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ABSTRACT In this paper, we present a basic theory of the duality of linear codes over three of the non-
unital rings of order four; namely I , E, and H as denoted in (Fine, 1993). A new notion of duality is
introduced in the case of the non-commutative ring E. The notion of self-dual codes with respect to this
duality coincides with that of quasi self-dual codes over E as introduced in (Alahmadi et al, 2022). We
characterize self-dual codes and LCD codes over the three rings, and investigate the properties of their
corresponding additive codes over F4. We study the connection between the dual of any linear code over
these rings and the dual of its associated binary codes. A MacWilliams formula is established for linear
codes over E.

INDEX TERMS Additive codes, LCD codes, non-unital rings, self-dual codes

I. INTRODUCTION

THERE are, up to isomorphism, exactly eleven rings of
order four [9], [18]. The only unital ones amongst these

are F4,Z4,F2×F2, and F2 +uF2 . Before [4], these were
the only rings of order four used as alphabets in Coding
Theory [19]. In a series of papers [2]–[4], self-orthogonal
codes over three of the non-unital rings among the eleven
rings were investigated; namely I , E, and H , as per the
notation of Fine [9]. Let R be one of the rings I , E, or H .
Throughout this paper, if the statement does not depend on
which ring we are using, we shall denote the ring by R. The
goal of this paper is to lay down the foundations of the study
of duality of linear codes over these three rings. In particular,
the classes of self-dual codes and LCD codes are considered.

Self-dual codes have been given much attention in Coding
Theory and have been widely studied for codes over finite
fields and codes over rings [11, Chapter 4], [16, Chapter 3],
[12], [14]. Due to technical hurdles, the study of self-dual
codes over R was replaced by that of Quasi Self-Dual codes
(QSD codes) in the series of papers mentioned above. In the
present paper, we initiate the study of self-dual codes over
R. In the case of the alphabet E, the new notion of self-dual
codes coincides with that of QSD codes.

We then consider another class of codes that can be de-
scribed in terms of their relationship with their dual. More
precisely, it is the class of Linear codes with Complementary

Dual (LCD codes). The notion of LCD codes was introduced
by Massey in [13] on codes over finite fields. It was the
object of much attention in recent years due to its appli-
cation in Boolean masking, a powerful countermeasure for
cryptographic algorithms [8]. The study of LCD codes over
non-unital rings first appeared in [20] where the authors
investigated left LCD codes over E. We study LCD codes
over E and H , and explain why no nontrivial LCD codes
over I exist.

We show that self-dual codes and LCD codes over R can
be characterized in terms of their associated binary codes.
Moreover, we study the duality of the corresponding additive
codes over F4 with respect to the trace inner product.

To discuss the notions of self-dual codes and LCD codes,
we address general properties of the dual of linear codes
over R. Through our investigation of duality, we prove a
MacWilliams formula [12], which relates the weight enumer-
ator of a linear code to that of its dual, for codes over the
non-commutative non-unital ring E, where the dual is our
two-sided dual.

The paper consists of seven sections. Section II recalls
some background material on binary codes and additive
codes over F4 as well as general terminologies on linear
codes overR. Sections III, IV, and V are devoted to studying
codes over I , E, and H , respectively. As a preparation for
the study of the main topic, we begin each of these three
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sections by taking a closer look at the structure of linear
codes over each particular ring. Then we proceed to study
the duality of codes and prove various specific results on
self-dual codes and LCD codes. Section VI summarizes
the relationships among different classes of codes over R.
Section VII concludes the article.

II. DEFINITIONS AND NOTATIONS
A. RINGS OF ORDER FOUR
We describe the main properties of the rings I , E, and H
of order four. These rings are defined by relations on two
generators a and b. We shall write c = a+ b for all three
rings.

The ring I is defined by

I = 〈a, b | 2a = 2b = 0, a2 = b, ab = 0〉.

It is a non-unital commutative ring with characteristic two.
The ring is local with maximal ideal {0, b}. Its multiplication
table is given in Table 1.

TABLE 1. Multiplication table for the ring I

× 0 a b c

0 0 0 0 0
a 0 b 0 b

b 0 0 0 0
c 0 b 0 b

The ring E is defined by

E = 〈a, b | 2a = 2b = 0, a2 = a, b2 = b, ab = a, ba = b〉.

It is a non-unital non-commutative ring with characteristic
two. The ring is local with maximal ideal {0, c}. Its multipli-
cation table is given in Table 2.

TABLE 2. Multiplication table for the ring E

× 0 a b c

0 0 0 0 0
a 0 a a 0
b 0 b b 0
c 0 c c 0

The ring H is defined by

H = 〈a, b | 2a = 2b = 0, a2 = 0, b2 = b, ab = ba = 0〉.

It is a non-unital commutative ring with characteristic two.
The ring is semi-local with two maximal ideals {0, a} and
{0, b}. Its multiplication table is given in Table 3.

TABLE 3. Multiplication table for the ring H

× 0 a b c

0 0 0 0 0
a 0 0 0 0
b 0 0 b b

c 0 0 b b

For further details on the properties of R, we refer the
reader to [2]–[4].

B. CODES
We recall some preliminary notions and terminologies of
binary codes, additive codes over F4, and codes overR.

1) Binary linear codes
An [n, k] binary code C of length n and dimension k is a
subspace of Fn2 . The (Hamming) weight wt(x) of x ∈ C is
the number of nonzero coordinates in x. The dual C⊥ of C
is an [n, n− k] code defined as

C⊥ = {y ∈ Fn2 | x · y = 0 for all x ∈ C}

where x · y =
∑n
i=1 xiyi denotes the standard inner product

in Fn2 . A binary linear code C is self-orthogonal if C ⊆ C⊥

and self-dual if C = C⊥. The length n of a self-dual code is
even and its dimension is n/2. A binary code C is linear with
complementary dual (LCD) if C ∩ C⊥ = {0}. Two binary
codes are permutation equivalent if there is a permutation of
coordinates that maps one to the other.

2) Additive codes over F4

Consider the finite field F4 consisting of the four elements
{0, 1, ω, ω2} where ω2 = 1 + ω. An (n, 2k) additive code
over F4 of length n and size 2k is an additive subgroup of
Fn4 . The trace inner product 〈u,v〉T of vectors u,v ∈ Fn4 is
defined as

〈u,v〉T = Tr(u · v2) = Tr

(
n∑
i=1

uiv
2
i

)
where Tr : F4 → F2 is the trace map defined by
Tr(u) = u+ u2. The trace dual C⊥T of an additive code C
of length n over F4 is defined as

C⊥T = {v ∈ Fn4 | 〈u,v〉T = 0 for all u ∈ C}.

If C is an (n, 2k) additive code over F4, then C⊥T is an
(n, 22n−k) additive code over F4. An additive code C over
F4 is trace self-orthogonal if C ⊆ C⊥T and trace self-dual
if C = C⊥T . An additive code C over F4 is additive with
complementary dual (ACD) if C ∩ C⊥T = {0}.

Remark 2.1. Any [n, k] binary code can be regarded as
an (n, 2k) additive code over F4 since Fn2 is an additive
subgroup of Fn4 .
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3) Codes over R
A linear code of length n over R is a left R-submodule
of Rn. The (Hamming) weight wt(x) of x ∈ Rn is the
number of nonzero coordinates in x. The inner product of
x = x1x2 . . . xn and y = y1y2 . . . yn in Rn is defined by
x · y =

∑n
i=1 xiyi.

The left dual C⊥L of a linear code C is the left module
defined by

C⊥L = {y ∈ Rn | y · x = 0 for all x ∈ C}.

The right dual C⊥R of a linear code C is the right module
defined by

C⊥R = {y ∈ Rn | x · y = 0 for all x ∈ C}.

A linear code C is self-orthogonal if for any x,y ∈ C,
x · y = 0. Thus, any self-orthogonal code C satisfies the
inclusionC ⊆ C⊥L∩C⊥R . A linear code of length n is quasi
self-dual (QSD) if it is self-orthogonal and of size 2n. A QSD
code where all of its codewords have even weight is called
Type IV. A linear code C is left self-dual (respectively, right
self-dual) if C = C⊥L (respectively, C = C⊥R ). A linear
code C of length n is left nice (respectively, right nice) if
|C||C⊥L | = 4n (respectively, |C||C⊥R | = 4n).

When R is commutative, C⊥R = C⊥L and thus we omit
the adjectives left and right and simply say dual and denote it
by C⊥. We do the same for the notions of self-dual and nice.

Two linear codes over R are permutation equivalent if
there is a permutation of coordinates that maps one to the
other.

We note that in the upcoming sections, ⊕ denotes the
direct sum of vector spaces over F2. This concept is used
to represent linear codes over R as additive codes over R;
where an additive code of length n over R is an additive
subgroup ofRn.

III. RESULTS ON LINEAR CODES OVER I

We begin this section by summarizing facts and notions
essential to our study for linear codes over I . A detailed
introduction on such codes can be found in [3].

To every linear code C of length n over I , there is an
additive code φI(C) over F4 such that φI is defined by the
alphabet substitution

0→ 0, a→ ω, b→ 1, c→ ω2,

extended in the natural way to a map from C to Fn4 .
There are two binary linear codes of length n associated

canonically with every linear code C of length n over I:
1) the residue code res(C) defined by

res(C) = {α(y) | y ∈ C}

whereα : I → F2 is the map defined byα(0) = α(b) = 0
and α(a) = α(c) = 1, extended componentwise from
C to Fn2 ,

2) the torsion code tor(C) defined by

tor(C) = {x ∈ Fn2 | bx ∈ C}.

The two binary codes satisfy the inclusion res(C) ⊆ tor(C)
and their sizes are related to the size of C by
|C| = | res(C)|| tor(C)|. Throughout this section, we let
k1 = dim(res(C)) and k2 = dim(tor(C)) − k1. The linear
codeC is said to be of type (k1, k2). We say that a linear code
is free if and only if k2 = 0. Equivalently, C is free if and
only if res(C) = tor(C). A QSD code C is quasi Type IV if
tor(C) is even.

A. STRUCTURE OF LINEAR CODES
As noted in [3, Section 4], two distinct linear codes over I
may share the same residue and torsion codes. This means
that codes over I do not have a unique algebraic representa-
tion via their two associated binary codes. Nevertheless, these
two binary codes are useful when studying the structure of
codes over I and their dual.

The following theorem gives a connection between any
linear code over I and its residue code.

Theorem 3.1. IfC is a linear code of length n over I , then
the following hold:

1) Every codeword c ∈ C can be written as c = au+ bv
for some u ∈ res(C) and v ∈ Fn2 .

2) If u ∈ res(C), then au + bv is a codeword in C for
some v ∈ Fn2 .

Proof. Let c ∈ C. We can write c in a b−adic decom-
position form as c = au+ bv where u,v ∈ Fn2 . Since
α(c) = α(au+ bv) = u, u ∈ res(C). This proves (1).
Now let u ∈ res(C). Then there exists c ∈ C such
that α(c) = u. We can write c in a b−adic de-
composition form as c = aw + bv where w,v ∈ Fn2 .
Observe that α(aw + bv) = w. On the other hand,
α(aw + bv) = α(c) = u. Hence, w = u and so au + bv
is a codeword in C. This proves (2).

The following corollary determines, from the residue code,
when a linear code is self-orthogonal.

Corollary 3.2. A linear code C of length n over I is self-
orthogonal if and only if res(C) is a binary self-orthogonal
code.

Proof. For any u1,u2 ∈ res(C) and v1,v2 ∈ Fn2 ,

(au1 + bv1) · (au2 + bv2) = b(u1 · u2).

Due to this and the relation between C and res(C) given in
Theorem 3.1, it follows that C is self-orthogonal if and only
if res(C) is self-orthogonal.

Now we study the close connection between the minimum
distance of any linear code over I and that of its torsion code.

Theorem 3.3. If C is a nonzero linear code over I , then
the minimum distance of C equals the minimum distance of
tor(C).

Proof. Let d be the minimum distance of C and let dt be the
minimum distance of tor(C). Then there exists a nonzero
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t ∈ tor(C) such that wt(t) = dt. Since b tor(C) ⊆ C and
wt(bt) = wt(t) = dt, d ≤ dt.
Now we prove that d ≥ dt. Let x ∈ C such that wt(x) = d.
By Theorem 3.1, x = au+ bv where u ∈ res(C) and
v ∈ Fn2 . Since C is nonzero, we have the following three
cases depending on u and v:
• If u = 0 and v 6= 0, then we have v ∈ tor(C) and

wt(x) = wt(bv) = wt(v) ≥ dt.
• If u 6= 0 and v = 0, then wt(x) = wt(au) = wt(u).
• If u,v 6= 0, then wt(x) ≥ wt(ax) = wt(bu) = wt(u).

Since u ∈ res(C) ⊆ tor(C), it follows that wt(u) ≥ dt.
Thus, in all cases, d = wt(x) ≥ dt.
Since d ≤ dt and d ≥ dt, it follows that d = dt.

B. DUALITY
The following theorem presents properties of the residue and
torsion codes of the dual of linear codes over I .

Theorem 3.4. IfC is a linear code of length n over I , then
the following hold:

1) res(C⊥) = res(C)⊥.
2) tor(C⊥) = Fn2 .

Proof. To prove (1), let u ∈ res(C⊥). By Theorem 3.1,
au+ bv is a codeword in C⊥ for some v ∈ Fn2 . Let
x ∈ res(C). By Theorem 3.1, ax+ by is a codeword in C
for some y ∈ Fn2 . By definition of C⊥,

0 = (au+ bv) · (ax+ by) = b(u · x).

Hence, u · x = 0 which implies that u ∈ res(C)⊥. There-
fore, res(C⊥) ⊆ res(C)⊥.
Now assume u ∈ res(C)⊥. Let c ∈ C. By Theorem 3.1,
c = ax+ by where x ∈ res(C) and y ∈ Fn2 . Observe that

au · c = au · (ax+ by) = b(u · x) = 0.

Hence, au ∈ C⊥ and α(au) = u which yields u ∈ res(C⊥).
Therefore, res(C)⊥ ⊆ res(C⊥). This proves (1).
To prove (2), we will show that Fn2 ⊆ tor(C⊥). Let
u ∈ Fn2 and let c ∈ C. By Theorem 3.1, c = ax+ by where
x ∈ res(C) and y ∈ Fn2 . Observe that

c · bu = (ax+ by) · bu = 0.

Hence, bu ∈ C⊥ which gives u ∈ tor(C⊥). Therefore,
Fn2 = tor(C⊥). This proves (2).

The dual of a linear code of length n over I can be written
uniquely in terms of the dual of its residue code and the
binary vector space Fn2 as the following theorem shows.

Theorem 3.5. IfC is a linear code of length n over I , then
C⊥ = a res(C)⊥ ⊕ bFn2 .

Proof. Let z ∈ C⊥. Applying Theorems 3.1 and 3.4, we
have z = ax+ by where x ∈ res(C⊥) = res(C)⊥ and
y ∈ Fn2 . This proves that C⊥ ⊆ a res(C)⊥ + bFn2 .
Now assume that w := au + bv ∈ a res(C)⊥ + bFn2 . Let

c ∈ C. By Theorem 3.1, c = ar+ bs where r ∈ res(C) and
s ∈ Fn2 . Observe that

w · c = (au+ bv) · (ar+ bs) = b(u · r) = 0.

Hence, w ∈ C⊥. Therefore, a res(C)⊥ + bFn2 ⊆ C⊥. This
proves that C⊥ = a res(C)⊥ + bFn2 . Since

|C⊥| = | res(C⊥)|| tor(C⊥)| = | res(C)⊥||Fn2 |

by Theorem 3.4, the sum is direct.

The size of the dual of any type (k1, k2) linear code of
length n over I equals 22n−k1 . Thus, we have the following
result.

Proposition 3.6. The only nice code over I is the zero
code.

Proof. Suppose C is a type (k1, k2) nice code of length n.
By the definition of nice codes and Theorem 3.5,

4n = |C||C⊥| = 22n+k1+k2

which holds if and only if k1 + k2 = 0. Since k1, k2 ≥ 0, it
follows that C is nice if and only if k1 = k2 = 0. Hence, the
only nice code over I is the zero code.

An interesting fact about the families of QSD codes and
self-dual codes of length n over I is the following.

Proposition 3.7. Let Q be the family of all QSD codes of
length n over I and let S be the family of all self-dual codes
of length n over I . Then Q∩ S = ∅.

Proof. Suppose that a linear code C over I is QSD and self-
dual. ThenC is nonzero and |C| = |C⊥| = 2n which implies
that C is nice. By Proposition 3.6, no such codes exist. This
means that a linear code over I can never simultaneously be
both QSD and self-dual.

1) Self-dual codes
Self-dual codes over I are characterized by means of their
residue and torsion codes as the following theorem shows.

Theorem 3.8. A linear code C of length n over I is self-
dual if and only if the following two conditions are satisfied:

1) res(C) is a self-dual binary code,
2) tor(C) = Fn2 .

Proof. Suppose that C is self-dual. Then C = C⊥. Conse-
quently, res(C) = res(C⊥) and tor(C) = tor(C⊥). By
Theorem 3.4, res(C) = res(C)⊥ and tor(C) = Fn2 .
Conversely, suppose that res(C) is self-dual and tor(C) = Fn2 .
By Theorems 3.1 and 3.5,

C ⊆ a res(C) + bFn2 = a res(C)⊥ + bFn2 = C⊥.

As |C| = | res(C)|| tor(C)| = | res(C)⊥||Fn2 | = |C⊥|, it
follows that C = C⊥ and hence C is self-dual.

Corollary 3.9. If B is a self-dual binary code of length n,
then B is a residue code of a self-dual code over I .
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Proof. Since B is self-dual and B ⊆ Fn2 , by [3, Theorem
4], the linear code C defined by C = aB + bFn2 is a self-
orthogonal code over I with res(C) = B and tor(C) = Fn2 .
By Theorem 3.8 and the self-duality of B, it follows that C
is self-dual.

By Theorem 3.8 and Corollary 3.9, self-dual codes over
I exist only for even lengths and there are as many type
(n/2, n/2) self-dual codes of length n over I as there are
[n, n/2] binary self-dual codes.

Theorem 3.10. Two self-dual codes over I are permuta-
tion equivalent if and only if their residue codes are permu-
tation equivalent.

Proof. Let C and C ′ be two permutation equivalent codes
over I . Then there is a permutation matrix P such that
C ′ = CP . Since α(C ′) = α(CP ) = α(C)P , it follows
that res(C) and res(C ′) are permutation equivalent.
Conversely, suppose that C and C ′ are self-dual codes
over I where res(C) and res(C ′) are permutation equiv-
alent. Then there is a permutation matrix P such that
res(C ′) = res(C)P . As Fn2 = Fn2 P , we have

a res(C ′) + bFn2 = a res(C)P + bFn2 P. (1)

Since C and C ′ are self-dual, by Theorems 3.5 and 3.8,
we have C = a res(C)⊕ bFn2 and C ′ = a res(C ′)⊕ bFn2 .
By (1), we obtain C ′ = CP , proving that C and C ′ are
permutation equivalent.

The following example shows that Theorem 3.10 may not
hold if the codes over I are not self-dual.

Example 3.11. The linear codes C and C ′ with generator
matrices (

a a b
0 b b

)
and

(
a a 0
0 b b

)
,

respectively, have the same residue code. In particular,
res(C) = res(C ′) = {000, 110}. However, C and C ′ are not
permutation equivalent as shown in the classification of QSD
codes in [3, Section 6]. Note that C and C ′ are not self-dual,
by Proposition 3.7.

From the results of this subsection, we see that there is
a one-to-one correspondence between inequivalent self-dual
binary codes and inequivalent self-dual codes over I of the
same length. In other words, classifying self-dual codes over
I , up to permutation equivalence, is equivalent to classifying
self-dual binary codes, up to equivalence. All binary self-dual
codes have been classified, up to equivalence, for length n
with 2 ≤ n ≤ 32 [10], [15], [17]. Using this classification
along with Theorem 3.8 and Corollary 3.9, the classification
of all self-dual codes over I of the same lengths is immediate.
We remark that by Theorems 3.3 and 3.8, all self-dual codes
over I have minimum distance equals 1.

To conclude this subsection, we note that the image of any
self-dual code over I under the map φI is never an additive

trace self-dual code over F4. However, the trace dual of this
image is an additive trace self-orthogonal code over F4.

Proposition 3.12. If C is a self-dual code of length 2n
over I , then φI(C)⊥T is trace self-orthogonal of size 2n; in
particular, φI(C) is not trace self-dual.

Proof. By Theorems 3.5 and 3.8, the self-duality of C
implies that C = a res(C) ⊕ b tor(C) with | res(C)| = 2n

and | tor(C)| = |F2n
2 | = 22n. Then, |φI(C)| = |C| = 23n

and |φI(C)⊥T | = 2n. Comparing cardinalities, we see that
φI(C) 6= φI(C)

⊥T which shows that φI(C) is not trace self-
dual.
We claim that res(C) = φI(C)

⊥T . Let u ∈ res(C) and
let x ∈ φI(C). Then, there exists a codeword ar+ bt
in C where r ∈ res(C) and t ∈ tor(C) such that
x = φI(ar+ bt) = ωr+ t. Observe that

〈x,u〉T = 〈ωr+ t,u〉T
= 〈ωr,u〉T + 〈t,u〉T
= Tr(ωr · u) + Tr(t · u).

Since C is self-dual, by Theorem 3.8, res(C) is self-dual
and therefore r · u = 0 which gives Tr(ωr · u) = 0. As
t · u ∈ {0, 1}, Tr(t · u) = 0. Thus, 〈x,u〉T = 0 proving
that u ∈ φI(C)

⊥T and consequently res(C) ⊆ φI(C)
⊥T .

The fact that | res(C)| = 2n = |φI(C)⊥T | implies that
res(C) = φI(C)

⊥T as claimed. Now observe that since
res(C) ⊆ tor(C), for any v ∈ res(C), bv ∈ C and thus
v = φI(bv) ∈ φI(C). Hence, we obtain res(C) ⊆ φI(C).
In particular, φI(C)⊥T ⊆ φI(C) which proves that φI(C)⊥T

is trace self-orthogonal.

2) LCD codes
Based on the following proposition, nontrivial LCD codes
over I do not exist.

Proposition 3.13. If C is a nonzero linear code of length
n over I , then C ∩ C⊥ 6= {0}.

Proof. Suppose that x is a nonzero codeword in C. By
Theorem 3.1, x = au + bv where u ∈ res(C) and v ∈ Fn2 .
We have two cases depending on u.
• If u = 0, then x = bv. Since bFn2 ⊆ C⊥ and x ∈ C, it

follows that x ∈ C ∩ C⊥.
• If u 6= 0, then ax = bu is a nonzero codeword in C.

Since bFn2 ⊆ C⊥ and ax ∈ C, we have ax ∈ C ∩ C⊥.
This proves that C ∩ C⊥ 6= {0}.

IV. RESULTS ON LINEAR CODES OVER E

We begin this section by summarizing facts and notions
essential to our study for linear codes over E. A detailed
introduction on such codes can be found in [4].

To every linear code C of length n over E, there is an
additive code φE(C) over F4 such that φE is defined by the
alphabet substitution

0→ 0, a→ ω, b→ ω2, c→ 1,
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extended in the natural way to a map from C to Fn4 .
There are two binary linear codes of length n associated

canonically with every linear code C of length n over E:
1) the residue code res(C) defined by

res(C) = {α(y) | y ∈ C}

whereα : E → F2 is the map defined byα(0) = α(c) = 0
and α(a) = α(b) = 1, extended componentwise from
C to Fn2 ,

2) the torsion code tor(C) defined by

tor(C) = {x ∈ Fn2 | cx ∈ C}.

The two binary codes satisfy the inclusion res(C) ⊆ tor(C)
and their sizes are related to the size of C by
|C| = | res(C)|| tor(C)|. Throughout this section, we let
k1 = dim(res(C)) and k2 = dim(tor(C)) − k1. The linear
codeC is said to be of type (k1, k2). We say that a linear code
is free if and only if k2 = 0. Equivalently, C is free if and
only if res(C) = tor(C).

A. STRUCTURE OF LINEAR CODES
The following two results improve Lemma 3 and Theorem
6 of [4] by removing the QSD requirement from their state-
ments.

Lemma 4.1. If C is a linear code of length n over E, then
a res(C) ⊆ C.

Proof. Let u ∈ res(C). Then there exists c ∈ C such that
α(c) = u. We can write c in a c−adic decomposition
form as c = ax+ cy where x,y ∈ Fn2 . Now observe that
u = α(c) = α(ax+ cy) = x. Hence, c = au+ cy. By lin-
earity of C, we have ac ∈ C and thus au ∈ C. Therefore,
a res(C) ⊆ C.

Theorem 4.2. If C is a linear code of length n over E,
then C = a res(C)⊕ c tor(C).

Proof. Let c ∈ C. We can write c in a c−adic decom-
position form as c = ax+ cy where x,y ∈ Fn2 . Since
α(c) = α(ax+ cy) = x, it follows that x ∈ res(C). By
Lemma 4.1, ax ∈ C. By linearity of C, cy ∈ C and hence
y ∈ tor(C). This proves that C ⊆ a res(C) + c tor(C). The
inclusion a res(C) + c tor(C) ⊆ C follows from the linear-
ity of C together with the facts that a res(C) ⊆ C and
c tor(C) ⊆ C. Hence, C = a res(C) + c tor(C). The sum
is direct since |C| = | res(C)|| tor(C)|.

Corollary 4.3. A linear code C over E is self-orthogonal
if and only if res(C) ⊆ tor(C)⊥.

Proof. From [4, Lemma 2], if C is self-orthogonal, then
res(C) ⊆ tor(C)⊥.
For the converse suppose that res(C) ⊆ tor(C)⊥ and let
x,y ∈ C. Then, by Theorem 4.2, x = ar1 + ct1 and
y = ar2 + ct2 where r1, r2 ∈ res(C) and t1, t2 ∈ tor(C).
Observe that

x · y = (ar1 + ct1) · (ar2 + ct2) = a(r1 · r2) + c(t1 · r2).

Since res(C) ⊆ tor(C)⊥ ⊆ res(C)⊥, it follows that
(r1 · r2) = (t1 · r2) = 0 and thus x · y = 0. This proves
that C is self-orthogonal.

The following theorem is the analogue of Theorem 3.3.

Theorem 4.4. If C is a nonzero linear code over E, then
the minimum distance of C equals the minimum distance of
tor(C).

Proof. Let d be the minimum distance of C and let dt be the
minimum distance of tor(C). Then there exists a nonzero
t ∈ tor(C) such that wt(t) = dt. Since c tor(C) ⊆ C and
wt(ct) = wt(t) = dt, d ≤ dt.
Now we prove that d ≥ dt. Let x ∈ C such that wt(x) = d.
By Theorem 4.2, x = au+ cv where u ∈ res(C) and
v ∈ tor(C). Since C is nonzero, we have the following three
cases depending on u and v:
• If u = 0 and v 6= 0, then wt(x) = wt(cv) = wt(v).
• If u 6= 0 and v = 0, then wt(x) = wt(au) = wt(u).
• If u,v 6= 0, then wt(x) ≥ wt(ax) = wt(au) = wt(u).

Since u ∈ res(C) ⊆ tor(C) and v ∈ tor(C), it follows that
wt(u),wt(v) ≥ dt. Therefore, in all cases d = wt(x) ≥ dt.
Since d ≤ dt and d ≥ dt, it follows that d = dt.

B. DUALITY
The following theorem presents properties of the residue and
torsion codes of the one-sided duals of linear codes over E.

Theorem 4.5. If C is a linear code of length n over E,
then the following hold:

1) res(C⊥L) = tor(C⊥L) = res(C)⊥.
2) res(C⊥R) = tor(C)⊥.
3) tor(C⊥R) = Fn2 .

Proof. To prove (1), it suffices to show that

tor(C⊥L) ⊆ res(C)⊥ ⊆ res(C⊥L).

Let v ∈ tor(C⊥L). Then, cv ∈ C⊥L . Let x ∈ res(C). By
Lemma 4.1, ax ∈ C. By definition of C⊥L ,

0 = cv · ax = c(v · x).

Hence, v · x = 0 which implies that v ∈ res(C)⊥, proving
that

tor(C⊥L) ⊆ res(C)⊥.

Now assume u ∈ res(C)⊥. Let c ∈ C. By Theorem 4.2,
c = ar+ ct where r ∈ res(C) and t ∈ tor(C). Observe that

au · c = au · (ar+ ct) = a(u · r) = 0.

So, au ∈ C⊥L . Since α(au) = u, u ∈ res(C⊥L). Hence,

res(C)⊥ ⊆ res(C⊥L).

Thus, tor(C⊥L) ⊆ res(C)⊥ ⊆ res(C⊥L). This, together
with the fact that res(C⊥L) ⊆ tor(C⊥L) yield

res(C⊥L) = tor(C⊥L) = res(C)⊥.
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To prove (2), assume u ∈ res(C⊥R). By Lemma 4.1,
au ∈ C⊥R . Let x ∈ tor(C). Then, cx ∈ C. By definition of
C⊥R , 0 = cx ·au = c(x ·u). Hence, x ·u = 0 which implies
that u ∈ tor(C)⊥. Therefore, res(C⊥R) ⊆ tor(C)⊥.
Now assume v ∈ tor(C)⊥. Let c ∈ C. By Theorem 4.2,
c = ar + ct where r ∈ res(C) ⊆ tor(C) and t ∈ tor(C).
Observe that

c · av = (ar+ ct) · av = a(r · v) + c(t · v) = 0

So, av ∈ C⊥R . Since α(av) = v, v ∈ res(C⊥R). Hence,
tor(C)⊥ ⊆ res(C⊥R). Thus we obtain the equality
res(C⊥R) = tor(C)⊥.
To prove (3), we need to show that Fn2 ⊆ tor(C⊥R). Let
u ∈ Fn2 and c ∈ C. By Theorem 4.2, c = ax + cy where
x ∈ res(C) and y ∈ tor(C). Observe that

c · cu = (ax+ cy) · cu = 0.

Hence, cu ∈ C⊥R and so u ∈ tor(C⊥R). Therefore, we have
Fn2 = tor(C⊥R).

Corollary 4.6. If C is a linear code of length n over E,
then the following hold:

1) C⊥L = a res(C)⊥ ⊕ c res(C)⊥.
2) C⊥R = a tor(C)⊥ ⊕ cFn2 .

Proof. The result follows immediately from Theorems 4.2
and 4.5.

As a consequence of this corollary, we obtain the following
two propositions.

Proposition 4.7. A linear code C of length n over E is
both left nice and right nice if and only if C is zero.

Proof. Suppose that C is a type (k1, k2) code of length n
over E. By Corollary 4.6,

|C||C⊥L | = 22n+k2 and |C||C⊥R | = 22n+k1 .

Hence, C is both left nice and right nice if and only if k1 =
k2 = 0. Equivalently, C is both left nice and right nice if and
only if C is zero.

Proposition 4.8. If C is a nonzero linear code of length n
over E, then C⊥R 6= C⊥L .

Proof. Suppose that C⊥R = C⊥L . By Corollary 4.6,
we have tor(C)⊥ = res(C)⊥ = Fn2 which implies that
tor(C) = res(C) = {0} and so C is zero.

This shows that no self-dual codes nor nontrivial nice
codes over E, as defined in [4], exist. This motivates us to
modify the conditions of these classes of codes. Thus we
define the two-sided dual of a code over E and redefine the
self-duality and the nice property accordingly as follows:

Definition 4.9. Let C be a linear code of length n over E.
• The two-sided dual of C, denoted by C⊥, is defined as
C⊥ = C⊥L ∩ C⊥R .

• C is self-dual provided that C = C⊥.
• C is nice provided that |C||C⊥| = 4n.

Similar to Theorem 4.5, the following theorem presents
properties of the residue and torsion codes of the two-sided
dual of linear codes over E.

Theorem 4.10. If C is a linear code of length n over E,
then the following hold:

1) res(C⊥) = tor(C)⊥.
2) tor(C⊥) = res(C)⊥.

Proof. By Theorem 4.5 and the fact that res(C) ⊆ tor(C), it
follows that

res(C⊥) = res(C⊥L ∩ C⊥R)

= res(C⊥L) ∩ res(C⊥R)

= res(C)⊥ ∩ tor(C)⊥

= tor(C)⊥.

Also by Theorem 4.5, we have

tor(C⊥) = tor(C⊥L ∩ C⊥R)

= tor(C⊥L) ∩ tor(C⊥R)

= res(C)⊥ ∩ Fn2
= res(C)⊥.

Corollary 4.11. If C is a linear code over E, then
C⊥ = a tor(C)⊥ ⊕ c res(C)⊥.

Proof. By Theorems 4.2 and 4.10,

C⊥ = a res(C⊥)⊕ c tor(C⊥) = a tor(C)⊥ ⊕ c res(C)⊥.

Corollary 4.12. Let C be a linear code of length n over
E. The following are equivalent:

1) C is free.
2) C is left nice.
3) C⊥ = C⊥L .

Proof. By Theorem 4.2 and Corollary 4.6, we have
|C||C⊥L | = 22n+k2 . Hence, C is free if and only if C is left
nice; proving that (1) and (2) are equivalent. By Corollaries
4.6 and 4.11, C⊥ = C⊥L if and only if tor(C)⊥ = res(C)⊥

or equivalently C is free; hence (1) and (3) are equiva-
lent.

Corollary 4.13. Let C be a linear code of length n over
E. The following are equivalent:

1) res(C) = {0}.
2) C is right nice.
3) C⊥ = C⊥R .

Proof. By Theorem 4.2 and Corollary 4.6, we have
|C||C⊥R | = 22n+k1 . Hence, C is right nice if and only if
k1 = 0 or equivalently res(C) = {0}; proving that (1) and
(2) are equivalent. By Corollaries 4.6 and 4.11, C⊥ = C⊥R

if and only if res(C)⊥ = Fn2 or equivalently res(C) = {0};
hence (1) and (3) are equivalent.
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Corollary 4.14. Every right nice code over E is self-
orthogonal.

Proof. Suppose that C is right nice. By Corollary 4.13,
res(C) = {0}. Hence, res(C) ⊆ tor(C)⊥. By Corollary
4.3, C is self-orthogonal.

The following two identities do not hold in general for
codes over other non-unital rings of order four.

Corollary 4.15. If C is a linear code over E, then
(C⊥)⊥ = C.

Proof. By Theorem 4.10 and Corollary 4.11, (C⊥)⊥ =
a tor(C⊥)⊥⊕ c res(C⊥)⊥ = a res(C)⊕ c tor(C) = C.

Corollary 4.16. If C is a linear code of length n over E,
then C is nice.

Proof. By Theorem 4.2 and Corollary 4.11,

|C||C⊥| = | res(C)|| tor(C)|| res(C)⊥|| tor(C)⊥| = 4n.

By definition, C is nice.

Remark 4.17. In view of Definition 4.9, the notions
of QSD codes and self-dual codes over E are equiv-
alent. To see this, suppose that C is a QSD code of
length n. Then C ⊆ C⊥ and |C| = 2n. By Corollary 4.16,
|C⊥| = 4n/2n = 2n = |C|. Hence, C = C⊥ and therefore
C is self-dual. Conversely, if C is a self-dual code of length
n, then C = C⊥ and |C| = |C⊥|. By Corollary 4.16,
|C|2 = 4n. Hence |C| = 2n and therefore C is QSD.

To prepare for investigating the MacWilliams formula for
linear codes over E, we recall from [7], [12] that the weight
enumerator of any linear or additive codeC is the polynomial
W (x, y) =

∑n
i=0Aix

n−jyj where the sequenceA0, . . . , An
is the weight distribution of C. That is, Ai is the number of
codewords in C of weight i. We state the following useful
theorem from [7] without proof.

Theorem 4.18. [7, Theorem 5]. If C is an (n, 2k) ad-
ditive code over F4 with weight enumerator W (x, y), the
weight enumerator of the trace dual code C⊥T is given by
2−kW (x+ 3y, x− y).

To establish the MacWilliams formula for linear codes
over E, we also need the following identity.

Theorem 4.19. If C is a linear code of length n over E,
then φE(C⊥) = φE(C)

⊥T .

Proof. Let φE(y) ∈ φE(C⊥) and φE(x) ∈ φE(C). By
Corollary 4.11 and Theorem 4.2, y = au+ cv and

x = ar+ ct such that u ∈ tor(C)⊥, v ∈ res(C)⊥, r ∈ res(C),
and t ∈ tor(C). Observe that

〈φE(x), φE(y)〉T = Tr(φE(x) · (φE(y))2)
= Tr(φE(ar+ ct) · (φE(au+ cv))2)

= Tr((ωr+ t) · (ωu+ v)2)

= Tr((ωr+ t) · (ω2u+ v))

= Tr(r · u+ ωr · v + ω2t · u+ t · v)
= r · v + t · u
= 0.

This proves that φE(C⊥) ⊆ φE(C)⊥T . Since

|φE(C⊥)| = |C⊥| = 22n−(2k1+k2) = |φE(C)⊥T |,

it follows that φE(C⊥) = φE(C)
⊥T .

Theorem 4.20. If C is a linear code of type (k1, k2)
over E with weight enumerator WC(x, y), then the weight
enumerator of the dual code C⊥ is given by

WC⊥(x, y) =
1

2(2k1+k2)
WC(x+ 3y, x− y).

Proof. Since C is a linear code of type (k1, k2) over E,
φE(C) is an (n, 22k1+k2) additive code over F4 with

WC(x, y) =WφE(C)(x, y)

and

WC⊥(x, y) =WφE(C⊥)(x, y) =WφE(C)⊥T (x, y),

by Theorem 4.19. Hence, by Theorem 4.18,

WC⊥(x, y) =
1

2(2k1+k2)
WC(x+ 3y, x− y).

1) Self-dual codes
The following two theorems characterize (one-sided) self-
dual codes over E.

Theorem 4.21. If C is a linear code of length n over E,
then the following hold:

1) C is left self-dual if and only if C is free and res(C) is
self-dual.

2) C is right self-dual if and only if C is of type (0, n).

Proof. We use Theorem 4.2 and Corollary 4.6 to es-
tablish the results. Observe that C = C⊥L if and only
if res(C) = res(C)⊥ = tor(C). Thus (1) holds. Now ob-
serve that C = C⊥R if and only if res(C) = tor(C)⊥

and tor(C) = Fn2 . Equivalently, C = C⊥R if and only if
res(C) = {0} and tor(C) = Fn2 . Thus (2) now follows.

Theorem 4.22. A linear code C over E is self-dual if and
only if res(C) = tor(C)⊥.

Proof. The result follows immediately from Theorem 4.2
and Corollary 4.11.
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Corollary 4.23. Let C be a linear code of length n over
E. If C is either left self-dual or right self-dual, then C is
self-dual.

Proof. If C is left self-dual, then by Theorem 4.21,
res(C) = res(C)⊥ = tor(C). In particular, res(C) = tor(C)⊥.
By Theorem 4.22, C is self-dual.
If C is right self-dual, then by Theorem 4.21, res(C) = {0}
and tor(C) = Fn2 which imply that res(C) = tor(C)⊥. By
Theorem 4.22, C is self-dual.

The converse of Corollary 4.23 is not true in general as the
following examples show.

Example 4.24. The repetition code of length 2 defined by

C = {00, aa, bb, cc}

is self-dual and left self-dual but not right self-dual, since
• C⊥L = C,
• C⊥R = {00, aa, bb, cc, ab, ba, 0c, c0},
• C⊥ = C.

Example 4.25. The linear code defined by

C = {00, 0c, c0, cc}

is self-dual and right self-dual but not left self-dual, since
• C⊥L = E2,
• C⊥R = C,
• C⊥ = C.

Example 4.26. The linear code defined by

C = {000, a0a, b0b, c0c, 0c0, ccc, aca, bcb}

is self-dual but neither left self-dual nor right self-dual, since
• C⊥L = {000, a0a, 0a0, aaa, b0b, 0b0, bbb, c0c, 0c0, ccc,
aba, aca, bcb, bab, cac, cbc},

• C⊥R = {000, a0a, b0b, c00, 0c0, 00c, cc0, c0c, 0cc, ccc,
b0a, aca, a0b, bca, acb, bcb},

• C⊥ = C.

Corollary 4.27. Every left self-dual code over E is
Type IV.

Proof. LetC be a left self-dual code. By Corollary 4.23,C is
self-dual and thus C is QSD by Remark 4.17. From Theorem
4.21, res(C) is self-dual. Hence, res(C) contains the all-one
codeword. By [4, Theorem 4], C is Type IV.

From Theorem 4.21 it follows that for each positive integer
n, the linear code cFn2 is the unique right self-dual code of
length n over E. To classify left self-dual codes, we need the
following theorem.

Theorem 4.28. Two free codes over E are permutation
equivalent if and only if their residue codes are permutation
equivalent.

Proof. Let C and C ′ be two permutation equivalent codes
over E. Then there is a permutation matrix P such that
C ′ = CP . Since α(C ′) = α(CP ) = α(C)P , it follows

that res(C) and res(C ′) are permutation equivalent.
Conversely, suppose that C and C ′ are free codes over
E where res(C) and res(C ′) are permutation equiva-
lent. By Theorem 4.2 and the freeness of the codes,
C = a res(C)⊕ c res(C) and C ′ = a res(C ′)⊕ c res(C ′).
As res(C) and res(C ′) are permutation equivalent, there is
a permutation matrix P such that res(C ′) = res(C)P . Thus,
we have

C ′ = a res(C ′)⊕c res(C ′) = a res(C)P⊕c res(C)P = CP

which proves that C and C ′ are permutation equivalent.

The following example shows that Theorem 4.28 may not
hold if the codes are not free.

Example 4.29. The linear codes C and C ′ with generator
matrices (

a a 0
0 c 0

)
and

(
a 0 a
0 c 0

)
,

respectively, have residue codes res(C) = {000, 110} and
res(C ′) = {000, 101} which are permutation equivalent.
However, C and C ′ are not permutation equivalent as they
have weight distributions [< 0, 1 >,< 1, 2 >,< 2, 5 >] and
[< 0, 1 >,< 1, 1 >, < 2, 3 >,< 3, 3 >], respectively. Note
that C and C ′ are not free.

As all left-self dual codes overE are necessarily free codes
by Theorem 4.21, the following corollary is a special case of
Theorem 4.28.

Corollary 4.30. Two left self-dual codes over E are per-
mutation equivalent if and only if their residue codes are
permutation equivalent.

Similar to the case of self-dual codes over I , using the
classification of self-dual binary codes along with Theorem
4.21, the classification of all left self-dual codes over E of
the same lengths is immediate.

To conclude this subsection, we note that the image of any
self-dual or one-sided self-dual code over E under the map
φE is an additive trace self-dual code over F4.

Corollary 4.31. If C is a self-dual code over E, then
φE(C) is trace self-dual.

Proof. The result follows immediately from Theorem 4.19.

Corollary 4.32. If C is a left self-dual code over E, then
φE(C) is trace self-dual.

Proof. By Theorem 4.21, C is free. By Corollary 4.12,
C⊥ = C⊥L and thus C is self-dual. By Corollary 4.31,
φE(C) is trace self-dual.

Corollary 4.33. If C is a right self-dual code of length n
over E, then φE(C) is trace self-dual.

Proof. By Theorem 4.21, C = cFn2 and thus φE(C) = Fn2
which is an additive trace self-dual code over F4.
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The converse of the preceding three corollaries is not true
in general. The (12, 212, 6) dodecacode D is trace self-dual
[7] but φ−1E (D) is not a linear code over E [4, Example 2].

2) LCD codes
The study of LCD codes over non-unital rings first appeared
in [20] where the authors investigated left LCD codes over E
and defined this notion as follows:

Definition 4.34. A code C over E is left linear with
complementary dual (left LCD) if it is left nice and
C ∩ C⊥L = {0}.

We define LCD codes over E where C⊥ = C⊥L ∩ C⊥R

as follows:

Definition 4.35. A code C over E is linear with comple-
mentary dual (LCD) if C ∩ C⊥ = {0}.

LCD codes over E can be characterized via their residue
and torsion codes as in the following theorem.

Theorem 4.36. Let C be a linear code over E. Then the
following hold:

1) If C is LCD, then res(C) and tor(C) are binary LCD
codes.

2) If C is free and res(C) is a binary LCD code, then C
is LCD.

Proof. First assume that C is an LCD code over E. By
definition, C ∩ C⊥ = {0}. By Theorem 4.2 and Corol-
lary 4.11, it follows that res(C) ∩ tor(C)⊥ = {0} and
tor(C) ∩ res(C)⊥ = {0}. Suppose x ∈ res(C) ∩ res(C)⊥.
Since res(C) ⊆ tor(C), x ∈ tor(C) ∩ res(C)⊥. Hence,
x = 0 which implies that res(C) is LCD. Similarly, suppose
that x ∈ tor(C) ∩ tor(C)⊥. Since tor(C)⊥ ⊆ res(C)⊥,
x ∈ tor(C) ∩ res(C)⊥. Hence, x = 0 which implies that
tor(C) is LCD. This proves (1).
Now assume that res(C) is LCD and C is free. Then we have
res(C) ∩ res(C)⊥ = {0} and res(C) = tor(C). In particu-
lar, res(C) ∩ tor(C)⊥ = {0} and tor(C) ∩ res(C)⊥ = {0}.
By Theorem 4.2 and Corollary 4.11, C ∩ C⊥ = {0} and so
C is LCD. This proves (2).

For free codes overE, there is no distinction between LCD
and left LCD codes.

Theorem 4.37. A linear code over E is left LCD if and
only if it is LCD and free.

Proof. Suppose that C is left LCD. By definition, C is left
nice and C ∩ C⊥L = {0}. By Corollary 4.12, C is free. By
definition of C⊥, C ∩ C⊥ ⊆ C ∩ C⊥L . This implies that C
is LCD.
For the converse, suppose that C is LCD and free. By Corol-
lary 4.12, C is left nice and C ∩ C⊥L = C ∩ C⊥ = {0}.
Hence C is left LCD.

The following simple examples illustrate Theorems 4.36
and 4.37.

Example 4.38. Let C be the linear code defined by
C = {00, a0, b0, c0}. Then C⊥ = C⊥L = {00, 0a, 0b, 0c}.
Therefore, C ∩ C⊥ = C ∩ C⊥L = {0} and C is left-nice.
Hence, C is LCD and left LCD. Note that the binary code
res(C) = {00, 10} is LCD andC is free as tor(C) = res(C).

Example 4.39. Let C be the linear code defined by
C = {00, a0, b0, c0, 0c, cc, bc, ac}. ThenC⊥ = {00, 0c} and
C⊥L = {00, 0a, 0b, 0c}. Hence, C is neither LCD nor left
LCD. Note that the binary codes res(C) = {00, 10} and
tor(C) = F2

2 are LCD. However, C is not free.

In the next results we investigate the LCD property of the
dual of LCD codes over E.

Corollary 4.40. If C is an LCD code over E, then C⊥ is
LCD.

Proof. The result follows immediately from Corollary 4.15
and the definition of LCD codes.

Corollary 4.41. IfC is a free LCD code overE, thenC⊥L

is LCD.

Proof. By Corollary 4.12, since C is free, C is left nice and
C⊥L = C⊥. Since C is LCD, C⊥ is LCD by Corollary 4.40.
Thus, C⊥L is LCD.

Corollary 4.42. If C is a nonzero linear code of length n
over E, then C⊥R is not LCD.

Proof. By Theorem 4.5 and Corollary 4.11, we have
(C⊥R)⊥ = a tor(C⊥R)⊥ ⊕ c res(C⊥R)⊥ = c tor(C) ⊆
cFn2 ⊆ C⊥R where the last inclusion follows from Corollary
4.6. Since C is nonzero, tor(C) must also be nonzero and
thus C⊥R ∩ (C⊥R)⊥ 6= {0}. This proves that C⊥R is not
LCD.

Recall that an additive code D over F4 is ACD if
D ∩D⊥T = {0}. The image of any LCD or left LCD code
over E under the map φE is ACD.

Corollary 4.43. If C is an LCD code over E, then φE(C)
is ACD.

Proof. Since C is an LCD code over E and φE is a
bijective map, we have {0} =φE({0}) =φE(C ∩ C⊥) =
φE(C) ∩ φE(C⊥) =φE(C) ∩ φE(C)⊥T where the last
equality follows from Theorem 4.19.

Corollary 4.44. If C is a left LCD code over E, then
φE(C) is ACD.

Proof. By Theorem 4.37, C is LCD. By Corollary 4.43,
φE(C) is ACD.

The converse of Corollaries 4.43 and 4.44 are not true in
general as the next example shows.
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Example 4.45. Let D be the (4, 24) additive code over F4

with generator matrix
1 1 0 0
0 0 1 1
ω ω 0 ω
0 ω ω ω

 .

Then D is ACD as shown in [21, Example 2]. The residue
and the torsion codes of C over E where φE(C) = D
are res(C) = {0000, 1101, 0111, 1010} and tor(C) =
{0000, 1100, 0011, 1111}. Since res(C) 6⊆ tor(C), C is not
linear and thus not LCD.

We state the following theorem from [21] without proof.

Theorem 4.46. [21, Theorem 3]. If C is an (n, 2k) ACD
code over F4, then k is even.

Corollary 4.47. If C is a type (k1, k2) LCD code over E,
then k2 is even.

Proof. By Corollary 4.43, φE(C) is an (n, 22k1+k2) ACD
code over F4. By Theorem 4.46, 2k1+k2 is even which yields
that k2 is even.

Remark 4.48. We restrict our investigation in this section
on LCD and left LCD codes overE without mentioning right
LCD codes since there are no such codes over E, as shown
in [20, Remark 1].

V. RESULTS ON LINEAR CODES OVER H

We begin this section by summarizing facts and notions
essential to our study for linear codes over H . A detailed
introduction on such codes can be found in [2].

To every linear code C of length n over H , there is an
additive code φH(C) over F4 such that φH is defined by the
alphabet substitution

0→ 0, a→ ω, b→ 1, c→ ω2,

extended in the natural way to a map from C to Fn4 .
There are two binary linear codes, namely Ca and Cb, of

length n associated canonically with every linear code C of
length n over H;

1) Ca = αb(C) where αb : H → F2 is the map defined
by αb(0) = αb(b) = 0 and αb(a) = αb(c) = 1,
extended componentwise from C to Fn2 ,

2) Cb = αa(C) where αa : H → F2 is the map defined
by αa(0) = αa(a) = 0 and αa(b) = αa(c) = 1,
extended componentwise from C to Fn2 .

Any linear code C over H can be written as
C = aCa ⊕ bCb. The code C is self-orthogonal if and only if
Cb is self-orthogonal [2, Lemma 1]. A QSD code C is quasi
Type IV if Ca is even.

A. STRUCTURE OF LINEAR CODES
The minimum distance of a linear code over H does not
exceed the minimum distance of either of its associated
binary codes.

Theorem 5.1. Let C = aCa ⊕ bCb be a linear code over
H where Ca and Cb are nonzero binary codes. The minimum
distance d of C is d = min{d1, d2} where d1 and d2 are the
minimum distances of Ca and Cb, respectively.

Proof. Since d1 and d2 are the minimum distances of Ca and
Cb, respectively, there exist nonzero binary vectors u ∈ Ca
and v ∈ Cb such that wt(u) = d1 and wt(v) = d2. Since
aCa ⊆ C and bCb ⊆ C, it follows that au, bv ∈ C with
wt(au) = wt(u) = d1 and wt(bv) = wt(v) = d2. This
means that d ≤ min{d1, d2}.
Now we prove that d ≥ min{d1, d2}. Let w ∈ C such that
wt(w) = d. Then, w = ax+ by where x ∈ Ca and y ∈ Cb.
Since C is nonzero, we have the following three cases de-
pending on x and y:

• If x = 0 and y 6= 0, then

wt(w) = wt(by) = wt(y) ≥ d2.

• If x 6= 0 and y = 0, then

wt(w) = wt(ax) = wt(x) ≥ d1.

• If x,y 6= 0, then

wt(w) ≥ wt(bw) = wt(by) = wt(y) ≥ d2.

In all cases, d = wt(w) ≥ min{d1, d2}.
Since d ≤ min{d1, d2} and d ≥ min{d1, d2}, it follows that
d = min{d1, d2}.

The following result shows the relationship between the
permutation equivalence of two linear codes over H and that
of their constituents.

Theorem 5.2. Let C = aCa ⊕ bCb and C ′ = aC ′a ⊕ bC ′b
be two linear codes over H . Then C and C ′ are permutation
equivalent if and only if there is a permutation which sends
(Ca, Cb) to (C ′a, C

′
b).

Proof. Let C and C ′ be two permutation equivalent
codes over H . Then there is a permutation matrix P
such that C ′ = CP . Since αa(C

′) = αa(CP ) = αa(C)P
and αb(C ′) = αb(CP ) = αb(C)P , it follows that P sends
(Ca, Cb) to (C ′a, C

′
b).

Conversely, suppose that P is a permutation matrix which
sends (Ca, Cb) to (C ′a, C

′
b). Then,

aC ′a ⊕ bC ′b = aCaP ⊕ bCbP

and thus C ′ = CP , proving that C and C ′ are permutation
equivalent.

B. DUALITY
To prepare for the study of self-dual and LCD codes over H ,
we need the following theorem.

Theorem 5.3. If C = aCa⊕bCb is a linear code of length
n over H , then C⊥ = aFn2 ⊕bC⊥b .
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Proof. Let c ∈ C⊥. We can write c as c = au + bv where
u,v ∈ Fn2 . To prove that v ∈ C⊥b , let t ∈ Cb. As bCb ⊆ C,
bt ∈ C. By definition,

0 = c · bt = (au+ bv) · bt = b(v · t).

Hence, v · t = 0 which implies that v ∈ C⊥b . Thus,
c ∈ aFn2 +bC⊥b . Therefore, C⊥ ⊆ aFn2 +bC⊥b .
Now assume that c = au + bv ∈ aFn2 +bC⊥b . Let w ∈ C.
Then, w = ax+ by where x ∈ Ca and y ∈ Cb. Observe that

c ·w = (au+ bv) · (ax+ by) = b(v · y) = 0.

Hence, c ∈ C⊥. Therefore, aFn2 + bC⊥b ⊆ C⊥. This proves
the equality C⊥ = aFn2 +bC⊥b . The sum is direct since aFn2
and bC⊥b have a trivial intersection.

Corollary 5.4. Let C = aCa ⊕ bCb be a linear code of
length n over H . Then, (C⊥)⊥ = C if and only if Ca = Fn2 .

Proof. By Theorem 5.3, (C⊥)⊥ = aFn2 ⊕bCb. Hence,
(C⊥)⊥ = C if and only if Ca = Fn2 .

Corollary 5.5. Let C = aCa ⊕ bCb be a linear code of
length n over H . Then, C is nice if and only if Ca = {0}.

Proof. Let ka and kb denote the dimensions of Ca and Cb,
respectively. Then we have |C| = |Ca||Cb| = 2ka+kb and
|C⊥| = |Fn2 ||C⊥b | = 22n−kb from Theorem 5.3. Therefore,
|C||C⊥| = 22n+ka . Hence, |C||C⊥| = 4n if and only if
ka = 0. Equivalently, C is nice if and only if Ca = {0}.

1) Self-dual codes
We characterize self-dual codes over H in terms of their
associated binary codes.

Theorem 5.6. A linear code C = aCa ⊕ bCb of length n
overH is self-dual if and only if the following two conditions
are satisfied:

1) Cb is a self-dual binary code,
2) Ca = Fn2 .

Proof. The result follows from Theorem 5.3 and the defini-
tion of self-dual codes.

By Theorem 5.6, self-dual codes over H exist only for
even lengths and there are as many self-dual codes of length
n over H as there are [n, n/2] binary self-dual codes.

Corollary 5.7. Let C = aCa ⊕ bCb and C ′ = aC ′a ⊕ bC ′b
be two self-dual codes over H . Then C and C ′ are permu-
tation equivalent if and only if Cb and C ′b are permutation
equivalent.

Proof. The self-duality ofC andC ′ imply thatCa = C ′a = Fn2
by Theorem 5.6. Thus, by Theorem 5.2, C and C ′ are per-
mutation equivalent if and only if Cb and C ′b are permutation
equivalent.

From the preceding results, we see that there is a one-
to-one correspondence between inequivalent self-dual binary
codes and inequivalent self-dual codes over H of the same

length. Similar to the case of self-dual codes over I , using the
classification of self-dual binary codes along with Theorem
5.6, the classification of all self-dual codes over H of the
same lengths is immediate. We remark that by Theorems 5.1
and 5.6, all self-dual codes over H have minimum distance
equals 1.

The same observations on self-dual codes over I in Propo-
sitions 3.7 and 3.12 apply for self-dual codes over H as well.

Proposition 5.8. Let Q be the family of all QSD codes of
length n over H and let S be the family of all self-dual codes
of length n over H . Then Q∩ S = ∅.

Proof. Suppose that a linear code C over H is QSD
and self-dual. Then |C| = |C⊥| = 2n which implies that
|C||C⊥| = 4n. By Corollary 5.5, Ca = {0} contradicting
part (2) of Theorem 5.6. This means that a linear code over
H can never simultaneously be both QSD and self-dual.

Proposition 5.9. If C = aCa ⊕ bCb is a self-dual code of
length 2n over H , then φH(C)⊥T is trace self-orthogonal of
size 2n; in particular, φH(C) is not trace self-dual.

Proof. By Theorems 5.3 and 5.6, the self-duality of C
implies that |Ca| = |F2n

2 | = 22n and |Cb| = 2n. Then,
|φH(C)| = |C| = 23n and |φH(C)⊥T | = 2n. Comparing
cardinalities, we see that φH(C) 6= φH(C)⊥T which shows
that φH(C) is not trace self-dual.
We claim that ωCb = φH(C)⊥T . Let w ∈ Cb and let
x ∈ φH(C). Then, ωw ∈ ωCb and there exists a code-
word au+ bv in C where u ∈ Ca and v ∈ Cb such that
x = φH(au+ bv) = ωu+ v. Observe that

〈x, ωw〉T = 〈ωu+ v, ωw〉T
= 〈ωu, ωw〉T + 〈v, ωw〉T
= Tr(u ·w) + Tr(ω2v ·w).

Since C is self-dual, by Theorem 5.6, Cb is self-dual
and therefore v ·w = 0 which gives Tr(ω2v ·w) = 0.
As u ·w ∈ {0, 1}, Tr(u ·w) = 0. Thus, we obtain
〈x, ωw〉T = 0 proving that ωw ∈ φH(C)⊥T and con-
sequently ωCb ⊆ φH(C)⊥T . The fact that |Cb| =
2n = |φH(C)⊥T | implies that ωCb = φH(C)⊥T as
claimed. Now observe that since Cb ⊆ F2n

2 = Ca, we have
aCb ⊆ aCa ⊆ C and thus ωCb = φH(aCb) ⊆ φH(C). In
particular, φH(C)⊥T ⊆ φH(C) which proves that φH(C)⊥T

is trace self-orthogonal.

2) LCD codes
We define LCD codes over H as follows:

Definition 5.10. A code C over H is linear with comple-
mentary dual (LCD) if C ∩ C⊥ = {0}.

The following theorem provides a characterization of LCD
codes over H .

Theorem 5.11. A linear code C = aCa⊕ bCb of length n
over H is LCD if and only if C is nice and Cb is LCD.
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Proof. Suppose thatC is LCD. By definition,C ∩ C⊥ = {0}.
By Theorem 5.3, Ca ∩ Fn2 = {0} and Cb ∩ C⊥b = {0},
proving that Ca is zero and Cb is LCD. By Corollary 5.5, C
is nice and Cb is LCD.
Conversely, suppose that C is nice and Cb is LCD. By
Corollary 5.5, Ca is zero. Thus, Ca ∩ Fn2 = {0} and
Cb ∩ C⊥b = {0}. By Theorem 5.3, C ∩ C⊥ = {0}, proving
that C is LCD.

Corollary 5.12. Let C = aCa⊕bCb and C ′ = aC ′a⊕bC ′b
be two LCD codes over H . Then C and C ′ are permutation
equivalent if and only if Cb and C ′b are permutation equiva-
lent.

Proof. Since C and C ′ are LCD, by Theorem 5.11,
Ca = C ′a = {0}. Thus, by Theorem 5.2, C and C ′ are per-
mutation equivalent if and only if Cb and C ′b are permutation
equivalent.

The classification of LCD codes over H reduces to that
of LCD binary codes. A complete classification of binary
LCD codes was done in [6] for lengths up to 13. Using this
classification along with Theorem 5.11, the classification of
all LCD codes over H of the same lengths is immediate.

To conclude this subsection, we note that the image of
any LCD code over H under the map φH is never an ACD.
However, it is an additive trace self-orthogonal code over F4.

Proposition 5.13. If C = aCa ⊕ bCb is a nonzero
LCD code of length n over H , then φH(C) is trace self-
orthogonal; in particular, φH(C) is not ACD.

Proof. By Theorem 5.11 and Corollary 5.5, C = bCb. Then,
φH(C) = φH(bCb) = Cb and so φH(C)⊥T = C⊥T

b . Ob-
serve that for any x,y ∈ Cb, we have

〈x,y〉T = Tr(x · y2) = Tr(x · y) = 0.

This proves that Cb ⊆ C⊥T

b and φH(C) ⊆ φH(C)⊥T .
Hence, φH(C) is trace self-orthogonal. Since C is nonzero,
φH(C) ∩ φH(C)⊥T 6= {0}, proving that φH(C) is not
ACD.

VI. RELATIONS DIAGRAMS
In this section, we summarize the relationships among dif-
ferent classes of codes overR. These relations are illustrated
via diagrams in Figures 1, 2, 3. They give a general picture of
the intersections of the classes of codes over each ring. The
symbol ≡ denotes an equivalence of two notions.

Also, we list in Tables 4, 5, 6 the main properties of
each class of codes over a particular ring along with the
connections between different classes. We gather these facts
from the preceding sections as well as [2]–[5], [20].

A. CODES OVER THE RING I

In Table 4 assume that C is a linear code of length n over I .
We use this table to draw the relations diagram in Figure 1.

FIGURE 1. Classes of linear codes over the ring I

B. CODES OVER THE RING E

In Table 5 assume that C is a linear code of length n over E.
We use this table to draw the relations diagram in Figure 2.

FIGURE 2. Classes of linear codes over the ring E

C. CODES OVER THE RING H

In Table 6 assume that C = aCa ⊕ bCb is a linear code
of length n over H . We use this table to draw the relations
diagram in Figure 3.

FIGURE 3. Classes of linear codes over the ring H
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TABLE 4. Properties of different classes of linear codes over the ring I

Property Reference

(1) C is self-orthogonal if and only if res(C) is self-orthogonal Corollary 3.2
(2) C is nice if and only if C = {0} Proposition 3.6
(3) C is free if and only if res(C) = tor(C) [3, Definition]
(4) C is QSD if and only if C is self-orthogonal and |C| = 2n [3, Definition]
(5) C is quasi Type IV if and only if C is QSD and tor(C) is even [3, Definition]
(6) C is Type IV if and only if C is QSD and even [3, Definition]
(7) Every Type IV code is quasi Type IV [3, Remark]
(8) Every free QSD code is quasi Type IV [5, Corollary 1]
(9) C is self-dual if and only if res(C) is self-dual and tor(C) = Fn

2 Theorem 3.8
(10) C can never be self-dual and QSD at the same time Proposition 3.7
(11) C can never be self-dual and free at the same time Properties (3) and (9)
(12) C is LCD if and only if C = {0} Proposition 3.13

TABLE 5. Properties of different classes of linear codes over the ring E

Property Reference

(1) C is nice Corollary 4.16
(2) C is self-orthogonal if and only if res(C) ⊆ tor(C)⊥ Corollary 4.3
(3) C is self-dual if and only if res(C) = tor(C)⊥ Theorem 4.22
(4) C is QSD if and only if C is self-dual Remark 4.17
(5) C is Type IV if and only if C is QSD and even [4, Definition]
(6) C is free if and only if res(C) = tor(C) [4, Definition]
(7) C is left nice if and only if C is free Corollary 4.12
(8) C is right nice if and only if res(C) = {0} Corollary 4.13
(9) C is left self-dual if and only if res(C) is self dual and C is free Theorem 4.21

(10) C is left self-dual if and only if C is free self-dual Properties (3), (6), (9)
(11) Every left self-dual code is Type IV Corollary 4.27
(12) C is right self-dual if and only if C is of type (0, n) Theorem 4.21
(13) C is right self-dual if and only if C is right nice and self-dual Properties (3), (8), (12)
(14) C can never be both left self-dual and right self-dual Proposition 4.8
(15) C is both left nice and right nice if and only if C = {0} Proposition 4.7
(16) Every right nice code is self-orthogonal Corollary 4.14
(17) C is left LCD if and only if it is left nice and C ∩ C⊥L = {0} [20, Definition 3]
(18) If C is free and res(C) is a binary LCD code, then C is LCD Theorem 4.36
(19) C is left LCD if and only if it is LCD and free Theorem 4.37

TABLE 6. Properties of different classes of linear codes over the ring H

Property Reference

(1) C is self-orthogonal if and only if Cb is self-orthogonal [2, Lemma 1]
(2) C is QSD if and only if Cb is self-orthogonal and dim(Ca) = n− dim(Cb) [2, Lemma 1]
(3) C is quasi Type IV if and only if C is QSD and Ca is even [2, Definition]
(4) C is Type IV if and only if C is QSD and even [2, Definition]
(5) Every Type IV code is quasi Type IV [2, Remark]
(6) C is self-dual if and only if Cb is self-dual and Ca = Fn

2 Theorem 5.6
(7) C is nice if and only if Ca = {0} Corollary 5.5
(8) C can never be self-dual and QSD at the same time Proposition 5.8
(9) C can never be self-dual and nice at the same time Properties (6) and (7)

(10) C can never be QSD and nice at the same time Properties (2) and (7)
(11) C is LCD if and only if C is nice and Cb is LCD Theorem 5.11
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VII. CONCLUSION
In the present paper, we have aimed to lay down the theoret-
ical foundation of the duality of codes over three non-unital
rings of order four. The classes of self-orthogonal, self-dual,
quasi self-dual, and LCD codes have been considered for
each ring in turn. The properties of their associated binary
codes, as well as that of their quaternary images have been
established.

The main direction opened by this study is to extend these
results to non-unital rings of higher order. In particular self-
orthogonal codes over certain non-unital rings of order six
have been studied in [1]. This is a concrete motivation for
such an extension.
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