}$. By Theorem 4.22, C is self-dual.
If C is right self-dual, then by Theorem 4.21, $\operatorname{res}(C)=\{\mathbf{0}\}$ and $\operatorname{tor}(C)=\mathbb{F}_{2}^{n}$ which imply that $\operatorname{res}(C)=\operatorname{tor}(C)^{\perp}$. By Theorem 4.22, C is self-dual.

The converse of Corollary 4.23 is not true in general as the following examples show.

Example 4.24. The repetition code of length 2 defined by

$$
C=\{00, a a, b b, c c\}
$$

is self-dual and left self-dual but not right self-dual, since

- $C^{\perp_{L}}=C$,
- $C^{\perp_{R}}=\{00, a a, b b, c c, a b, b a, 0 c, c 0\}$,
- $C^{\perp}=C$.

Example 4.25. The linear code defined by

$$
C=\{00,0 c, c 0, c c\}
$$

is self-dual and right self-dual but not left self-dual, since

- $C^{\perp_{L}}=E^{2}$,
- $C^{\perp_{R}}=C$,
- $C^{\perp}=C$.

Example 4.26. The linear code defined by

$$
C=\{000, a 0 a, b 0 b, c 0 c, 0 c 0, c c c, a c a, b c b\}
$$

is self-dual but neither left self-dual nor right self-dual, since

- $C^{\perp_{L}}=\{000, a 0 a, 0 a 0, a a a, b 0 b, 0 b 0, b b b, c 0 c, 0 c 0, c c c$, $a b a, a c a, b c b, b a b, c a c, c b c\}$,
- $C^{\perp_{R}}=\{000, a 0 a, b 0 b, c 00,0 c 0,00 c, c c 0, c 0 c, 0 c c, c c c$, $b 0 a, a c a, a 0 b, b c a, a c b, b c b\}$,
- $C^{\perp}=C$.

Corollary 4.27. Every left self-dual code over E is Type IV.

Proof. Let C be a left self-dual code. By Corollary 4.23, C is self-dual and thus C is QSD by Remark 4.17. From Theorem 4.21, $\operatorname{res}(C)$ is self-dual. Hence, $\operatorname{res}(C)$ contains the all-one codeword. By [4, Theorem 4], C is Type IV.

From Theorem 4.21 it follows that for each positive integer n, the linear code $c \mathbb{F}_{2}^{n}$ is the unique right self-dual code of length n over E. To classify left self-dual codes, we need the following theorem.

Theorem 4.28. Two free codes over E are permutation equivalent if and only if their residue codes are permutation equivalent.
Proof. Let C and C^{\prime} be two permutation equivalent codes over E. Then there is a permutation matrix P such that $C^{\prime}=C P$. Since $\alpha\left(C^{\prime}\right)=\alpha(C P)=\alpha(C) P$, it follows
that $\operatorname{res}(C)$ and $\operatorname{res}\left(C^{\prime}\right)$ are permutation equivalent.
Conversely, suppose that C and C^{\prime} are free codes over E where $\operatorname{res}(C)$ and $\operatorname{res}\left(C^{\prime}\right)$ are permutation equivalent. By Theorem 4.2 and the freeness of the codes, $C=a \operatorname{res}(C) \oplus c \operatorname{res}(C)$ and $C^{\prime}=a \operatorname{res}\left(C^{\prime}\right) \oplus c \operatorname{res}\left(C^{\prime}\right)$. As res (C) and $\operatorname{res}\left(C^{\prime}\right)$ are permutation equivalent, there is a permutation matrix P such that $\operatorname{res}\left(C^{\prime}\right)=\operatorname{res}(C) P$. Thus, we have
$C^{\prime}=a \operatorname{res}\left(C^{\prime}\right) \oplus c \operatorname{res}\left(C^{\prime}\right)=a \operatorname{res}(C) P \oplus c \operatorname{res}(C) P=C P$
which proves that C and C^{\prime} are permutation equivalent.
The following example shows that Theorem 4.28 may not hold if the codes are not free.

Example 4.29. The linear codes C and C^{\prime} with generator matrices

$$
\left(\begin{array}{lll}
a & a & 0 \\
0 & c & 0
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{lll}
a & 0 & a \\
0 & c & 0
\end{array}\right)
$$

respectively, have residue codes $\operatorname{res}(C)=\{000,110\}$ and $\operatorname{res}\left(C^{\prime}\right)=\{000,101\}$ which are permutation equivalent. However, C and C^{\prime} are not permutation equivalent as they have weight distributions $[<0,1>,<1,2>,<2,5>]$ and $[<0,1>,<1,1>,<2,3>,<3,3>]$, respectively. Note that C and C^{\prime} are not free.

As all left-self dual codes over E are necessarily free codes by Theorem 4.21, the following corollary is a special case of Theorem 4.28.

Corollary 4.30. Two left self-dual codes over E are permutation equivalent if and only if their residue codes are permutation equivalent.

Similar to the case of self-dual codes over I, using the classification of self-dual binary codes along with Theorem 4.21, the classification of all left self-dual codes over E of the same lengths is immediate.

To conclude this subsection, we note that the image of any self-dual or one-sided self-dual code over E under the map ϕ_{E} is an additive trace self-dual code over \mathbb{F}_{4}.

Corollary 4.31. If C is a self-dual code over E, then $\phi_{E}(C)$ is trace self-dual.
Proof. The result follows immediately from Theorem 4.19.

Corollary 4.32. If C is a left self-dual code over E, then $\phi_{E}(C)$ is trace self-dual.
Proof. By Theorem 4.21, C is free. By Corollary 4.12, $C^{\perp}=C^{\perp_{L}}$ and thus C is self-dual. By Corollary 4.31, $\phi_{E}(C)$ is trace self-dual.

Corollary 4.33. If C is a right self-dual code of length n over E, then $\phi_{E}(C)$ is trace self-dual.
Proof. By Theorem 4.21, $C=c \mathbb{F}_{2}^{n}$ and thus $\phi_{E}(C)=\mathbb{F}_{2}^{n}$ which is an additive trace self-dual code over \mathbb{F}_{4}.

The converse of the preceding three corollaries is not true in general. The $\left(12,2^{12}, 6\right)$ dodecacode D is trace self-dual [7] but $\phi_{E}^{-1}(D)$ is not a linear code over E [4, Example 2].

2) LCD codes

The study of LCD codes over non-unital rings first appeared in [20] where the authors investigated left LCD codes over E and defined this notion as follows:

Definition 4.34. A code C over E is left linear with complementary dual (left LCD) if it is left nice and $C \cap C^{\perp_{L}}=\{\mathbf{0}\}$.

We define LCD codes over E where $C^{\perp}=C^{\perp_{L}} \cap C^{\perp_{R}}$ as follows:

Definition 4.35. A code C over E is linear with complementary dual ($L C D$) if $C \cap C^{\perp}=\{\mathbf{0}\}$.

LCD codes over E can be characterized via their residue and torsion codes as in the following theorem.

Theorem 4.36. Let C be a linear code over E. Then the following hold:

1) If C is $L C D$, then $\operatorname{res}(C)$ and $\operatorname{tor}(C)$ are binary $L C D$ codes.
2) If C is free and $\operatorname{res}(C)$ is a binary $L C D$ code, then C is $L C D$.

Proof. First assume that C is an LCD code over E. By definition, $C \cap C^{\perp}=\{\mathbf{0}\}$. By Theorem 4.2 and Corollary 4.11, it follows that $\operatorname{res}(C) \cap \operatorname{tor}(C)^{\perp}=\{\mathbf{0}\}$ and $\operatorname{tor}(C) \cap \operatorname{res}(C)^{\perp}=\{\mathbf{0}\}$. Suppose $\mathbf{x} \in \operatorname{res}(C) \cap \operatorname{res}(C)^{\perp}$. Since $\operatorname{res}(C) \subseteq \operatorname{tor}(C), \quad \mathbf{x} \in \operatorname{tor}(C) \cap \operatorname{res}(C)^{\perp}$. Hence, $\mathbf{x}=\mathbf{0}$ which implies that $\operatorname{res}(C)$ is LCD. Similarly, suppose that $\quad \mathbf{x} \in \operatorname{tor}(C) \cap \operatorname{tor}(C)^{\perp}$. Since $\operatorname{tor}(C)^{\perp} \subseteq \operatorname{res}(C)^{\perp}$, $\mathbf{x} \in \operatorname{tor}(C) \cap \operatorname{res}(C)^{\perp}$. Hence, $\mathbf{x}=\mathbf{0}$ which implies that $\operatorname{tor}(C)$ is LCD. This proves (1).
Now assume that res (C) is LCD and C is free. Then we have $\operatorname{res}(C) \cap \operatorname{res}(C)^{\perp}=\{\mathbf{0}\}$ and $\operatorname{res}(C)=\operatorname{tor}(C)$. In particular, $\operatorname{res}(C) \cap \operatorname{tor}(C)^{\perp}=\{\mathbf{0}\}$ and $\operatorname{tor}(C) \cap \operatorname{res}(C)^{\perp}=\{\mathbf{0}\}$. By Theorem 4.2 and Corollary 4.11, $C \cap C^{\perp}=\{0\}$ and so C is LCD. This proves (2).

For free codes over E, there is no distinction between LCD and left LCD codes.

Theorem 4.37. A linear code over E is left LCD if and only if it is LCD and free.
Proof. Suppose that C is left LCD. By definition, C is left nice and $C \cap C^{\perp_{L}}=\{\mathbf{0}\}$. By Corollary 4.12, C is free. By definition of $C^{\perp}, C \cap C^{\perp} \subseteq C \cap C^{\perp_{L}}$. This implies that C is LCD.
For the converse, suppose that C is LCD and free. By Corollary 4.12, C is left nice and $C \cap C^{\perp_{L}}=C \cap C^{\perp}=\{0\}$. Hence C is left LCD.

The following simple examples illustrate Theorems 4.36 and 4.37.

Example 4.38. Let C be the linear code defined by $C=\{00, a 0, b 0, c 0\}$. Then $C^{\perp}=C^{\perp_{L}}=\{00,0 a, 0 b, 0 c\}$. Therefore, $C \cap C^{\perp}=C \cap C^{\perp_{L}}=\{\mathbf{0}\}$ and C is left-nice. Hence, C is LCD and left LCD. Note that the binary code $\operatorname{res}(C)=\{00,10\}$ is LCD and C is free as $\operatorname{tor}(C)=\operatorname{res}(C)$.

Example 4.39. Let C be the linear code defined by $C=\{00, a 0, b 0, c 0,0 c, c c, b c, a c\}$. Then $C^{\perp}=\{00,0 c\}$ and $C^{\perp_{L}}=\{00,0 a, 0 b, 0 c\}$. Hence, C is neither LCD nor left LCD. Note that the binary codes $\operatorname{res}(C)=\{00,10\}$ and $\operatorname{tor}(C)=\mathbb{F}_{2}^{2}$ are LCD. However, C is not free.

In the next results we investigate the LCD property of the dual of LCD codes over E.

Corollary 4.40. If C is an $L C D$ code over E, then C^{\perp} is LCD.

Proof. The result follows immediately from Corollary 4.15 and the definition of LCD codes.

Corollary 4.41. If C is a free $L C D$ code over E, then $C^{\perp_{L}}$ is $L C D$.

Proof. By Corollary 4.12, since C is free, C is left nice and $C^{\perp_{L}}=C^{\perp}$. Since C is LCD, C^{\perp} is LCD by Corollary 4.40. Thus, $C^{\perp_{L}}$ is LCD.

Corollary 4.42. If C is a nonzero linear code of length n over E, then $C^{\perp_{R}}$ is not $L C D$.

Proof. By Theorem 4.5 and Corollary 4.11, we have $\left(C^{\perp_{R}}\right)^{\perp}=a \operatorname{tor}\left(C^{\perp_{R}}\right)^{\perp} \oplus c \operatorname{res}\left(C^{\perp_{R}}\right)^{\perp}=c \operatorname{tor}(C) \subseteq$ $c \mathbb{F}_{2}^{n} \subseteq C^{\perp_{R}}$ where the last inclusion follows from Corollary 4.6. Since C is nonzero, tor (C) must also be nonzero and thus $C^{\perp_{R}} \cap\left(C^{\perp_{R}}\right)^{\perp} \neq\{\mathbf{0}\}$. This proves that $C^{\perp_{R}}$ is not LCD.

Recall that an additive code D over \mathbb{F}_{4} is ACD if $D \cap D^{\perp_{T}}=\{0\}$. The image of any LCD or left LCD code over E under the map ϕ_{E} is ACD.

Corollary 4.43. If C is an $L C D$ code over E, then $\phi_{E}(C)$ is $A C D$.

Proof. Since C is an LCD code over E and ϕ_{E} is a bijective map, we have $\{\mathbf{0}\}=\phi_{E}(\{\mathbf{0}\})=\phi_{E}\left(C \cap C^{\perp}\right)=$ $\phi_{E}(C) \cap \phi_{E}\left(C^{\perp}\right)=\phi_{E}(C) \cap \phi_{E}(C)^{\perp_{T}} \quad$ where the last equality follows from Theorem 4.19.

Corollary 4.44. If C is a left LCD code over E, then $\phi_{E}(C)$ is ACD.

Proof. By Theorem 4.37, C is LCD. By Corollary 4.43, $\phi_{E}(C)$ is ACD.

The converse of Corollaries 4.43 and 4.44 are not true in general as the next example shows.

Example 4.45. Let D be the $\left(4,2^{4}\right)$ additive code over \mathbb{F}_{4} with generator matrix

$$
\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
\omega & \omega & 0 & \omega \\
0 & \omega & \omega & \omega
\end{array}\right)
$$

Then D is ACD as shown in [21, Example 2]. The residue and the torsion codes of C over E where $\phi_{E}(C)=D$ are $\operatorname{res}(C)=\{0000,1101,0111,1010\}$ and $\operatorname{tor}(C)=$ $\{0000,1100,0011,1111\}$. Since $\operatorname{res}(C) \nsubseteq \operatorname{tor}(C), C$ is not linear and thus not LCD.

We state the following theorem from [21] without proof.
Theorem 4.46. [21, Theorem 3]. If C is an $\left(n, 2^{k}\right) A C D$ code over \mathbb{F}_{4}, then k is even.

Corollary 4.47. If C is a type $\left(k_{1}, k_{2}\right) L C D$ code over E, then k_{2} is even.
Proof. By Corollary 4.43, $\phi_{E}(C)$ is an $\left(n, 2^{2 k_{1}+k_{2}}\right) \mathrm{ACD}$ code over \mathbb{F}_{4}. By Theorem $4.46,2 k_{1}+k_{2}$ is even which yields that k_{2} is even.

Remark 4.48. We restrict our investigation in this section on LCD and left LCD codes over E without mentioning right LCD codes since there are no such codes over E, as shown in [20, Remark 1].

V. RESULTS ON LINEAR CODES OVER H

We begin this section by summarizing facts and notions essential to our study for linear codes over H. A detailed introduction on such codes can be found in [2].

To every linear code C of length n over H, there is an additive code $\phi_{H}(C)$ over \mathbb{F}_{4} such that ϕ_{H} is defined by the alphabet substitution

$$
0 \rightarrow 0, a \rightarrow \omega, b \rightarrow 1, c \rightarrow \omega^{2}
$$

extended in the natural way to a map from C to \mathbb{F}_{4}^{n}.
There are two binary linear codes, namely C_{a} and C_{b}, of length n associated canonically with every linear code C of length n over H;

1) $C_{a}=\alpha_{b}(C)$ where $\alpha_{b}: H \rightarrow \mathbb{F}_{2}$ is the map defined by $\alpha_{b}(0)=\alpha_{b}(b)=0$ and $\alpha_{b}(a)=\alpha_{b}(c)=1$, extended componentwise from C to \mathbb{F}_{2}^{n},
2) $C_{b}=\alpha_{a}(C)$ where $\alpha_{a}: H \rightarrow \mathbb{F}_{2}$ is the map defined by $\alpha_{a}(0)=\alpha_{a}(a)=0$ and $\alpha_{a}(b)=\alpha_{a}(c)=1$, extended componentwise from C to \mathbb{F}_{2}^{n}.
Any linear code C over H can be written as $C=a C_{a} \oplus b C_{b}$. The code C is self-orthogonal if and only if C_{b} is self-orthogonal [2, Lemma 1]. A QSD code C is quasi Type IV if C_{a} is even.

A. STRUCTURE OF LINEAR CODES

The minimum distance of a linear code over H does not exceed the minimum distance of either of its associated binary codes.

Theorem 5.1. Let $C=a C_{a} \oplus b C_{b}$ be a linear code over H where C_{a} and C_{b} are nonzero binary codes. The minimum distance d of C is $d=\min \left\{d_{1}, d_{2}\right\}$ where d_{1} and d_{2} are the minimum distances of C_{a} and C_{b}, respectively.

Proof. Since d_{1} and d_{2} are the minimum distances of C_{a} and C_{b}, respectively, there exist nonzero binary vectors $\mathbf{u} \in C_{a}$ and $\mathbf{v} \in C_{b}$ such that $\mathrm{wt}(\mathbf{u})=d_{1}$ and $\mathrm{wt}(\mathbf{v})=d_{2}$. Since $a C_{a} \subseteq C$ and $b C_{b} \subseteq C$, it follows that $a \mathbf{u}, b \mathbf{v} \in C$ with $\mathrm{wt}(a \mathbf{u})=\mathrm{wt}(\mathbf{u})=d_{1}$ and $\mathrm{wt}(b \mathbf{v})=\mathrm{wt}(\mathbf{v})=d_{2}$. This means that $d \leq \min \left\{d_{1}, d_{2}\right\}$.
Now we prove that $d \geq \min \left\{d_{1}, d_{2}\right\}$. Let $\mathbf{w} \in C$ such that $\mathrm{wt}(\mathbf{w})=d$. Then, $\mathbf{w}=a \mathbf{x}+b \mathbf{y}$ where $\mathbf{x} \in C_{a}$ and $\mathbf{y} \in C_{b}$. Since C is nonzero, we have the following three cases depending on \mathbf{x} and \mathbf{y} :

- If $\mathbf{x}=\mathbf{0}$ and $\mathbf{y} \neq 0$, then

$$
\mathrm{wt}(\mathbf{w})=\mathrm{wt}(b \mathbf{y})=\mathrm{wt}(\mathbf{y}) \geq d_{2}
$$

- If $\mathbf{x} \neq \mathbf{0}$ and $\mathbf{y}=\mathbf{0}$, then

$$
\mathrm{wt}(\mathbf{w})=\mathrm{wt}(a \mathbf{x})=\mathrm{wt}(\mathbf{x}) \geq d_{1}
$$

- If $\mathbf{x}, \mathbf{y} \neq \mathbf{0}$, then

$$
\mathrm{wt}(\mathbf{w}) \geq \mathrm{wt}(b \mathbf{w})=\mathrm{wt}(b \mathbf{y})=\mathrm{wt}(\mathbf{y}) \geq d_{2}
$$

In all cases, $d=\mathrm{wt}(\mathbf{w}) \geq \min \left\{d_{1}, d_{2}\right\}$.
Since $d \leq \min \left\{d_{1}, d_{2}\right\}$ and $d \geq \min \left\{d_{1}, d_{2}\right\}$, it follows that $d=\min \left\{d_{1}, d_{2}\right\}$.

The following result shows the relationship between the permutation equivalence of two linear codes over H and that of their constituents.

Theorem 5.2. Let $C=a C_{a} \oplus b C_{b}$ and $C^{\prime}=a C_{a}^{\prime} \oplus b C_{b}^{\prime}$ be two linear codes over H. Then C and C^{\prime} are permutation equivalent if and only if there is a permutation which sends $\left(C_{a}, C_{b}\right)$ to $\left(C_{a}^{\prime}, C_{b}^{\prime}\right)$.
Proof. Let C and C^{\prime} be two permutation equivalent codes over H. Then there is a permutation matrix P such that $C^{\prime}=C P$. Since $\alpha_{a}\left(C^{\prime}\right)=\alpha_{a}(C P)=\alpha_{a}(C) P$ and $\alpha_{b}\left(C^{\prime}\right)=\alpha_{b}(C P)=\alpha_{b}(C) P$, it follows that P sends $\left(C_{a}, C_{b}\right)$ to $\left(C_{a}^{\prime}, C_{b}^{\prime}\right)$.
Conversely, suppose that P is a permutation matrix which sends $\left(C_{a}, C_{b}\right)$ to $\left(C_{a}^{\prime}, C_{b}^{\prime}\right)$. Then,

$$
a C_{a}^{\prime} \oplus b C_{b}^{\prime}=a C_{a} P \oplus b C_{b} P
$$

and thus $C^{\prime}=C P$, proving that C and C^{\prime} are permutation equivalent.

B. DUALITY

To prepare for the study of self-dual and LCD codes over H, we need the following theorem.

Theorem 5.3. If $C=a C_{a} \oplus b C_{b}$ is a linear code of length n over H, then $C^{\perp}=a \mathbb{F}_{2}^{n} \oplus b C_{b}^{\perp}$.

Proof. Let $\mathbf{c} \in C^{\perp}$. We can write \mathbf{c} as $\mathbf{c}=a \mathbf{u}+b \mathbf{v}$ where $\mathbf{u}, \mathbf{v} \in \mathbb{F}_{2}^{n}$. To prove that $\mathbf{v} \in C_{b}^{\perp}$, let $\mathbf{t} \in C_{b}$. As $b C_{b} \subseteq C$, $b \mathbf{t} \in C$. By definition,

$$
0=\mathbf{c} \cdot b \mathbf{t}=(a \mathbf{u}+b \mathbf{v}) \cdot b \mathbf{t}=b(\mathbf{v} \cdot \mathbf{t})
$$

Hence, $\mathbf{v} \cdot \mathbf{t}=0$ which implies that $\mathbf{v} \in C_{b}^{\perp}$. Thus, $\mathbf{c} \in a \mathbb{F}_{2}^{n}+b C_{b}^{\perp}$. Therefore, $C^{\perp} \subseteq a \mathbb{F}_{2}^{n}+b C_{b}^{\perp}$.
Now assume that $\mathbf{c}=a \mathbf{u}+b \mathbf{v} \in a \mathbb{F}_{2}^{n}+b C_{b}^{\perp}$. Let $\mathbf{w} \in C$. Then, $\mathbf{w}=a \mathbf{x}+b \mathbf{y}$ where $\mathbf{x} \in C_{a}$ and $\mathbf{y} \in C_{b}$. Observe that

$$
\mathbf{c} \cdot \mathbf{w}=(a \mathbf{u}+b \mathbf{v}) \cdot(a \mathbf{x}+b \mathbf{y})=b(\mathbf{v} \cdot \mathbf{y})=0
$$

Hence, $\mathbf{c} \in C^{\perp}$. Therefore, $a \mathbb{F}_{2}^{n}+b C_{b}^{\perp} \subseteq C^{\perp}$. This proves the equality $C^{\perp}=a \mathbb{F}_{2}^{n}+b C_{b}^{\perp}$. The sum is direct since $a \mathbb{F}_{2}^{n}$ and $b C_{b}^{\perp}$ have a trivial intersection.

Corollary 5.4. Let $C=a C_{a} \oplus b C_{b}$ be a linear code of length n over H. Then, $\left(C^{\perp}\right)^{\perp}=C$ if and only if $C_{a}=\mathbb{F}_{2}^{n}$.

Proof. By Theorem 5.3, $\left(C^{\perp}\right)^{\perp}=a \mathbb{F}_{2}^{n} \oplus b C_{b}$. Hence, $\left(C^{\perp}\right)^{\perp}=C$ if and only if $C_{a}=\mathbb{F}_{2}^{n}$.

Corollary 5.5. Let $C=a C_{a} \oplus b C_{b}$ be a linear code of length n over H. Then, C is nice if and only if $C_{a}=\{0\}$.

Proof. Let k_{a} and k_{b} denote the dimensions of C_{a} and C_{b}, respectively. Then we have $|C|=\left|C_{a}\right|\left|C_{b}\right|=2^{k_{a}+k_{b}}$ and $\left|C^{\perp}\right|=\left|\mathbb{F}_{2}^{n}\right|\left|C_{b}^{\perp}\right|=2^{2 n-k_{b}}$ from Theorem 5.3. Therefore, $|C|\left|C^{\perp}\right|=2^{2 n+k_{a}}$. Hence, $|C|\left|C^{\perp}\right|=4^{n}$ if and only if $k_{a}=0$. Equivalently, C is nice if and only if $C_{a}=\{\mathbf{0}\}$.

1) Self-dual codes

We characterize self-dual codes over H in terms of their associated binary codes.

Theorem 5.6. A linear code $C=a C_{a} \oplus b C_{b}$ of length n over H is self-dual if and only if the following two conditions are satisfied:

1) C_{b} is a self-dual binary code,
2) $C_{a}=\mathbb{F}_{2}^{n}$.

Proof. The result follows from Theorem 5.3 and the definition of self-dual codes.

By Theorem 5.6, self-dual codes over H exist only for even lengths and there are as many self-dual codes of length n over H as there are $[n, n / 2]$ binary self-dual codes.

Corollary 5.7. Let $C=a C_{a} \oplus b C_{b}$ and $C^{\prime}=a C_{a}^{\prime} \oplus b C_{b}^{\prime}$ be two self-dual codes over H. Then C and C^{\prime} are permutation equivalent if and only if C_{b} and C_{b}^{\prime} are permutation equivalent.
Proof. The self-duality of C and C^{\prime} imply that $C_{a}=C_{a}^{\prime}=\mathbb{F}_{2}^{n}$ by Theorem 5.6. Thus, by Theorem 5.2, C and C^{\prime} are permutation equivalent if and only if C_{b} and C_{b}^{\prime} are permutation equivalent.

From the preceding results, we see that there is a one-to-one correspondence between inequivalent self-dual binary codes and inequivalent self-dual codes over H of the same
length. Similar to the case of self-dual codes over I, using the classification of self-dual binary codes along with Theorem 5.6, the classification of all self-dual codes over H of the same lengths is immediate. We remark that by Theorems 5.1 and 5.6, all self-dual codes over H have minimum distance equals 1 .

The same observations on self-dual codes over I in Propositions 3.7 and 3.12 apply for self-dual codes over H as well.

Proposition 5.8. Let \mathcal{Q} be the family of all $Q S D$ codes of length n over H and let \mathcal{S} be the family of all self-dual codes of length n over H. Then $\mathcal{Q} \cap \mathcal{S}=\emptyset$.
Proof. Suppose that a linear code C over H is QSD and self-dual. Then $|C|=\left|C^{\perp}\right|=2^{n}$ which implies that $|C|\left|C^{\perp}\right|=4^{n}$. By Corollary 5.5, $C_{a}=\{0\}$ contradicting part (2) of Theorem 5.6. This means that a linear code over H can never simultaneously be both QSD and self-dual.

Proposition 5.9. If $C=a C_{a} \oplus b C_{b}$ is a self-dual code of length $2 n$ over H, then $\phi_{H}(C)^{\perp_{T}}$ is trace self-orthogonal of size 2^{n}; in particular, $\phi_{H}(C)$ is not trace self-dual.

Proof. By Theorems 5.3 and 5.6, the self-duality of C implies that $\left|C_{a}\right|=\left|\mathbb{F}_{2}^{2 n}\right|=2^{2 n}$ and $\left|C_{b}\right|=2^{n}$. Then, $\left|\phi_{H}(C)\right|=|C|=2^{3 n}$ and $\left|\phi_{H}(C)^{\perp_{T}}\right|=2^{n}$. Comparing cardinalities, we see that $\phi_{H}(C) \neq \phi_{H}(C)^{\perp_{T}}$ which shows that $\phi_{H}(C)$ is not trace self-dual.
We claim that $\omega C_{b}=\phi_{H}(C)^{\perp_{T}}$. Let $\mathbf{w} \in C_{b}$ and let $\mathbf{x} \in \phi_{H}(C)$. Then, $\omega \mathbf{w} \in \omega C_{b}$ and there exists a codeword $a \mathbf{u}+b \mathbf{v}$ in C where $\mathbf{u} \in C_{a}$ and $\mathbf{v} \in C_{b}$ such that $\mathbf{x}=\phi_{H}(a \mathbf{u}+b \mathbf{v})=\omega \mathbf{u}+\mathbf{v}$. Observe that

$$
\begin{aligned}
\langle\mathbf{x}, \omega \mathbf{w}\rangle_{T} & =\langle\omega \mathbf{u}+\mathbf{v}, \omega \mathbf{w}\rangle_{T} \\
& =\langle\omega \mathbf{u}, \omega \mathbf{w}\rangle_{T}+\langle\mathbf{v}, \omega \mathbf{w}\rangle_{T} \\
& =\operatorname{Tr}(\mathbf{u} \cdot \mathbf{w})+\operatorname{Tr}\left(\omega^{2} \mathbf{v} \cdot \mathbf{w}\right)
\end{aligned}
$$

Since C is self-dual, by Theorem 5.6, C_{b} is self-dual and therefore $\mathbf{v} \cdot \mathbf{w}=0$ which gives $\operatorname{Tr}\left(\omega^{2} \mathbf{v} \cdot \mathbf{w}\right)=0$. As $\mathbf{u} \cdot \mathbf{w} \in\{0,1\}, \quad \operatorname{Tr}(\mathbf{u} \cdot \mathbf{w})=0$. Thus, we obtain $\langle\mathbf{x}, \omega \mathbf{w}\rangle_{T}=0$ proving that $\omega \mathbf{w} \in \phi_{H}(C)^{\perp_{T}}$ and consequently $\omega C_{b} \subseteq \phi_{H}(C)^{\perp_{T}}$. The fact that $\left|C_{b}\right|=$ $2^{n}=\left|\phi_{H}(C)^{\perp_{T}}\right|$ implies that $\omega C_{b}=\phi_{H}(C)^{\perp_{T}}$ as claimed. Now observe that since $C_{b} \subseteq \mathbb{F}_{2}^{2 n}=C_{a}$, we have $a C_{b} \subseteq a C_{a} \subseteq C$ and thus $\omega C_{b}=\phi_{H}\left(a C_{b}\right) \subseteq \phi_{H}(C)$. In particular, $\phi_{H}(C)^{\perp_{T}} \subseteq \phi_{H}(C)$ which proves that $\phi_{H}(C)^{\perp_{T}}$ is trace self-orthogonal.

2) LCD codes

We define LCD codes over H as follows:
Definition 5.10. A code C over H is linear with complementary dual ($L C D$) if $C \cap C^{\perp}=\{\mathbf{0}\}$.

The following theorem provides a characterization of LCD codes over H.

Theorem 5.11. A linear code $C=a C_{a} \oplus b C_{b}$ of length n over H is $L C D$ if and only if C is nice and C_{b} is $L C D$.

Proof. Suppose that C is LCD. By definition, $C \cap C^{\perp}=\{\mathbf{0}\}$. By Theorem 5.3, $C_{a} \cap \mathbb{F}_{2}^{n}=\{\mathbf{0}\}$ and $C_{b} \cap C_{b}^{\perp}=\{0\}$, proving that C_{a} is zero and C_{b} is LCD. By Corollary 5.5, C is nice and C_{b} is LCD.
Conversely, suppose that C is nice and C_{b} is LCD. By Corollary 5.5, C_{a} is zero. Thus, $C_{a} \cap \mathbb{F}_{2}^{n}=\{\mathbf{0}\}$ and $C_{b} \cap C_{b}^{\perp}=\{\mathbf{0}\}$. By Theorem 5.3, $C \cap C^{\perp}=\{\mathbf{0}\}$, proving that C is LCD.

Corollary 5.12. Let $C=a C_{a} \oplus b C_{b}$ and $C^{\prime}=a C_{a}^{\prime} \oplus b C_{b}^{\prime}$ be two LCD codes over H. Then C and C^{\prime} are permutation equivalent if and only if C_{b} and C_{b}^{\prime} are permutation equivalent.

Proof. Since C and C^{\prime} are LCD, by Theorem 5.11, $C_{a}=C_{a}^{\prime}=\{\mathbf{0}\}$. Thus, by Theorem 5.2, C and C^{\prime} are permutation equivalent if and only if C_{b} and C_{b}^{\prime} are permutation equivalent.

The classification of LCD codes over H reduces to that of LCD binary codes. A complete classification of binary LCD codes was done in [6] for lengths up to 13. Using this classification along with Theorem 5.11, the classification of all LCD codes over H of the same lengths is immediate.

To conclude this subsection, we note that the image of any LCD code over H under the map ϕ_{H} is never an ACD. However, it is an additive trace self-orthogonal code over \mathbb{F}_{4}.

Proposition 5.13. If $C=a C_{a} \oplus b C_{b}$ is a nonzero LCD code of length n over H, then $\phi_{H}(C)$ is trace selforthogonal; in particular, $\phi_{H}(C)$ is not $A C D$.

Proof. By Theorem 5.11 and Corollary 5.5, $C=b C_{b}$. Then, $\phi_{H}(C)=\phi_{H}\left(b C_{b}\right)=C_{b}$ and so $\phi_{H}(C)^{\perp_{T}}=C_{b}^{\perp_{T}}$. Observe that for any $\mathbf{x}, \mathbf{y} \in C_{b}$, we have

$$
\langle\mathbf{x}, \mathbf{y}\rangle_{T}=\operatorname{Tr}\left(\mathbf{x} \cdot \mathbf{y}^{2}\right)=\operatorname{Tr}(\mathbf{x} \cdot \mathbf{y})=0
$$

This proves that $C_{b} \subseteq C_{b}^{\perp_{T}}$ and $\phi_{H}(C) \subseteq \phi_{H}(C)^{\perp_{T}}$. Hence, $\phi_{H}(C)$ is trace self-orthogonal. Since C is nonzero, $\phi_{H}(C) \cap \phi_{H}(C)^{\perp_{T}} \neq\{\mathbf{0}\}$, proving that $\phi_{H}(C)$ is not ACD.

VI. RELATIONS DIAGRAMS

In this section, we summarize the relationships among different classes of codes over \mathcal{R}. These relations are illustrated via diagrams in Figures 1, 2, 3. They give a general picture of the intersections of the classes of codes over each ring. The symbol \equiv denotes an equivalence of two notions.

Also, we list in Tables 4, 5, 6 the main properties of each class of codes over a particular ring along with the connections between different classes. We gather these facts from the preceding sections as well as [2]-[5], [20].

A. CODES OVER THE RING I

In Table 4 assume that C is a linear code of length n over I. We use this table to draw the relations diagram in Figure 1.

FIGURE 1. Classes of linear codes over the ring I

B. CODES OVER THE RING E

In Table 5 assume that C is a linear code of length n over E. We use this table to draw the relations diagram in Figure 2.

FIGURE 2. Classes of linear codes over the ring E

C. CODES OVER THE RING H

In Table 6 assume that $C=a C_{a} \oplus b C_{b}$ is a linear code of length n over H. We use this table to draw the relations diagram in Figure 3.

FIGURE 3. Classes of linear codes over the ring H

TABLE 4. Properties of different classes of linear codes over the ring I

	Property	Reference
(1)	C is self-orthogonal if and only if res (C) is self-orthogonal	Corollary 3.2
(2)	C is nice if and only if $C=\{\mathbf{0}\}$	Proposition 3.6
(3)	C is free if and only if $\operatorname{res}(C)=\operatorname{tor}(C)$	[3, Definition]
(4)	C is QSD if and only if C is self-orthogonal and $\|C\|=2^{n}$	[3, Definition]
(5)	C is quasi Type IV if and only if C is QSD and tor (C) is even	[3, Definition]
(6)	C is Type IV if and only if C is QSD and even	[3, Definition]
(7)	Every Type IV code is quasi Type IV	[3, Remark]
(8)	Every free QSD code is quasi Type IV	[5, Corollary 1]
(9)	C is self-dual if and only if res (C) is self-dual and $\operatorname{tor}(C)=\mathbb{F}_{2}^{n}$	Theorem 3.8
(10)	C can never be self-dual and QSD at the same time	Proposition 3.7
(11)	C can never be self-dual and free at the same time	Properties (3) and (9)
(12)	C is LCD if and only if $C=\{\mathbf{0}\}$	Proposition 3.13

TABLE 5. Properties of different classes of linear codes over the ring E

	Property	Reference
(1)	C is nice	Corollary 4.16
(2)	C is self-orthogonal if and only if $\operatorname{res}(C) \subseteq \operatorname{tor}(C)^{\perp}$	Corollary 4.3
(3)	C is self-dual if and only if $\operatorname{res}(C)=\operatorname{tor}(C)^{\perp}$	Theorem 4.22
(4)	C is QSD if and only if C is self-dual	Remark 4.17
(5)	C is Type IV if and only if C is QSD and even	[4, Definition]
(6)	C is free if and only if res $(C)=\operatorname{tor}(C)$	[4, Definition]
(7)	C is left nice if and only if C is free	Corollary 4.12
(8)	C is right nice if and only if $\operatorname{res}(C)=\{\mathbf{0}\}$	Corollary 4.13
(9)	C is left self-dual if and only if res (C) is self dual and C is free	Theorem 4.21
(10)	C is left self-dual if and only if C is free self-dual	Properties (3), (6), (9)
(11)	Every left self-dual code is Type IV	Corollary 4.27
(12)	C is right self-dual if and only if C is of type ($0, n$)	Theorem 4.21
(13)	C is right self-dual if and only if C is right nice and self-dual	Properties (3), (8), (12)
(14)	C can never be both left self-dual and right self-dual	Proposition 4.8
(15)	C is both left nice and right nice if and only if $C=\{\mathbf{0}\}$	Proposition 4.7
(16)	Every right nice code is self-orthogonal	Corollary 4.14
(17)	C is left LCD if and only if it is left nice and $C \cap C^{\perp_{L}}=\{\mathbf{0}\}$	[20, Definition 3]
(18)	If C is free and res (C) is a binary LCD code, then C is LCD	Theorem 4.36
(19)	C is left LCD if and only if it is LCD and free	Theorem 4.37

TABLE 6. Properties of different classes of linear codes over the ring H

	Property	Reference
(1)	C is self-orthogonal if and only if C_{b} is self-orthogonal	[2, Lemma 1]
(2)	C is QSD if and only if C_{b} is self-orthogonal and $\operatorname{dim}\left(C_{a}\right)=n-\operatorname{dim}\left(C_{b}\right)$	[2, Lemma 1]
(3)	C is quasi Type IV if and only if C is QSD and C_{a} is even	[2, Definition]
(4)	C is Type IV if and only if C is QSD and even	[2, Definition]
(5)	Every Type IV code is quasi Type IV	[2, Remark]
(6)	C is self-dual if and only if C_{b} is self-dual and $C_{a}=\mathbb{F}_{2}^{n}$	Theorem 5.6
(7)	C is nice if and only if $C_{a}=\{\mathbf{0}\}$	Corollary 5.5
(8)	C can never be self-dual and QSD at the same time	Proposition 5.8
(9)	C can never be self-dual and nice at the same time	Properties (6) and (7)
(10)	C can never be QSD and nice at the same time	Properties (2) and (7)
(11)	C is LCD if and only if C is nice and C_{b} is LCD	Theorem 5.11

VII. CONCLUSION

In the present paper, we have aimed to lay down the theoretical foundation of the duality of codes over three non-unital rings of order four. The classes of self-orthogonal, self-dual, quasi self-dual, and LCD codes have been considered for each ring in turn. The properties of their associated binary codes, as well as that of their quaternary images have been established.

The main direction opened by this study is to extend these results to non-unital rings of higher order. In particular selforthogonal codes over certain non-unital rings of order six have been studied in [1]. This is a concrete motivation for such an extension.

REFERENCES

[1] A. Alahmadi, A. Alkathiry, A. Altassan, W. Basaffar, A. Bonnecaze, H. Shoaib and P. Solé, "Quasi self-dual codes over non-unital rings of order six," Proyecciones (Antofagasta), vol. 39, no. 4, pp. 1083-1095, 2020.
[2] A. Alahmadi, A. Alkathiry, A. Altassan, W. Basaffar, A. Bonnecaze, H. Shoaib and P. Solé, "Type IV codes over a non-local non-unital ring," Proyecciones (Antofagasta), vol. 39, no. 4, pp. 963-978, 2020.
[3] A. Alahmadi, A. Altassan, W. Basaffar, A. Bonnecaze, H. Shoaib and P. Solé, "Quasi Type IV codes over a non-unital ring," Applicable Algebra in Engineering, Communication and Computing, vol. 32, no. 3, pp. 217-228, 2021.
[4] A. Alahmadi, A. Altassan, W. Basaffar, H. Shoaib, A. Bonnecaze and P. Solé, "Type IV codes over a non-unital ring," Journal of Algebra and Its Applications, vol. 2, no. 07, 2250142, 2022.
[5] A. Alahmadi, A. Melaibari and P. Solé, "Quasi self-dual codes over nonunital rings from three-class association schemes," submitted, 2023.
[6] M. Araya and M. Harada, "On the classification of linear complementary dual codes," Discrete Mathematics, vol. 342, no. 1, pp. 270-278, 2019.
[7] A. R. Calderbank, E. M. Rains, P. M. Shor and N. J. A. Sloane, "Quantum error correction via codes over $G F(4), "$ in IEEE Transactions on Information Theory, vol. 44, no. 4, pp. 1369-1387, July 1998, doi: 10.1109/18.681315.
[8] C. Carlet and S. Guilley, "Complementary dual codes for counter-measures to side-channel attacks," Advances in Mathematics of Communications, vol. 10, no. 1, pp. 131-150, 2016.
[9] B. Fine,"Classification of finite rings of order p^{2}," Mathematics magazine, vol. 66, no. 4, pp. 248-252, 1993.
[10] W. C. Huffman, "On the classification and enumeration of self-dual codes," Finite Fields and Their Applications, vol. 11, no. 3, pp. 451-490, 2005.
[11] W. C. Huffman, J. L. Kim and P. Solé, Concise Encyclopedia of Coding Theory. New York, NY, USA: Chapman and Hall/CRC, 2021.
[12] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error Correcting Codes. North-Holland Mathematical Library, vol. 16, Elsevier, 1977.
[13] J. L. Massey, "Linear codes with complementary duals," Discrete Mathematics, vol. 106, pp. 337-342, 1992.
[14] G. Nebe, E. Rains and N. Sloane, Self-Dual Codes and Invariant Theory. Algorithms and Computation in Mathematics, vol. 17. Springer Berlin, Heidelberg, 2006.
[15] V. Pless, "A classification of self-orthogonal codes over $G F(2)$, , Discrete Mathematics, vol. 3, pp. 209-246, 1972.
[16] V. Pless, R. A. Brualdi and W. C. Huffman, Handbook of Coding Theory. Elsevier Science Inc, 1998.
[17] V. Pless and N. J. Sloane, "On the classification and enumeration of selfdual codes," Journal of Combinatorial Theory, Series A, vol. 18, no. 3, pp. 313-335, 1975.
[18] R. Raghavendran, "Finite associative rings," Compositio Mathematica, vol. 21. no. 2, pp. 195-229, 1969.
[19] M. Shi, A. Alahmadi and P. Solé, Codes and Rings: Theory and Practice. Academic Press, 2017.
[20] M. Shi, S. Li, J. L. Kim and P. Solé, "LCD and ACD codes over a noncommutative non-unital ring with four elements," Cryptography and Communications, vol. 14, no. 3, pp. 627-640, 2022.
[21] M. Shi, N. Liu, J. L. Kim and P. Solé, "Additive complementary dual codes over \mathbb{F}_{4}," Designs, Codes and Cryptography, vol. 91, pp. 273-284, (2023). [Online]. Available: https://arxiv.org/pdf/2207.01938.pdf.

Adel Alahmadi is a professor of algebra and its applications in the Department of Mathematics, College of Science at King Abdulaziz University, Jeddah, Saudi Arabia. He obtained his Ph.D. from Ohio University, USA. He is the Founder and Head of the Research Group in Algebraic Structures and Applications (ASA). His research interest includes Algebra and its applications in coding theory, AI and other related topics.

He has visited various international institutes for research collaborations. Among others, he visited the University of California in San Diego, USA, the University of Padua, Italy, the University of Western Australia in Perth, Australia, and the Korea Institute for Advanced Study (KIAS) in Seoul, South Korea.

He held several leadership positions and committees memberships on research and development, and international conferences.

Asmaa Melaibari received the M.S. degree in Mathematic from King Abdulaziz University, Jeddah, Saudi Arabia, in 2016. She is currently pursuing a Ph.D. degree in Mathematics at King Abdulaziz University, Jeddah, Saudi Arabia. Since 2016, she has been a lecturer at the University of Jeddah, Jeddah, Saudi Arabia. Her research interests include coding theory and ring theory.

Patrick Solé received the Ingénieur and Docteur-Ingénieur degrees both from Ecole Nationale Supérieure des Télécommunications, Paris, France, in 1984 and 1987, respectively, and the habilitation á diriger des recherches from Université de Nice-Sophia Antipolis, Sophia Antipolis, France, in 1993.

He has held visiting positions in Syracuse University, Syracuse, NY, from 1987 to 1989, Macquarie University, Sydney, Australia, from 1994 to 1996, and Lille University, Lille, France, from 1999 to 2000. Since 1989, he has been a permanent member of the CNRS and became Senior Scientist in 1996. He is currently member of the CNRS lab I2M Marseilles, France.

His research interests include Coding Theory (codes over rings, quasicyclic codes), Interconnection Networks (graph spectra, expanders), Vector Quantization (lattices), and Cryptography (boolean functions, pseudo random sequences).

