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Pressurised membranes are usually used for low cost structures (e.g. inflatable bed), impact2

protections (e.g air-bags) or sport balls. The last two examples deal with impacts on human body.3

Under-inflated protective membranes are not effective whereas over-inflated objects can cause injury4

at impact. The coefficient of restitution represents the ability of a membrane to dissipate energy5

during an impact. Its dependence on membrane properties and inflation pressure is investigated on6

a model experiment using a spherical membrane. Coefficient of restitution increases with inflation7

pressure but decreases with impact speed. For a spherical membrane, it is shown that kinetic energy8

is lost by transfer to vibration modes. A physical modelling of a spherical membrane impact is build9

considering a quasi-static impact with small indentation. Finally, the dependency of the coefficient10

of restitution with mechanical parameters, pressurisation and impact characteristics is given.11

I. INTRODUCTION

Pressurised elastic shells are ubiquitous, whether as12

natural or artificial systems. The latter case includes13

airbags [1], inflated helmets [2], inflated shoes [3, 4],14

airbag suits [5], inflatable structures [6, 7] and sport balls15

[8]. The inflation pressure allows to adjust the mechani-16

cal properties of these systems, as an increase in pressure17

increases the rigidity of the shell. The fact that the me-18

chanical properties of these systems can be easily changed19

makes them suitable for the interaction with humans and20

in particular for protection against impacts.21

The mechanical response of pressurised shells has been22

investigated in the limit of quasi-static deformations.23

A pressurised spherical shell indented locally has been24

shown to experience a wrinkling instability above a crit-25

ical indentation [9]. This observation was rationalised26

by considering that the overpressure introduces an effec-27

tive bending stiffness in the system that competes with28

the natural bending stiffness of the shell. The wrinkling29

pattern that develops above the instability threshold was30

latter captured by a linear stability analysis of the prob-31

lem [10].32

The limit of rapid deformations has been extensively33

studied in the case of a pressurised membrane impacting34

a rigid substrate [11]. In this situation, the contact dy-35

namics between the pressurised shell and the substrate36

can be characterised by a coefficient of restitution. This37

quantity corresponds to the ratio between the ingoing38

speed and the outgoing speed η = |Uout/U0|. The co-39

efficient of restitution reflects the loss of kinetic energy40

during the impact. η is unity for lossless impacts. How-41

ever, the simplicity of the definition of the coefficient of42

restitution masks the multiple possible physical origins43
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of energy loss for a pressurised membrane. A fraction of44

the membrane kinetic energy may be transferred to (i)45

membrane vibrations [12], (ii) the ambient media vibra-46

tions (sound [13] and ground vibrations); heat converted47

by (iv) viscous dissipation in the membrane, (v) friction48

with the ground, or (vi) thermally exchanged during im-49

pact (non-adiabatic compression-expansion cycle of the50

internal gas). Deciphering between those physical ori-51

gins of energy dissipation will shape a theory to predict52

the evolution of coefficient of restitution with inflation53

pressure, membrane mechanical parameters and impact54

speed.55

Specifically for spherical shells, two different physical56

explanations have been proposed to account for the loss57

of energy during the impact of a pressurised membrane,58

the momentum flux force [8] and the visco-elastic dissipa-59

tion within the membrane [14]. The momentum flux force60

theory does not specify the physical phenomena respon-61

sible for energy loss. It stands that the work of the force62

corresponding to the non-linear acceleration of the mem-63

brane during the compression phase is not restored dur-64

ing the expansion phase. In a different manner, viscoelas-65

tic dissipation corresponds to heat production within the66

membrane material. This dissipation has been modelled67

with a linear damping force proportional to indentation68

velocity [14]. This empirical model did not link explicitly69

the damping coefficient to the mechanical parameters of70

the pressurised membrane.71

In this paper, we investigate the dependence of the72

coefficient of restitution with the mechanical properties73

of the pressurised membrane. We chose to study a thin74

spherical membrane made of elastomer and inflated with75

air as a model system. We first present two sets of mea-76

surements of coefficient of restitution by systematically77

varying impact speed and inflation pressure for a small78

and a large membrane. Second, we observe the part of79

the pressurised membrane in contact with the ground80

during the impact and rule out losses by friction. Then,81

we compare the different predictions of the coefficient of82
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FIG. 1. a. Small ball and large ball considered as models of
pressurised membranes in this paper. b. Mechanical proper-
ties of the elastomer of membranes (BV100 fun) as a function
of forcing frequency with an elongation of 1% and preload of
0.1%. (•): E′ and ( ): E′′. Grey dashed line slope corre-
sponds to 2πµ =27 kPa s.

restitution and show that vibrations of the membrane are83

the main sources of energy losses. This is rationalised84

combining idealised kinematics of ball impact [15] and85

a minimal 1-mode vibration modelling. Finally, the de-86

pendence of the coefficient of restitution with pressure,87

impact speed and membrane mechanical parameters is88

established.89

II. IMPACTS OF PRESSURISED MEMBRANES90

: EXPERIMENTS91

A. Characteristics of the pressurised membranes92

For spherical membranes, we used a set of four small93

beach-volley balls (BV100 fun, Decathlon KIPSTA) of94

deflated radius was R =8.2± 0.1 cm, and one large gym95

ball (gym ball size 3, Decathlon DOMYOS) of deflated96

radius R =31.3± 0.4 cm (see figure 1a). Those spherical97

membranes were chosen for their minimal composition:98

they consist of a single layer of elastomer with a valve for99

inflation. We set the inflation pressure P − Patm where100

P is the absolute inner pressure in the membrane and101

Patm is the atmospheric pressure. The small membrane102

weighted m =179 g and the large membrane weighted103

m = 2.6 kg. Both membranes had a thickness e =2.00±104

0.12mm. We verified that the mass of the membrane105

corresponds to m = 4πρR2e with ρ the density of the106

elastomeric material constituting the membrane.107

Membrane elastomer was isotropic and was charac-108

terised with a dynamical viscometer to determine the109

storage modulus E′ and loss modulus E′′. The pieces110

of elastomer tested on the viscometer were rectangles of111

width 9.0±0.1mm and length 20.6±0.1mm. They were112

clamped on their width and the test temperature was113

25 ◦C. Over the range of tested frequencies, E′ was al-114

most constant E′ ≃5.9± 1.0MPa and E′′ varied linearly115

with frequency leading to E′′/f = 2πµ ≃27±3 kPa s, see116

figure 1b, where µ is the effective viscosity of the mate-117

rial. The Young modulus of the membrane at rest (i.e.118

f =0Hz) was E =4.2 ± 0.1MPa. The loss modulus was119

measured on non pre-stretched samples of elastomer, see120

figure 1b. However, when the membrane is inflated, the121

elastomer is necessarily pre-stretched. In our conditions,122

the pre-stretching of the membrane has been estimated123

to be smaller than 20% [15] and is expected to slightly124

decrease the loss modulus E′′ [16].125

B. Coefficient of restitution as a function of126

inflation pressure and impact speed127

We report here measurements of the impact proper-128

ties of the pressurised membranes varying impact speed129

U0 and inflation pressure P − Patm. Experimental data130

of coefficient of restitution for small membranes impacts131

were already reported in a previous publication [15] but132

data regarding the large gym ball are original. For both133

series of measurements, we followed the same protocol134

where the ball was dropped from a height h on a rigid135

substrate and a high speed camera allowed to determine136

the ingoing and outgoing speeds of the ball, providing137

an estimate for η = |Uout/U0|. A home-made Matlab138

code detected the circular shape of the membrane. It139

provided the position of the circle in time filtering out140

deformations and vibrations of the membrane. The co-141

efficient of restitution η is plotted in figure 2a (respec-142

tively figure 2b) as a function of the inflation pressure143

P −Patm (respectively impact speed U0). In the range of144

low speeds (U0 < 2m s−1), the coefficient of restitution145

increases with the impact speed whereas for larger im-146

pact speeds U0 > 2m s−1 it decreases. In the following,147

we focus on impact speeds larger than 2m s−1. In this148

range, the coefficient of restitution increases slightly with149
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a.

b.

FIG. 2. a. Coefficient of restitution η as a function of inflation
pressure P − Patm. Open symbols: small membrane. Filled
symbol: large membrane. Colors give information about im-
pact velocity. b. Coefficient of restitution η as a function of
impact velocity U0. Open symbols: small membrane. Filled
symbol: large membrane. Colors give information about in-
flation pressure.

inflation pressure but decreases with impact speed.150

C. Deformations at the contact151

Tests of membrane deformations kinematics were car-152

ried out on small membranes (BV100 Fun) using a stereo-153

imaging digital image correlation set-up (DIC standard154

3D, Dantec dynamics), see figure 3a. The membrane was155

inflated at recommended pressure P − Patm = 15 kPa.156

It was then prepared for image correlation: first the157

ball surface was gently sanded using fine-grained sand-158

paper to remove superficial paint. The clean white mem-159

brane was then finely sprayed black to create a synthetic160

Schlieren for image correlation.161

The set-up consisted of a suction device to release the162

ball without initial velocity nor spin from a height h.163

Suction was produced thanks to a commercial vacuum164

cleaner. A large glass plate was used as transparent sub-165
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FIG. 3. a. Schematics of the experiment to image membrane
displacements at the contact. The pressurised membrane is
released from a height h. 1 Spherical membrane painted with
synthetic Schlieren. 2 Imaging facility. 3 clear window for
imaging from below. b. Parametrisation of membrane during
contact.

strate. Lighting and imaging at 300Hz were done from166

below. Stereo imaging was performed with two cameras167

with a slight angle (6◦) regarding the vertical.168

Image correlation is performed during contact with the169

glass plate. Figure 4a shows that the pressurised mem-170

brane is flattened on the ground without crumpling, dif-171

ferently as suggested in the case of basket balls [13]. The172

deformations show a radial compression of the flattened173

part of the membrane. The magnitude of the radial com-174

pression increases with radial distance.175

Figure 4b shows the difference between an impact im-176

age and the image at the time of largest indentation. The177

difference shows a black spot at the contact location indi-178

cating that no or negligible slip occurs during the contact179

of the membrane with the glass plate. If buckling had oc-180

curred, this would have create a white spot at the center181
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FIG. 4. Contact kinematics of the membrane. a. Contact area between the ball and the glass plate seen from below at different
times after the impact at t = 0ms. Red arrows (not scaled) indicate the compression displacement field computed by digital
image correlation. b. Difference between current image and maximal indentation image at 6.67ms. Scale bar is 1 cm.

of the images in figure 4b. One would also notice ar-182

rows pointing towards the ring of the fold (with reversal183

inside the ring) which is not the case, see red arrows fig-184

ure 4a. Differently to the contact of rigid spherical shells185

where buckling occurs [17, 18] and involves solid friction,186

the contact of a pressurised membrane involves neither187

buckling nor friction in the range of impact conditions188

explored here.189

This difference could result from the fact that internal190

pressure prevents the buckling transition. The effect of191

the internal pressure on the onset of wrinkling of an elas-192

tic membrane submitted to a point load has been studied193

by Vella et al. [9]. In the limit of high pressure, they194

showed that wrinkles appear above a critical indentation195

xc,196

xc

R
= 2.52

(P − Patm)R

E e
. (1)

Considering typical experimental values used here, P −197

Patm = 15 kPa, R = 8 cm, e = 2mm, E = 4MPa, the198

criterion given by Eq. (1) yields xc/R ≃ 0.38. In the199

range of impact speeds and pressurisation explored in200

this study, the maximal indentation experienced by the201

pressurised membrane is xmax/R < 0.20, and the pre-202

vious criteria is never reached. This explains why no203

buckling nor wrinkling is observed for sufficiently pres-204

surised membranes in contrast with previous observa-205

tions made on shells [17]. A scaling similar to that of206

Eq. (1) arises when considering mirror buckling of the207

membrane. Pauchard and Rica analysed mirror buckling208

by comparing non-buckled (I) and buckled (II) energies209

of non-pressurised shells indented on a flat surface. In the210

non-buckled state, indentation creates bending in the fold211

(flat-to-spherical junction) and stretching in the flat sec-212

tion. Differently, when buckled, only bending in the fold213

is present but with a larger angle. For a non-pressurised214

shell, energies of states I and II depend on indentation215

depth x, see figure 3b, and read,216

EI =
C0

4

Ee5/2

R
x3/2 + C1

Ee

R
x3 and EII = C0

Ee5/2

R
x3/2

(2)
where C0 and C1 are numerical constants. In order to217

account for pressurisation in this approach, we consider218

the adiabatic gas compression into the energy balance219

(no thermal exchange). In state I, gas volume is reduced220

by the one of the spherical cap approximated by πRx2,221

whereas, it is reduced by twice this volume in state II222

and Eqs. (2) transform as,223

EI =
C0

4

Ee5/2

R
x3/2 + C1

Ee

R
x3 + πR(P − Patm)x

2 (3)

and224

EII = C0
Ee5/2

R
x3/2 + 2πR(P − Patm)x

2 (4)

Buckling is expected when EI > EII which leads to a225

non-linear equation with 3 terms,226

3C0

4

Ee5/2

R
x3/2 + πR(P − Patm)x

2 − C1
Ee

R
x3 = 0 (5)

In the case of pressurised membranes with C0 ≃ 0, the227

buckling criterion reads,228

xc

R
=

π(P − Patm)R

C1E e
. (6)
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This approach gives a similar scaling as the one pro-229

posed in [9] and suggests that this result does not depend230

crucially on the geometry of the deformed area. Thus,231

the conclusion drawn above should be valid for spherical232

membranes indenting a flat surface, considering a differ-233

ent prefactor.234

III. COEFFICIENT OF RESTITUTION OF A235

PRESSURISED MEMBRANE236

The coefficient of restitution corresponds to a loss of237

kinetic energy during the impact. This energy may be238

lost in different manners, either from viscous dissipation239

in the membrane (in the curved fold or in the stretched240

flat part), or by transfer to mechanical vibrations of the241

membrane. The other physical phenomena involved dur-242

ing the impact (sound emission [13], thermal exchange243

through the membrane [15] and friction/buckling, see244

above) are much less energetic.245

A. Predictions of dissipated power246

1. Dissipated power by stretching247

During the impact, a fraction of the membrane changes248

its shape from a spherical shell to a flat surface of radius249

r (see figure 3b). In order to adapt to this change, the250

membrane must stretch. As the material constituting the251

membrane is visco-elastic, this deformation induces a loss252

of energy. In order to estimate this dissipation, we look253

at the deformation of the membrane during the impact254

in the region of the fold. Locally, the membrane forms255

an angle θ with the ground which respects sin θ = r/R.256

At this location, a small portion of the spherical part of257

length ℓ has to compress by a length ∆ℓ = ℓ (cos θ − 1)258

to become flat. Thus, the membrane experiences a defor-259

mation εs = ∆ℓ/ℓ = cos θ−1. In the limit of small inden-260

tations (x ≪ R), corresponding to θ ≪ 1, the membrane261

deformation becomes εs ≃ −θ2/2 and the angle reduces262

to θ ≃ r/R. The viscous energy associated to a defor-263

mation occurring in a volume dV is dEstrech = µεsε̇sdV .264

Considering a portion of the membrane located in the265

interval r and r + dr, the deformation affects a material266

volume 2πredr and we get the following expression for267

the power dissipated by stretching,268

dEstrech

dt
= πµe

r4ṙ2

R4
. (7)269

In the limit of small indentations (x ≪ R), the radius270

of contact is related to the indentation of the spherical271

membrane by r2 ≃ 2Rx (see figure 3b) and equation (7)272

becomes,273

dEstrech

dt
= 2πµe

xẋ2

R
(8)274

2. Dissipated power by bending in the fold275

The flat part of the membrane is connected to the276

spherical part of the membrane by a fold. The character-277

istic size of the fold δ is fixed by a competition between278

bending and stretching energies as described in [17], lead-279

ing to δ ≃
√
eR. The fold volume is Vfold = 2πreδ ≃280

2πR
√
2xe3 since the contact radius is r ≃

√
2Rx when281

x ≪ R. The radius of curvature of the fold scales as282

1/C ∼ δ/θ, where θ ≃
√
2x/R is the contact angle of the283

membrane, see figure 3b. The bending deformations in284

the fold scale as εb ∼ e C ∼
√
2xe/R during the typical285

deformation time τ ∼ δ/ṙ ∼
√
2xe/ẋ that corresponds286

to the fold dimension divided by the fold velocity. The287

viscous stresses are thus σ ∼ µεb/τ where µ is the equiv-288

alent viscosity of the membrane. Finally, the dissipated289

power in the fold scales as,290

dEfold

dt
∼ µ

ε2b
τ2

Vfold ∼ µ
e3/2

√
xẋ2

R
. (9)291

3. Dissipated energy by vibrations292

Vibrations of the membrane can be described by the293

vibration modes of a pressurised spherical shell by de-294

composition of the deformed membrane on spherical har-295

monics as realised by Feshbach et al. [19, p1469]. To sim-296

plify the description of vibrations, we consider a minimal297

model of two masses connected by a spring, see figure 5a.298

This model was first developed to describe the rebound299

of a water droplet impacting a hydrophobic surface [20].300

In this model, the first mass, mass 1 located in x1, cor-301

responds to the mass of membrane that will not contact302

the ground whereas the other mass, mass 2 located in303

x2, corresponds to the amount of membrane that will304

contact the ground at the maximal indentation of the305

impact. The two masses m1 and m2 are connected by306

a linear spring of rigidity k and rest length l0, see figure307

5a. Before contact, both masses move with a velocity U0308

towards the ground. When mass 2 makes contact with309

the ground, it stops (U2 = 0) and mass 1 compresses the310

spring. The contact ends when the spring recovers its311

rest length l0. At this moment mass 2 still has no veloc-312

ity. We assume that no dissipation occurs in the system,313

which implies that the total kinetic energy is preserved314

and mass 1 takes off with velocity U1 =
√

1 +m2/m1 U0.315

The difference in speed between masses 1 and 2 creates316

vibrations. The vibration energy reads317

Evib =
1

2
m2U

2
0 , (10)318

where m2 is the fraction of the membrane of volume319

2πRexmax in contact with the ground at maximum in-320

dentation and which expresses as321

m2 =
mxmax

2R
=

1

2

√
m3U2

0

πR3(P − Patm)
, (11)322
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as the maximal indentation of the membrane expresses323

xmax = U0

√
m/πR(P − Patm) when the dissipation term324

is neglected [15]. The total energy transferred to vibra-325

tions according the two-mass model is326

Evib =
1

4

(mU2
0 )

3/2√
πR3(P − Patm)

. (12)327

This energy is ultimately be dissipated as heat in the328

material.329

B. Coefficient of restitution in the limit of small330

dissipation331

In this section, we examine the implications of the pre-332

vious energy dissipation scenarios on the coefficient of333

restitution. For the sake of simplicity, we assume that the334

membrane dynamics is not affected by the dissipation.335

This approximation is motivated by the fact that the336

pressurised membrane is equivalent to a damped oscilla-337

tor system with a quality factor larger than 10 (η > 0.7).338

In these conditions, the dissipation shifts the natural fre-339

quency of the system by less than one percent in relative340

value. Under these circumstances, the behaviour of the341

pressurised membrane at impact is linear and indentation342

evolves as [15],343

x(t) =

√
mU2

0

πR(P − Patm)
sin

(√
πR(P − Patm)

m
t

)
,

(13)344

In this limit, one can compute the dissipated energy in345

the membrane from Eqs. (8) and (9)346

Estretch =
2πµe

R

∫ tc

0

ẋ2xdt =
4µemU3

0

3R2(P − Patm)
, (14)347

348

Efold =
µe3/2

R

∫ tc

0

ẋ2
√
xdt = 1.61

µU
5/2
0 e3/2m3/4

(P − Patm)3/4R7/4
,

(15)349

with tc = π ×
√

m/(πR(P − Patm)). Under these con-350

ditions, we derive three predictions for the coefficient of351

restitution associated with the different origins of dissi-352

pation:353

ηstretch =

√
1− 2Estretch

mU2
0

≃ 1− 4µeU0

3R2(P − Patm)
, (16)354

355

ηfold =

√
1− 2Efold

mU2
0

≃ 1− 1.61
µU

1/2
0 e3/2

m1/4(P − Patm)3/4R7/4
,

(17)356357

ηvib =

√
1− 2Evib

mU2
0

≃ 1−
√
mU2

0

4
√
πR3(P − Patm)

. (18)358

These three predictions for the coefficient of restitu-359

tion have different dependencies with the mechanical pa-360

rameters of the pressurised membrane. Thus, one can361

hope to distinguish between the three scenarios for en-362

ergy dissipation by comparing these predictions to exper-363

iments. Figure 5b presents the parity plot between the364

predicted coefficient of restitution ηmodel from Eqs. (16),365

(17) and (18) as a function of the measured coefficient of366

restitution ηexp for small and large membranes, different367

inflation pressures and impact speeds. In this represen-368

tation, experiments match theoretical predictions when369

data points align on the y = x line (dashed line). We370

observe that both viscoelastic dissipation models fail in371

gathering data points showing that this physical back-372

ground of energy dissipation is unlikely. However pre-373

dictions of the energy dissipated in the two-mass model374

gather all data points on a line ηmodel−1 = 0.63(ηexp−1)375

(dotted line). This suggests that the scaling given for en-376

ergy dissipation is correct although missing the prefactor377

on mass 2. This conclusion is reinforced by the fact that378

the agreement is valid over a wide range of parameters:379

the size of the membrane has been varied by a factor380

4, the impacting speed by a factor 8 and the inflation381

pressure by a factor 9.382

IV. DISCUSSION383

The fact that the pressurised membrane dissipates the384

energy into vibrations has several consequences which are385

discussed in this section. First, the energy dissipated386

does not depend on the loss modulus µ of the elastomer387

constituting the membrane (see Eq. (18)). Thus, the388

viscoelastic dissipative properties of the membrane does389

not affect its bouncing quality. Second, Eq. (18) predicts390

that the coefficient of restitution decreases linearly with391

U0 and with 1/
√
P − Patm. This allows to rationalise392

the decrease of η with U0 and its increase with P −Patm393

observed experimentally for impact speeds U0 > 2m s−1.394

The expression for the coefficient of restitution given395

by Eq.(18) relies on several assumptions. First, the pres-396

surised membrane is modelled by two masses connected397

by a linear spring, an hypothesis that is valid only at398

small indentations. For large indentations, the non-linear399

elastic behaviour of the pressurised membrane due to gas400

compression has to be considered. This effect, described401

in [15], corresponds to a strain-stiffening behavior, it re-402

duces both contact time and maximal indentation. Com-403

pared to the prediction of the linear model, the mem-404

brane is expected to be less deformed and thus to dissi-405

pate less energy. Second, we assume that the impact dy-406

namics of the pressurised membrane is only marginally407

modified by the dissipation at small indentations. At408

larger indentations, energy dissipation would have to be409

taken into account in the impact dynamics and would410

modify Eq. (13). Accounting for dissipation in the im-411

pact dynamics would increase the contact time.412

In the present modelling, we assumed that the413
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a.

m1

m2

U0

U0

t < 0 t = tc

m1

m2 U2 = 0

0 < t < tc

m1

m2

U1

b.

FIG. 5. a. Toy model of the 2-mass system. b. Parity plot of Eqs. (16) in green, (17) in red and (18) in blue. Open symbols
correspond to the small membrane and filled symbols correspond to the large membrane. Dashed line: parity ηmodel = ηexp.
Dotted line: fit 1− ηmodel = 0.63(1− ηexp)

inflation-induced pre-stretching of the membrane was414

constant and that all results were derived linearly around415

this reference state. When indentation of the mem-416

brane is large, the linear mechanics hypothesis breaks417

down. The impact becomes non-linear because of both418

large displacements with geometrical stiffening [15] and419

non-linear material behaviour such as strain-stiffening or420

strain-softening. The geometrical stiffening would reduce421

the amount of deformed material and decrease dissipa-422

tion.423

The knowledge of the origin of the dissipation in the424

impact is interesting for practical situations where low or425

high coefficients of restitution may be required. For im-426

pact protection applications, a low coefficient of restitu-427

tion helps to reduce the amount of momentum exchanged428

during the impact. When a pressurised membrane of429

mass m impacts onto a massive ground, the change of430

momentum of the membrane is 2mU0 in a perfectly elas-431

tic case, twice the exchange of momentum that occurs432

during a perfectly inelastic impact mU0. For sport balls,433

a minimal coefficient or restitution is prescribed by the434

rules in order to insure that the ball can be released with435

sufficient speed. In sports, a maximal inner pressure is436

also prescribed (which corresponds to a maximal coeffi-437

cient of restitution for a given impact speed). This may438

be related to the decrease of contact time as the inner439

pressure increases. This change of contact time increases440

the rate of exchange of momentum (i.e. impact inertial441

forces) and thus the severity of impact-related damages.442

It also reduces the possibility for the player to control443

the ball trajectory during contact.444

This study considers the origin of dissipation when a445

pressurised membrane impacts a rigid ground. The co-446

efficient of restitution of small and large inflated mem-447

branes has been measured for a wide range of internal448

pressures and impact speeds. Four possible sources of449

energy dissipation in this problem have been considered.450

Solid friction has been discarded by performing image451

visualisation in the contact area. The other possible452

sources of dissipation are the compression of the flattened453

membrane, the bending of the visco-elastic membrane454

in the fold and the energy transferred to vibrations. A455

physical prediction for each dissipation scenario has been456

computed and compared to measurements. The defor-457

mation of the pressurised membrane during the impact458

was considered through the framework of linear mechan-459

ics around the reference state of the pressurised shell.460

Impact-induced deformations are mainly the consequence461

of the impact kinematics.462

Based on experimental data, we concluded that dur-463

ing the impact of a pressurised membrane with a rigid464

ground, the energy is dissipated in vibrations and this465

may be predicted by a two-mass model. Identifying the466

source of dissipation in this problem should help in im-467

proving the design of impact protections and a better468

understanding of the role of ball inflation pressure in469

sport. This work opens multiple perspectives as im-470

proving the modelling of membrane vibrations beyond471

the simple model of two masses connected by a linear472

spring, characterising the membrane vibrations after im-473

pact which is challenging from a technical point-of-view474

and considering the effect of the impactor geometry on475

the dissipation that takes place during impact.476
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