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Abstract

Background and Objective: In order to be context-aware, computer-assisted
surgical systems require accurate, real-time automatic surgical workflow recogni-
tion. In the past several years, surgical video has been the most commonly-used
modality for surgical workflow recognition. But with the democratization of
robot-assisted surgery, new modalities, such as kinematics, are now accessible.
Some previous methods use these new modalities as input for their models, but
their added value has rarely been studied. This paper presents the design and
results of the “PEg TR Ansfer Workflow recognition” (PETRAW) challenge with
the objective of developing surgical workflow recognition methods based on one
or more modalities and studying their added value.

Methods: The PETRAW challenge included a data set of 150 peg transfer

sequences performed on a virtual simulator. This data set included videos,
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kinematic data, semantic segmentation data, and annotations, which described
the workflow at three levels of granularity: phase, step, and activity. Five tasks
were proposed to the participants: three were related to the recognition at all
granularities simultaneously using a single modality, and two addressed the
recognition using multiple modalities. The mean application-dependent balanced
accuracy (AD-Accuracy) was used as an evaluation metric to take into account
class balance and is more clinically relevant than a frame-by-frame score.

Results: Seven teams participated in at least one task with four participating
in every task. The best results were obtained by combining video and kinematic
data (AD-Accuracy of between 93% and 90% for the four teams that participated
in all tasks).

Conclusion: The improvement of surgical workflow recognition methods
using multiple modalities compared with unimodal methods was significant for
all teams. However, the longer execution time required for video/kinematic-
based methods(compared to only kinematic-based methods) must be considered.
Indeed, one must ask if it is wise to increase computing time by 2,000 to 20,000%
only to increase accuracy by 3%. The PETRAW data set is publicly available
at www.synapse.org/PETRAW to encourage further research in surgical workflow
recognition.

Keywords: Surgical Process Model, Workflow recognition, Multimodal, OR of

the future

1 1. Introduction

2 To fully integrate computer-assisted surgery systems in the operating room,
s a complete and explicit understanding of the surgical procedure is needed. A
+ surgical process model (SPM) is a “simplified pattern of a surgical process that
s reflects a predefined subset of interest of the surgical process in a formal or
s semi-formal representation” [1], thus allowing for the surgical procedure to be rig-
7 orously modeled and described. The SPM methodology consists of decomposing

s a surgical procedure into five increasingly-coarse levels of granularity: dexeme,
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o surgeme, activity, step, and phase [2, 3]. A dexeme, the lowest granularity level,
0 is a numeric representation of the motion. A surgeme represents a surgical
u  motion with an explicit semantic interpretation of the immediate motion (e.g.,
1 pulling). An activity describes the motion’s overall action (action verbs; e.g.,
13 cut) performed on a specific target (e.g., the pouch of Douglas) by a specific
1 surgical instrument (e.g., a scalpel). A step is the succession of these activities
15 which together achieve a specific surgical objective (e.g., resection of the pouch
16 of Douglas). Finally, a phase is the succession of steps that constitute a main
v period of the intervention (e.g., resection). SPM’s are used for learning and
18 expertise assessment [4, 5], robot assistance [6], operating room optimization
v and management [7, 8], decision-making support [9], and quality supervision
20 [10].

21 The primary limitation of the state-of-the-art in SPM’s [3, 4, 5, 7, 9, 10] is their
2 need to be manually interpreted by human observers, which is observer-dependent,
23 time-consuming, and subject to error [11]. Thus, the proposed solutions can
22 not be directly used to bring context-awareness into computer-assisted surgery
» applications in the operating room. To overcome this limitation, automatic
s workflow recognition methods have been developed for multiple granularity levels,
z including phase [8, 12,13], step [14, 15], and activity [6, 16]. With the emergence
s of deep learning, most of these recent automatic workflow recognition methods
» are based on convolutional neural networks, such as AlexNet [17] or ResNet [18];
» on recurrent neural networks, such as LSTM [19] or gated recurrent unit (GRU)
a [20]; and more recently on transformers [21].

2 Along with what methodology to use, it is also an open question as to
;3 which data modalities should be used as input for this task. In robot-assisted
s surgery and virtual reality training environments, video and kinematic data are
s both readily available. Despite this, most state-of-the-art workflow recognition
s methods are based on a single modality, such as only video [22, 23] or only
w» kinematic data [3, 24]. Few studies have used workflow recognition method based
s on both video and kinematic data [25, 26, 27]. However, with the exception of

» the study by Long et al.[26], they do not compare the results obtained based on
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2 the number and type of input modalities.

@ Semantic segmentation of surgical video is also essential for surgical under-
2 standing and is an active area of research. For example, in five editions of the
1 EndoVis MICCAI Challenge (2015 to 2020), six of the 19 proposed sub-challenges
«  were dedicated to this topic. However, to the best of our knowledge, semantic
s segmentation has rarely been used as a supplementary task paired with, or as
s additional input for, surgical workflow recognition.

a7 Therefore, the “PEg TR Ansfer Workflow recognition by different modalities”
s (PETRAW) sub-challenge, which is part of EndoVis, provided a unique data set
w0 for automatic recognition of surgical workflows containing video, kinematic, and
s segmentation data on 150 peg transfer training sequences. Participants were
si asked to develop model(s) to recognize phases; steps, and activities using one or

52 several of the available modalities.

53 2. Methods: Challenge Design

54 This section describes the challenge design, organization, objective, data set,

55 and assessment methods.

ss  2.1. Challenge organization

57 The PETRAW challenge was a one-time event organized as part of EndoVis
ss  during the online 2021 international conference on Medical Image Computing and
so  Computer-Assisted Intervention (MICCAI2021). Four people were involved in the
0o organization: Arnaud Huaulmé and Pierre Jannin from the University of Rennes
s 1 (France), and Kanako Harada and Mamoru Misthuishi from Tokyo University
&2 (Japan). Complete information about the challenge was made available to

&3 participants using the Synapse platform: www.synapse.org/PETRAW.

64 Challenge participants were subject to the following rules:

6 e Participants had to submit a fully automatic method that could recognize
66 phases, steps, and activities on the same model using one or several
67 modalities; and
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68 e Only data provided by the organizers and publicly available data sets,
69 including pre-trained networks, were authorized for use in training. The
7 publicly available data sets must have been open or otherwise available to
7 all participants at the time the PETRAW data set was released.

7 The results of all participating teams were announced publicly during the chal-
7z lenge day. Challenge organizers and people from the organizing institutions
= could also participate in the challenge but were excluded from the competitive
75 rankings. Participating teams were encouraged (but not required) to provide
7 their code as open access.

i For a valid submission, the participating teams had to provide the following
7 elements: a write-up, a Docker image allowing the organizers to compute the
7 results, and a pre-recorded talk to limit technical issues during the challenge day
s (online event). Multiple Docker images could be submitted, but only the last
&1 submission was officially used to generate the evaluation results. No leaderboard
&2 oI evaluation results were provided prior to the challenge day.

83 The challenge schedule was as follows: The training data set, including videos,
& kinematic data, and workflow annotations, was released on June 1, 2021; corre-
s sponding semantic segimentation data was released on June 9, 2021; submissions
s were accepted until September 12, 2021 (23:59 PST); and the evaluation results
s were announced on October 1, 2021, during the online MICCAI2021 event. Some
s teams obtained unexpectedly poor results (i.e., workflow recognition rates inferior
s to 50%), which made further analysis of the results not relevant. Therefore, each
o team was allowed to provide a new submission before October 31, 2021. The
o teams that made a new submission are identified in Section 3.2. The challenge
o test data set and the organizers’ evaluation scripts were released with this paper

s at www.synapse.org/PETRAW

w 2.2. Challenge objective
% The objective of the PETRAW challenge was to study the contribution of
o each modality (either alone or in combination) to surgical workflow recognition.

or To achieve this goal, participants were asked to create a single classification model
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s to determine the surgical task at three levels of granularity (phase, step, and
o action). Five different tasks were offered as part of the challenge: three concerned
w0 the development of unimodal models (i.e., video-based, kinematic-based, or
1 semantic segmentation-based models); and two concerned multimodal-based
102 models. The unimodal-based models were used as a baseline for comparison
103 with the multimodal-based models. In order to keep to a reasonable number of
14 tasks, not all multimodal configurations could be studied. For models based on
s semantic segmentation data (and to reflect the fact that clinically this modality
s can be only obtained through a trained segmentation model), participants were

w  asked to use the output of such model as input for PETRAW.

ws  2.8. Challenge data set

109 The challenge data set was composed of 150 sequences of peg transfer training
1o sessions. The objective of the peg transfer session was to transfer six blocks from
m  the left peg to the right and then back. Each block needed to be extracted from
u2  the peg using a grasper (operated by one hand), transferred to the other grasper
us  (in the other hand), and finally inserted onto the peg on the opposite side of the
us  board.

115 All sequences were acquired by a non-medical expert at the LTSI Laboratory,
us  University of Rennes 1, France. The data set was divided into training data
w7 (n=90 sequences) and test data (n=60 sequences). Each sequence included
ns  kinematic data, video, semantic segmentation of the video for each frame, and
e workflow annotations at each level of granularity. Only the training data set was

10 provided to participants.

w 2.8.1. Data acquisition

122 The challenge data was acquired on a virtual reality simulator (Figure 1)
13 developed at the Department of Mechanical Engineering, University of Tokyo,
e Japan [28], consisting of a laptop (i7-700HQ, 16Go RAM, GTX 1070), a 3D
1 rendering setup (3D screen: 24 inches, 144Hz; and 3D glasses), and two haptic

s user interfaces (3D system Touch™™).
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Figure 1: The virtual reality simulator used for data acquisition.

127 For data acquisition, a single operator performed a series of five consecutive
s peg transfer tasks followed by a break of at least 5 hours to limit fatigue. This
19 was repeated 30 times to yield a total of 150 peg transfer task sequences. The
o  COVID-19 crisis (acquisition made in 2020-2021) did not allow us to recruit
1 multiple participants. To limit the effect of immediate learning or fatigue in a
12 single session, three sequences from each series were randomly chosen for training,
133 and the remaining two for testing.

134 The kinematic data and videos were synchronously acquired at 30 Hz during
135 each peg transfer task. Each video had a resolution of 1920x1080 pixels and
13 semantic segmentation was performed for each frame off-line following the task.
17 Kinematic data included the position, rotation quaternion, forceps aperture
13 angle, linear velocity (obtained from simulation, not derived from position), and
1o angular velocity (obtained from simulation, not derived from orientation) of the
1o left and right instruments (i.e., graspers). The position and linear velocity were
w1 measured in centimeters and centimeters per second, respectively. The angle and
12 angular velocity were measured in degrees and degrees per second, respectively.

143 The semantic segmentation included six classes (shown in Figure 2): back-
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ground (black, hexadecimal code:#000000), base (white, #FFFFFF), left instru-
ment (red, #FF0000), right instrument (green, #00FF00), pegs (blue, #0000FF),
and blocks (magenta, #FF00FF).

Figure 2: Representative segmentation mask with the six classes: background (black), base

(white), left instrument (red), right instrument (green), pegs (blue) and blocks (magenta).

The workflow annotations were automatically computed using the scene in-
formation and the ASURA method [11]. The challenge organizers had previously
demonstrated in [11] that ASURA is more accurate and robust than manual
annotation on peg transfer tasks. Two phases, twelve steps, six action verbs, two
targets, and one surgical instrument were identified to describe the workflow
(Table 1). Each phase corresponded to the transfer of all of the blocks in one
direction (e.g. “L2R” for left to right). Each step (six per phase) corresponded to
the transfer of a single block (e.g“Blockl L2R” for the transfer of the first block
from the left to the right). For the activities, two targets were differentiated:
“block” and “other block”. “Block” corresponds to the one that is currently being
transferred. “Other block” is an additional target used to differentiate when the
user accidentally interacts with any block other than the one to be transferred.

One limitation of the method presented by [11] was the inability to accurately
differentiate between the action verbs “catch” and “touch”, as each tool tip was
considered as a unique virtual object. The virtual reality simulator was updated
to include four separating regions rather than one, allowing these actions to
be readily differentiated. Accordingly, the workflow annotations were manually

examined and corrected to ensure annotation quality.
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Table 1: Peg-transfer vocabulary.

Activities
Phases Steps
Verb Target Tool
Block 1 L2R Catch Block Grasper
Block 2 L2R Drop Other block
Transfer Left Block 3 L2R Extract
To Right (L2R) | Block 4 L2R Hold
Block 5 L2R Insert
Block 6 L2R Touch
Block 1 R2L
Block 2 R2L
Transfer Right Block 3 R2L
To Left (R2L) Block 4 R2L
Block 5 R2L
Block 6 R2L
s 2.3.2. Data pre-processing
166 The original workflow annotations were formatted in terms of start and finish

17 time, expressed in milliseconds. These annotations were sampled to provide a
168 discrete sequence at 30Hz, synchronized with the kinematic, video, and segmenta-
10 tion data to allow for frame-by-frame annotation. Due to their lack of variability,
o the two targets and the tool were not included in the workflow annotation.
i Furthermore, when no phase, step, or activity occurred, the term “idle” was used.
2 For each timestamp, the following information was provided: timestamp_number,

w3 phase_ value, step_ value, verb_ Left_ Hand, verb_ Right_ Hand.

we 2.8.3. Ground truth uncertainties
175 The semantic segmentations were the primary source of uncertainty in the
ws ground truth. Due to the transformation of 3D meshes into 2D images, some

w7 pixels were attributed to the wrong class, especially at boundaries between the

10
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Figure 3: Zoom of 219x123 pixels from Figure 2 to highlight segmentation errors. Right
instrument /block (green/magenta) and left/right instruments (red/green) errors are shown
where pixels are labeled as background (black). On this zoom, only 51 pixels were miss-

segmented (around 0.2%).

ws right instrument/peg, left instrument/peg, left instrument/block, and left /right
o instruments (Figure 3). We estimated this uncertainty by counting the number
180 of mis-segmented pixels on 10 images that included many boundary regions, such
w1 as those between surgical instruments, pegs, and blocks. On each image, the
12 number of mis-segmented pixels represents less than 0.25% of the total image.
183 To take into account the fact that this manual assessment was not representative
1« of the whole data set, we estimated that this mis-segmentation represents less
18 than 0.5% of pixels.

186 Workflow annotations were another source of uncertainty. Although the
w7 ASURA method is consistent (i.e., it generates the same result in two identical
s situations) and a manual check was performed to limit inaccuracies, some
19 components could not be recognized with complete certainty. Two particular
wo Instances were identified. First, in sequence 130 of the training data set, the
11 block in step “Block 1 R2L” was inserted in a non-standard way. Specifically,
12 the block was released by the operator, and while falling became inserted in
103 the peg. Therefore, the insert action was absent. The other instance concerned
s sequence 79 of the test data set. This time, the operator caught a block before
105 the previous one had been fully inserted, leading to an overlap between the steps
ws  “Block 5 R2L” and “Block 6 R2L". The second was chosen as the sole annotation

17 to maintain the true beginning of the step.

11



Journal Pre-proof

w8 2.3.4. Data set characteristics

199 The training and test data sets presented similar characteristics. The mean
200 and standard deviation duration was 140.2418.9 seconds for the training data set
20 and 141.7 £ 18.0 seconds for the test data set. Figure 4 presents the distribution
22 of every vocabulary component for each granularity level in the training data
23 set (Figures 4a, 4c, 4e, 4g) and the test data set (Figures 4b, 4d, 4f, 4h). Even
2 for underrepresented components, the distribution was very similar in both
25 data sets. For instance, the verb “touch” (left hand) represented 0.59% and
26 0.60% of the samples in the training and test data sets, respectively, and “touch”
207 (right hand) represented 0.62% and 0.48%, respectively. The distribution of
28 each vocabulary component between each data set is only statistically different
20 (Mann-Whitney test) for two steps: “Block 1 L2R” and “Block 6 L2R”, with
a0 p=0.045 and p=0.036 respectively.

m Another important characteristic of the data sets was the high class unbalance
a2 of at least one vocabulary term for each granularity level. For the phases, the
a3 term “idle” represented less than 4% of all data, whereas the other phase terms
2e accounted for more than 47% (L2R and R2L). For the steps, the term “idle”
a5 represented less than 4%, whereas the non-idle steps accounted for approximately
26 more than 7.5% of each data set(Figures 4a-4d). This unbalance was more
27 pronounced at the action level, where the least represented verb (i.e., “touch”)
a8 represented approximately 0.6% of the data set, whereas the verb “idle” accounted
29 for more than 53%. The detailed distribution values for each granularity level in

20 ‘both data sets are provided in supplementary material.

o 204 Assessment method

m  2.4.1. Metrics

23 To assess the participants’ workflow recognition models and to take into
24 account the high class unbalance, balanced versions of accuracy, precision, recall,
»s and F1 were used.

26 In practice, however, some small variations in surgical task recognition are

27 not clinically meaningful and do not constitute a true error. Motivated by this,

12
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Figure 4: Distribution of each term at each granularity level in the training and test data
sets.The y-axis represents the percentage of frames. In (a) and (b), “L2R” means transfer left
to right and “R2L” means transfer right to left. In (c) and (d), “B1 L2R” means block 1 left
to right, “B2 L2R” means block 2 left to right.

13
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2s  Dergachyova et al. [29] proposed a re-estimation of these classic frame-by-frame
29 scores, called application-dependent scores, to take into account an acceptable
z0 delay d. When a predicted transition occurs within a transition window (2d)
2 centered on the ground truth transition, all frames between the two transitions
2 are considered correct if it is the same transition type ( e.g. transition for
a3 verb “catch” or verb “extract”). Therefore, the balanced application-dependent
2 accuracy (AD-Accuracy) was used and the acceptable delay was fixed at 250 ms.
235 To assess the participants’ segmentation models, the mean Intersection-Over-
z6  Union (IoU) over all classes was also used, also known as the Mean Jaccard
2w Index over all classes. The IoU is the area of overlap between the predicted
2 segmentation (Pred) and the ground truth (GT), divided by the area of union
20 between the Pred and the GT'. In our cases, there was a multi-class segmentation
20 problem, therefore the mean IoU value of the image was calculated by taking

2 the ToU of each class and averaging it over the classes:

1
MeaTLIOUf»,-ame = 6 Z IOUclass
class
- 1 Z ‘GTQP’F@C”C[GSS

S 1
6 |GT U Pred|ciass (1)

class

_ 1 Z TPclass
6 class TPclass + FPclass + F‘—]\/vclass7
22 where TP (True Positives) is the number of pixels inside the GT area that are
23 correctly predicted, F'P (False Positives) is the number of pixels outside the GT'
24 area but predicted as belonging to the class, and FN (False Negatives) is the

25 number of pixels inside the GT area that are incorrectly predicted.

us  2.4.2. Ranking method

207 The ranking of the participating methods used only the surgical task recog-
2s  nition metrics. Metrics computed for evaluating the segmentation models were
29 provided for information purposes only.

250 A metric-based aggregation method using the AD-Accuracy values across

1 all test sequences was used for the ranking. Metric-based aggregation was used

14
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=2 according to the recommendations made in [30], which show it to be one of
»3  the most robust. As all tasks consisted of recognizing the phase, step, and the
¢ actions of the left and right hands (i.e., the left and right verbs), the ranking

»5  score for the algorithm a; was computed as follows:

Sphase(ai) + sstep(ai) + Sverb_left (az) + Sverb_right (az)

s(a) = : 2)

6 with,
T
_ >_i—oPhase_balance_accuracy_case_1

Sphase(ai) - T ’ (3)

»7 where T is the number of sequences to test. Similar equations were used for

258 the other terms (Sstep(@i), Svers teft(@i) and Syers right(@;)) with a numerator
9 specific to each, i.e., ZZ;O step_balance__accuracy case_t for sgep(a;), ete.
260 If a participant method did not produce a prediction for one or several
1 granularity levels, the accuracy given for each missing granularity level was that
x2  expected for uniformly random predictions. For example, if a model did not
263 predict the phase, Sppqse would be set to 1/3 corresponding to the phase having
% 3 potential values. In practice, this was not encountered and each evaluated
s model produced results for each level of granularity.

266 Ranking stability was assessed by testing different ranking methods: mean-
27 ThenRank, medianThenRank, rankThenMean, rankThenMedian, and testBased.
s MeanThenRank was chosen for the ranking. MedianThenRank differs from the
20 previous method because it used the median instead of the mean in equation
oo 3. ForrankThenMean and rankThenMedian, first, the results of each sequence
on - were ranked among participants, and then the final results were the mean or
oz median of all ranks. The testBased method is based on bootstrapping. The
a3 ranking was considered stable if a team was ranked in the same position with
22 the majority of ranking methods. If the ranking was not stable according to the
a5 chosen methods, a tie between teams was pronounced. The ranking computation

26 and analysis were performed with the ChallengeR package provided by [31].

o 2.4.83. Online recognition compatibility

278 To be online compatible, the proposed methods must satisfy two conditions:

15
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219 e to produce predictions faster than the duration between the two samples
280 (i-e., faster than 30 Hz); and
281 e to be causal (i.e., not use data from a future time point to make predictions).

22 The computation time was not studied because it could not be assessed fairly for
23 all teams. Indeed, the teams provided a unique Docker image for all tasks, and
28 some teams did not write the output file to standard output as it was received,
25 which did not allow for their durations to be precisely measured.

286 To verify that the methods were causal, the online availability of the frames
27 was mimicked. One additional sequence of 10 seconds, corresponding to the
28 transfer of the first block from the left to the right, was recorded. This sequence
20 was used to generate 300 sub-sequences, each one a frame longer than the
20 previous. Thus, the first sequence only contained the information of the first
21 frame, the second one contained the information of the two first frames, etc.
22 The models were run on the 300 sub-sequences and the last prediction of each
23 sub-sequence to create a definitely causal prediction sequence. A method was
2a considered causal if and only if this definitely causal prediction sequence was
25 identical to the prediction sequence given by the full 300 frames. This causality-
26 testing method is fully automated and also takes into account the complete
27 pipeline used to perform the prediction, such as pre- and post-processing steps,
26 which could lead to a non-causal method even if the network only uses causal
200 components. For reasons of computation time and environmental responsibility,
a0 this test was not performed on a whole sequence or the whole test data set. By
sn  testing the entire data set, we could be more confident in the causality of the

s proposed methods, but this would quickly display diminishing returns.

s 2.5, Additional analyses

304 To further analyze the impact of using multimodal instead of unimodal
s models, we performed two additional analyses that were not initially included
s in the challenge design: the statistical significance to use multimodal models

sz instead of unimodal models, and the execution time. These additional analyses

16
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ss  only concerned the teams that participated in the multimodal tasks (4 and 5)

30 with a combination of the same or similar models used for the unimodal tasks.

a0 2.5.1. Comparison between unimodal and multimodal models
31 To assess the impact of each modality and its combinations on automatic
sz workflow recognition, we performed a statistical analysis with the Wilcoxon test.

sz The difference was significant if the p-value was inferior to 0.05.

su 2.5.2. Execution time

315 Performance is not the only important factor when developing automatic
sis recognition models. Indeed, environmental aspects must also be taken into
ar account [32]. To answer this question, we examined the execution time to
sis  compute the results of the 60 test sequences. These durations were interpolations
sie that assumed the predictions in each task were computed independently and
20 ot the real execution time. Indeed, one team (Hutom, see section 3.2.1) used
= the predictions from tasks 1 to 3 as input for those of tasks 4 and 5, so the
a2 interpolation for the multimodal tasks took into account the execution time for

23 the unimodal ones.

2 3. Results: Reporting of the Challenge Outcomes

s 3.1. Challenge submission

326 By September 12, 2021, 29 participants had registered for the PETRAW
s7 ‘challenge: 17 were members of one of the six competing teams. The organizers
s also submitted results as a non-competing team to provide a baseline. As
29 explained in Section 2.1, some teams obtained unexpected results and three

s teams resubmitted results for at least one task.

sn 3.2. Information on the participating teams and their methods

33 This section describes each team, the methods they used, and the tasks in
33 which they participated. Competing teams are presented in alphabetical order

s and not in terms of their ranking.
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s 3.2.1. Hutom

336 The Hutom team (Bogyu Park, Seungbum Hong, and Minkook Choi from
s VisionAl hutom) participated in all proposed tasks. They resubmitted a Docker
s image for all tasks except the kinematic-based recognition task.

339 Before training, they performed a simple pre-processing step. To preserve
s temporal information, they split data into clips of 8 frames. They normalized
s kinematic data by standardizing the raw input without data augmentation. They
s resized video data to 256 x 256 pixels, followed by random cropping (224 x 224
us  pixels) and normalization. The cropping was limited to preserve the spatial
ss  information in each frame of the clip. They resized segmentation data to 512x 512
us  pixels.

346 They used a similar baseline architecture for tasks based on the same modality.
sz They computed segmentation data from the video recording using a DeepLabV3+
us  architecture [33]. They used a 3D ResNet network [34] for workflow recognition
us  based on the video modality. For the segmentation modality, they used a
30 SlowFast50 network [35] for segmentation-based recognition and a 3D ResNet
s network for video/kinematic/segmentation-based workflow recognition. They
32 inputted kinematic data on a bi-directional long short-term memory (Bi-LSTM)
33 network [36]. For multimodal recognition tasks, they used a convolutional
s feature fusion layer to efficiently perform the fusion of the feature output of each
s modality. They obtained embedding features with individual modal inputs from
36 each model trained accordingly. Then, they compared the embedding features of
37 <each modality with those of other modalities to learn the different representations
38 of each modality. They used the stop gradient-based SimSiam method [37] to
9 compare representations between embedding features. Concomitantly, they
w0 stacked embedding features by modality into one block as a chunk and fused
1 them into one embedding through a convolution operation. The approach
2 assumed that feature elements for each modality in the same column have similar
3 temporal information in similar positions. For all networks, they used the Adam

s« optimizer and an initial learning rate of le*3, with a combination of Equalization
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s loss v2 [38] and Normsoftmax Loss [39] as long-tail recognition for addressing

6 data imbalance.

s 3.2.2. JHU-CIRL

368 The JHU-CIRL team (Michael Peven and Gregory D. Hager; Johns Hopkins
30 University) participated in the kinematic-based workflow recognition task.

370 They performed an under-sampling of the kinematic data to reduce the time
sn  dimension size in order to prevent vanishing gradient issues during training.
sz For the test, they used the same under-sampling. The JHU-CIRL team did
sz not perform any other pre-processing because they considered that besides the
s positional data, the addition of velocity data was sufficient for the recognition.
375 They used a unidirectional LSTM network [40] to recognize the four workflow
s components. They trained the model using traditional cross-entropy loss and the
s Adam optimizer. They paid special attention to the selection of the following
s hyperparameters: sampling rate, learning rate, LSTM hidden dimension size,
a9 and the number of layers in the LSTM. They ran 5-fold cross-validation to obtain
s results from each of these hyperparameters. Then, they selected the best set of
st hyperparameters for the final training: 15Hz sampling rate, le® learning rate,

2 256 LSTM Hidden dimension, and 2 LSTM layers.

w 3.2.3. MedAIR

384 The MedAIR team (Yunshuang Li, Yonghao Long, and Qi Dou, Zhejiang
s University and the Chinese University of Hong Kong) participated in three tasks:
s video-based, kinematic-based, and video/kinematic-based workflow recognition.
sz They resubmitted a Docker image for the video-based workflow recognition task.
388 The MedAIR team resized videos to 224 x 224 pixels and then augmented the
s data using a random horizontal flip and a random rotation of 5°. For kinematic
a0 data, they used a linear layer to obtain 2048 dimensions from the 28 dimensions
s to enrich the information.

302 For unimodal-based workflow recognition (video-based and kinematic-based

0 tasks), the MedAIR team used a Trans-SVNet model [41]. First, they trained
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s two different convolutional neural networks (CNN) to extract spatial features,
s one for steps and another for left and right verbs. Then, they trained three
ws multi-stage temporal convolutional networks (TCN) to obtain temporal features
a7 for steps and verbs. Finally, they used three transformer layers to combine
s spatial and temporal features to obtain the final output for the three labels.
s Phases were not directly predicted by the networks, but identified based on the
w0 predicted step. They used a stochastic gradient descent (SGD) optimizer with a
w  cross-entropy loss and a learning rate of 5e .

402 For multimodal-based workflow recognition (video/kinematic-based task),
ws they used a multi-modal relational graph network (MRG-Net) [26]. Like for
ws  unimodal-based workflow recognition, they used two CNNs to extract features
ws  from each frame in the video for steps and verbs. Then, they obtained the step
ws labels using the original MRG-Net structure, which was the result of the fully
w7 connected layer with the output of three nodes in the graph. For the verb labels,
ws  the MedAIR team used fully connected layers to produce outputs k! and kI, the
wo final label prediction for left and right verb labels. They identified phases based
a0 on the predicted step. They used an Adam optimizer with cross-entropy loss

a1 and learning rate of le™.

w2 3.2.4. MMLAB

a13 The MMLAB team was composed of Satyadwyoom Kumar, Lalithkumar
as Seenivasan, and Hongliang Ren from the Netaji Subhas University of Technology,
a5 National University of Singapore, and the Chinese University of Hong Kong.
a6 They participated in the video/kinematic-based recognition task.

a7 MMLAB team proposed a multi-task learning model to perform the recogni-
as  tion. First, each video frame was resized to 224 x 224 pixels. A ResNet 50 [18]
a9 pre-trained on ImageNet was used to extract visual features for each video frame.
w20 These features were passed with the frame-specific kinematic data through four
= label-specific networks (one per component). Each label-specific network was
e composed of two LSTMs [19], one for each modality, to capture the temporal

a3 features. The sequential length was set to 5, allowing the model to infer based
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w22 on the current and past 4 temporal information sets. The resulting temporal
w5 features were then passed through a single linear layer for recognition. Each
w6 label-specific network was trained independently with cross-entropy loss, Adam
w2 optimizer, and a learning rate of 1e for phase and step recognition, and le2

a8 for hand verbs.

w  3.2.5. NCC NEXT

430 The NCC NEXT team (Hiroki Matsuzaki, Yuto Ishikawa, Kazuyuki Hayashi,
s Yuriko Harai, and Nobuyoshi Takeshita, National Cancer Center Japan East
«» Hospital) participated in all proposed tasks. They resubmitted a Docker image
a3 for all tasks except the kinematic-based recognition task.

434 They resized the initial video frames to a resolution of 512 x 256 pixels for
w5 video-based workflow recognition and of 480 x 270 pixels for segmentation-based
a6 workflow recognition. This was followed by normalization. They did not perform
w7 any preprocessing of kinematic data.

a8 For video-based workflow recognition they used Xception networks [42] pre-
a0 trained on ImageNet, one per component. They used the Radam optimizer [43]
w0 with different learning rates with a batch size of 4, 1e™ for phases and steps, and
wm le™ with a cosine decay scheduler for hand verbs. They also used cross-entropy
w2 loss.

3 For kinematic-based workflow recognition, the NCC NEXT used the light
sa  gradient boosting machine (LightGBM) framework [44]. Like for the previous
ws  task, they did the training and tuning of hyperparameters (i.e., learning rate,
us  minimum data in leaf, number of iterations, and number of leaves) separately
w7 for each component (Table 2). They chose gradient boosting as a predictor

1 optimizer and the mean absolute error (MAE) as loss of function.
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Parameters Phase | Step | Verb_ Left | Verb_ Right
Learning rate 0.1 0.05 0.05 0.05
min_data_in leaf 9 9 3 9
num_ iteration 200 100 100 50
num__leaves 11 31 11 11

Table 2: Hyperparameters for the kinematic based model developed by the NCC NEXT team

449 The segmentation was performed by a Deeplabv3+ architecture [33] with an
0 Xception backbone pre-trained on the Pascal visual object classes (PascalVOC)
s data set [45]. With the predicted segmentation, they trained a multi-output
w2 classification model, based on the EfficientNetB7 architecture [46], with Radam
3 optimizer, cross-entropy loss function, a learning rate of 0.0001 with a cosine
4 decay scheduler, and a batch size of 16.

455 For the multimodal workflow recognition tasks, the NCC NEXT team se-
w6 lected the method used in the three previous tasks that displayed the highest
s7 accuracy for each component. Specifically, for video/kinematic-based workflow
s recognition task, they used the video-based architecture for phase and step
9 recognition and the kinematic-based architecture for hand verb recognition.
w0 For the video/kinematic/segmentation-based model, they used the video-based
w1 architecture for phase recognition, the segmentation-based architecture for step

w2 recognition, and the kinematic-based architecture for hand verb recognition.

w3 3.2.6. SK

464 The SK team (Satoshi Kondo, Muroran Institute of Technology) participated
ws in all proposed tasks.

466 For preprocessing, the SK team resized the images to 640 x 353 pixels and
w7 then used random shifting (maximum shift size of 10% of the image size), scaling
ws (0.9 to 1.1 times), rotation (-5 to 5 degrees), color jitter (-0.9 to 1.1 times for
w0 brightness, contrast, saturation, and hue), and Gaussian blurring (maximum

wo sigma value = 1.0) for data augmentation. Finally, the images were normalized
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an and the kinematic data were normalized in each dimension.

an2 For the video-based workflow recognition task, the SK team used an 18-layer
a3 ResNet network [18], pre-trained on ImageNet. The SK team omitted the final
s fully-connected layer of ResNet and fed its input 512-dimensional feature vector
a5 into two fully-connected layers to obtain a prediction of the step and hand verbs.
s Between these fully-connected layers, they inserted one ReLLU and Dropout
w7 layers. The team used an Adam optimizer, with learning rate changes with
s cosine annealing with an initial value of 7.2¢™*, and a batch size of 96. The team
a0 optimized the initial learning rates for each task with the Optuna library [47].
w0 The team chose cross-entropy loss as the loss function, with weights for each
s class depending on the class frequency for hand verbs. Phases were not directly
w2 predicted from the image, but identified based on the predicted step.

483 The SK team used a stacked LSTM [19] with two layers and 28 hidden
s layers for the kinematic-based workflow recognition task. The LSTM output
w5 was fed into three fully connected layers as done for the previous task. The same
s optimizer and loss function were used. The initial learning rate was 1.5¢™ with
w7 a batch size of 6 and the number of data in a sequence was 30.

as8 Image segmentation was done using the U-Net architecture [48] with ResNet18
s as encoder with the suinmation of cross-entropy loss and dice loss. The SK team
w0 exploited the same model used for the video-based workflow recognition task and
s for the segmentation-based task. Both models were trained separately with an
w2 Adam optimizer and an initial learning rate of 2.4e”® with a batch size of 32 for
w3 segmentation, and a learning rate of le* with a batch size of 6 for recognition.
494 For the video/kinematic-based task and video/kinematic/segmentation-based
s task, the SK team ensembled the previously trained dedicated modality networks
w6 t0 obtain a new prediction. As the SK team used the network parameters trained

w7 for the previous task, they did not train any network for these tasks.

ws  3.2.7. MediCIS: non-competing team
499 The MediCIS team was a non-competing team due to the presence of challenge

s organizers (Quang-Minh Nguyen and Arnaud Huaulmé, University of Rennes 1).
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so The team participated in all proposed tasks.

502 For the preprocessing step, they resized the frames to 256 x 512 pixels.
so3  Additionally, to train the segmentation model, they down-sampled the data to 6
sa  Hz. They z-normalized the kinematic data.

505 For the video-based workflow recognition task, the MediCIS team used a
sos hierarchical RestNet50 network [18] pre-trained on ImageNet to extract spatial
sor  features. Then, they used a Multi-Stage Temporal Convolutional Network called
ss - MS-TCN++ [49], with two stages, trained from scratch.

500 For the kinematic-based workflow recognition task, they directly used data
si0 as features for a two-stage MS-TCN-++.

511 They selected as their segmentation model a U-Net [50] network trained from
sz scratch with the Adam optimizer, cross-entropy loss, learning rate of le™, and
si3 batch size of 10. Like for the video-based task, workflow recognition was done
su by hierarchical ResNet50 followed by a two-stage MS-TCN++.

515 For the video/kinematic-based and video/kinematic/segmentation-based
sie tasks, the MediCIS team extracted unimodal spatial features using a hierarchical
si7 ResNetb0 network for video and segmentation data, followed by concatenation.
sis Then, they trained a two-stage MS-TCN++.

519 They trained all workflow recognition models with the Adam optimizer,
s0  cross-entropy loss, learning rate of le, and batch size of 2. For the hierarchical
s ResNet50 network, they emphasized the training for granularities that are harder
s to recognize using the following weights in the loss: 1 for phases, 2 for steps, and
s3 b for both action verbs. They set the number of dilated convolutional layers in
s MS-TCN-++ to 10, except for the first layer where it was 11. The number of

ss  feature maps for each layer was 64.

s 3.8. Workflow recognition results

527 All results were computed on the organizers’ hardware via the provided Docker
s images. This section only presents the results used for the ranking (balanced

s0  AD-Accuracy). Other results, such as application-dependent scores for each
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540

sequence and task, for each participating team, are available as supplementary

material and at www.synapse.org/PETRAW.

3.8.1. Task 1: Video-based workflow recognition

Task 1 consisted of recognizing phases, steps, and hand verbs using video data

only. Table 3 summarizes the algorithms used by the five teams that submitted

models for this task.

Team Hutom * MedAIR * NCC Next * SK MediCIS
Preprocessing X X X X X
Augmentation X X X
) ResNet50
Model 3DResNet Trans-SVNet Xception ResNet18
& MS-TCN++

Optimizer Adam SGD Radam Adam Adam

Equalization v2
Loss cross-entropy | cross-entropy | cross-entropy | cross-entropy

& Normsoftmax

le
Learning Rate le? 5e 7.2¢4 le
& let

Causal X

Table 3: Algorithms used for task 1. Teams that resubmitted models are highlighted with an

asterisk. An “X” means that the method performed preprocessing, data augmentation, or is

causal.

Comparison of the mean AD accuracy values for each test sequence (all

models) (Figure 5) showed only a slight performance decrease (from 95.1% to

82.2%), but sequences 79 and 54 displayed the lowest performance (77.7% and

72.9%, respectively). Moreover, for all the test sequences, one model displayed

lower AD-Accuracy values than the other models.
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Figure 5: Task 1 recognition AD-Accuracy values (%) for each sequence. Each dot represents

the AD-Accuracy of one model. The x-axis represent the test sequence id.

sa1 Comparison of the mean AD-Accuracy value for each model (Figure 6 showed
se2 that team SK and team Hutom, obtained the highest values (>90%), followed
ss by team MediCIS and team NCC NEXT (>87%). MedAIR obtained the lowest
s Tesults (~84%).
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Figure 6: Mean task 1 recognition AD-Accuracy for each model. Each dot represents the

AD-Accuracy for one sequence.

545 Team ranking was not influenced by the chosen method (Figure 7), except
s for the ranking of the SK and Hutom teams using the rankThenMedian and
sz testBased methods.
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Figure 7: Task 1 recognition ranking stability using different ranking methods. Rank 1 indicates

the best method.

sis 3.3.2. Task 2: Kinematic-based workflow recognition

549 Task 2 consisted of recognizing phases, steps, and hand verbs using kinematic
sso  data only. Table 4 summarizes the methods used by the six participating teams
ss1 for this task.

552 As with task 1, the performance per sequence slightly decreased (Figure 8).
553 The highest AD-Accuracy values were superior to 90% for all teams. Three
s« sequences (including sequences 79 and 54) had mean AD-Accuracy values inferior

55 0 80%. Unlike task 1, the majority of sequences did not have outliers.
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556

557

558

Team Hutom JHU-CIRL | MedAIR | NCC Next SK MediCIS
Preprocessing X X X X X X
Augmentation
Trans Stacked
Model Bi-LSTM Uni-LSTM LightGBM MS-TCN++
-SVNet -LSTM
Gradient
Optimizer Adam Adam SGD Adam Adam
Boosting
Equalization v2 Cross- Cross- Cross- Cross-
Loss MAE
& Normsoftmax entropy entropy entropy entropy
let
Learning Rate 1e3 le3 Sed 1.5e73 le?
& 5e2
Causal X X X

Table 4: Summary of the models used for task 2.°An “X” means that the method performed

preprocessing, data augmentation, or is causal.
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Figure 8: Task 2 recognition AD-Accuracy for each sequence.

AD-Accuracy of one model.

Each dot represents the

Results were very similar among teams (Figure 9). Four had a mean AD-

Accuracy value of between 89.7% and 90.7%, and the other two displayed mean

AD-accuracy values of 86.4% and 84.3%, respectively.

28




Journal Pre-proof

R P
0.9 .'1:-:
VAR
' .
et
08 . O
L] . 4
L] L] °
. L] L]
0.7 .
z ) < T
% Q % = T =
% O =3 IC S)
5 z 2 o 3
X -

Figure 9: Mean task 2 recognition AD-Accuracy for each model. Each dot represents the

AD-Accuracy for one sequence.

559 Ranking was not stable for team SK and team MediCIS (Figure 10). As

s0  MediCIS was a non-competing team, SK was ranked third for this task.
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Figure 10: Task 2 recognition ranking stability using the indicated ranking methods.
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sor 3.3.3. Task 3: Segmentation-based workflow recognition

562 Task 3 consisted of recognizing phases, steps, and hand verbs using semantic
s3  segmentation data only. First, the results of the segmentation models provided
ssa by the participants will be described, and then the workflow recognition models.
565 Segmentation models:

566 Table 5 summarizes the methods used by the four participating teams to

perform semantic segmentation.

Team Hutom * NCC Next * SK MediCIS
Preprocessing X X X X
Augmentation X X

Model DeepLabV3+ DeepLabV3+ U-Net U-Net
Optimizer Adam Radam Adam Adam

Equalization v2
Loss cross-entropy | cross-entropy | cross-entropy

& Normsoftmax

Learning Rate le3 le 2.4e7® let

Table 5: Segmentation models used for task 3. Teams that resubmitted models are highlighted
with an asterisk. An “X” means that the method performed preprocessing, data augmentation,

or is causal.
567

568 Comparison of the IoU values for each class independently and for all classes
s0  (Macro) (Table 6) showed that, the IoU varied between 94.0% and 91.1% for
so Macro. Pegs were the least recognized structure (IoU between 83.9% and 82.3%).
sn Specific sequences with lower performance were not identified.

572 Comparison of the mean IoU values of each team for all classes (Macro) and
s3 for each class independently (Table 7) showed similar Macro results for the NCC
sw Next, SK and MediCIS teams ( 96.9%, 96.4%, and 94.0%, respectively). The
s5  Hutom team’s Macro IoU was the lowest (85.0%), mainly due to the IoU for
s pegs (63.3%). Figure 11 presents the ground truth and the segmentation results
sz of each team for one frame.

578 Workflow models
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Mean | Median | Max | Min
Background | 98.8 98.9 98.9 | 98.7

Base 96.1 96.2 96.3 | 95.6
Pegs 83.2 83.1 83.9 | 82.3
Blocks 91.7 91.7 92.5 | 90.8

Left tool 94.9 95.3 97.6 | 87.3
Right tool 94.0 94.5 96.9 | 88.9
Macro 93.1 93.2 94.0 | 91.1

Table 6: Mean Intersection-Over-Union values for all classes of each sequence independently

Hutom * | NCC Next * | SK | MediCIS

Background 97.7 99.5 99.2 98.9
Base 914 98.4 98.4 96.1
Pegs 63.3 92.1 92.0 85.3
Blocks 82°8 96.0 96.0 92.2
Left tool 89.3 98.1 96.1 96.0
Right tool 85.5 97.8 96.7 95.8
Macro 85.0 96.9 96.4 94.0

Table 7: Mean Intersection-Over-Union values for all the classes of each team. Teams that

resubmitted models are highlighted with an asterisk and best results are in bold.

579 Table 8 summarizes the methods used by the four participating teams to
se0  perform the workflow recognition.

581 Comparison of the mean AD-Accuracy values for each test sequence (Figure
sz 12) showed that performance decreased from 87.5% to 76.6%. The same two
s sequences (79 and 54) displayed very low results (67.4% and 65.5%, respectively).

sss  Moreover, for all test cases, one model had results lower than 70%.
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) Ground Truth ) NCC Next
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Figure 11: Ground truth (a) and segmentation results for each team (b to e) for one frame.
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Figure 12: Task 3 recognition AD-Accuracy for each sequence. Each dot represents the

AD-Accuracy of one model.

Comparison of the mean AD-Accuracy value for each model indicated that
three teams obtained results between 88.5% and 87.2%, whereas the Hutom

team had a mean AD-Accuracy value of 60.3% (Figure 13).
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Team Hutom * NCC Next * SK MediCIS
Preprocessing X X X X
Augmentation X X
ResNet50
Model W SlowFast50 EfficientNetB7 ResNet18
& MS-TCN++
Optimizer Adam Radam Adam Adam

Equalization v2
Loss cross-entropy | cross-entropy cross-entropy

& Normsoftmax

Learning Rate le3 let let let

Causal X

Table 8: Summary of the models used for task 3 (segmentation-based workflow recognition).
Teams that resubmitted models are highlighted with an asterisk. An “X” means that the

method performed preprocessing, data augmentation, or is causal.
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Figure 13: Mean recognition AD-Accuracy for each model for task 3. Each dot represents the

AD-Accuracy for one sequence.

588 The choice of method did not influence the team ranking, except for the

s.0  second (NCC NEXT) and the third (MediCIS) rank (Figure 14).
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Figure 14: Task 3 recognition ranking stability using the indicated ranking methods.

so  3.3.4. Task 4: Video/kinematic-based workflow recognition

501 Task 4 consisted of recognizing phases, steps, and hand verbs using video and
s2  kinematic data. Table 9 summarizes the methods used by the six participating
503 teams.

504 AD-Accuracy values for each sequence were similar to those of the previous
ss  tasks (Figure 15). Indeed, performance slightly decreased from 95.1% to 83.1%
o6 for most sequences, and was again low for sequences 79 and 54 (81.2% and

s 76.5%). For this task, the number of outliers was limited.
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Team Hutom * MedAIR | MMLAB | NCC NEXT * SK MediCIS
Preprocessing X X X X X X
Augmentation X X X
ResNet18
3D ResNet MRG-Net | ResNet50 Xception ResNet50

Model & Stacked

& Bi-LSTM & CNN & LSTM | & LightGBM & MS-TCN++

-LSTM
Radam
Optimizer Adam Adam Adam & Gradient Adam Adam
Boosting
Equalization Cross-
Cross- Cross- Cross- Cross-
Loss v2 & entropy
entropy entropy entropy entropy
Normsoftmax & MAE
. . le3 le't & 5e? 7.2¢
Learning Rate le3 le” let
& le? & 1e3 & 1et | & 1.5e3

Causal X

Table 9: Summary of the models used for task 4. Teams that resubmitted models are highlighted
with an asterisk. An “X” means that the method performed preprocessing, data augmentation,

or is causal.

Y

Figure 15: Task 4 recognition AD-Accuracy values for each sequence. Each dot represents the

AD-Accuracy for one model.
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598 The NCC NEXT team obtained the best results (Figure 16), with a mean
so0  AD-Accuracy of 93.1%, followed by SK, Hutom, and MediCIS teams with results
oo of between 91.6% and 90.2%. For the last two teams, the AD-Accuracy was
o1 above 84.5%.
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Figure 16: Mean task 4 recognition AD-Accuracy for each team. Each dot represents the

AD-Accuracy for one sequence.

602 The ranking is stable according to the ranking method chosen (Figure 17).
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Figure 17: Task 4 recognition ranking stability using the indicated ranking methods.

o3 3.3.5. Task 5: Video/kinematic/segmentation-based workflow recognition

604 In task 5, teams recognized phases, steps, and hand verbs using video,
s kinematic and segmentation data. Table 10 summarizes the recognition methods
s used by the four participating teams. The models to create the segmentation
e7 were the same as those described in Table 5.

608 As for the previous tasks, the mean AD-Accuracy values per sequence (Figure
oo 18) highlighted a slight performance decrease (from 97.2% to 85.9%). Sequences
s0 79 and 54 again displayed the lowest performances (80.8% and 78.0%, respec-
ou  tively).
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Team Hutom * NCC NEXT * SK MediCIS
Preprocessing X X X X
Augmentation X X
Xception,
3D ResNet ResNet18 ResNet50
Model EfficientNetB7
& Bi-LSTM & Staked-LSTM | & MS-TCN++
& Light GBM
Radam
Optimizer Adam Adam Adam
& Gradient Boosting
Equalization v2 cross-entropy
Loss cross-entropy cross-entropy
& Normsoftmax & MAE
le'l, 5e?, 7.2¢74,
Learning Rate le3 let
167 & let 1.5¢3 & let
Causal

Table 10: Models used for task 5. Teams that resubmitted models are highlighted with an
asterisk. An “X” means that the method performed preprocessing, data augmentation, or is

causal.
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Figure 18: Task 5 AD-Accuracy for each sequence. Each dot represents the AD-Accuracy for

one model.

612 The teams’ mean AD-Accuracy values ranged between 93.1% and 89.8%
a3 (Figure 19). The SK and Hutom teams displayed very similar results, with 91.4%
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se and 91.3%, respectively. However, the chosen ranking method did not influence

as  the final rank (Figure 20).
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Figure 19: Average task 5 recognition AD-Accuracy for each team. Each dot represents the

AD-Accuracy for one sequence.
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Figure 20: Task 5 ranking stability using the indicated ranking methods.
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o6 3.3.6. Workflow recognition results summary
617 Table 11 summarizes the results of each team for the five tasks. All the best

sis methods displayed mean AD-Accuracy superior to 90%, except for task 3.

Team Task 1 | Task 2 | Task 3 | Task 4 Task 5
Hutom 90.51 *| 84.31 | 60.28 *| 91.33 * | 91.27 *
JHU-CIRL 86.45

MedAIR 84.31 *| 90.72 86.98

MMLAB 84.80

NCC NEXT | 87.77 *| 90.32 | 87.71 *| 93.09 * | 93.09 *
SK 90.77 89.66 | 88.51 91.61 91.37
MediCIS 89.15 89.71 | 87.22 90.18 89.81

Table 11: Mean AD-Accuracy of each team for the five tasks. The best results are highlighted
in bold for each task. Resubmitted models are highlighted with an asterisk.

o0 3.4. Additional analyses

620 The additional analyses concern four of the seven participating teams: Hutom,
e NCC Next, SK, and MediCIS. They were the only teams to participate with a
62 combination of the same or similar models used for the unimodal tasks. Although
¢3  MedAIR team participated in task 4 and the two corresponding unimodal tasks

s (1 and 2), the models used were too different to allow a model comparison.

o 3.4.1. Comparison between unimodal and multimodal models

626 Table 12 presents the results of the statistical analysis. For the four teams,
sz the combination of video and kinematics (task 4) is statistically different than
s the use of only one modality (tasks 1 and 2). The same statistical differences
o0 exist between the combination of the three modalities (task 5) and each modality
0 individually (tasks 1, 2, and 3), with the exception of task 2 and task 5 for the
sn MediCIS team. However, the addition of the segmentation modality (task 5) to
2 the video/kinematic-based (task 4) models was only significant for the MediCIS

633 team.
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Team Hutom | NCC NEXT | SK | MediCIS
T1 <> T4 X X X X
T2 <> T4 X X X X
T1 <> T5 X X X X
T2 <> T5 X X X

T3 <> T5H X X X X
T4 <> T X

Table 12: Significant performance differences between unimodal and multimodal tasks. T1 <>

T4: comparison of task 1 and task 4; X: significant performance variation (p-value < 0.05).

6 3.4.2. Execution time

635 Table 13 presents the execution time for the four teams and each task. For
6 NCC Next team, the duration could not be determined because the predictions
67 were locally written at the end of the Docker image execution. Execution time
3  was highly variable among the teams, with the shortest (except task 2) achieved
60 by the SK team. The shortest execution times overall were obtained for task 2

o0 (3 min for SK and less than 1 minute for the Hutom and MediCIS teams).

Team Hutom NCC NEXT SK MediCIS
Task 1 56 min CBD 50 min | 202 min
Task 2 < 1 min CBD 3 min < 1 min
Task 3 | 13 550 min CBD 145 min | 725 min
Task 4 57 min CBD 53 min | 203 min
Task 5 | 13 600 min CBD 175 min | 928 min

Table 13: Execution times to compute the results of the 60 test sequences. CBD: Could not

Be Determined
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61 4. Discussion

642 Accurate surgical workflow recognition is necessary for context-aware computer-
&3 assisted surgical systems. The proposed methods obtained good results but
sas  were not perfect and the PETRAW data set itself presented several limitations.
&5 Specifically, the peg transfer task is significantly easier than a real surgical
&5 intervention due to the simpler environment, clearly identifiable objects, static
e field of view, and constant lighting. In addition, each sequence was performed
&g by the same operator resulting in lower data set variability.

649 By analyzing the performance of the methods across individual sequences,
0 we observed a gradual decrease in performance, except for two sequences (54
e and 79) that displayed very low AD-Accuracy compared to the others regardless
62 of modality. We analyzed these two sequences in detail to understand this poor
e3 performance. In sequence 54, the block was dropped twice during the transfer
ea  between hands, forcing the operator to catch the block for a second time. In
65 addition, one block got stuck on the peg, forcing the operator to reposition it.
6 Sequence 79 is one of the sequences identified as containing uncertainty (see
s Section 2.3.3). However, the overlapping steps (by 0.5 seconds) could not entirely
68 explain the low performance, as the overlap was partially compensated by the
oo delay of 0.25 seconds used to compute the AD-Accuracy. In addition, a block got
s0 stuck on a peg in this sequence and the order in which the blocks were caught
61 did not correspond to the one used in most sequences. These deviations from
o2 the most common workflow might explain the low performance.

663 For task 1 (video-based recognition), ResNet-based models gave the best
s results, and the simplest model was ranked first. For task 2 (kinematic-based
s recognition), LSTM-based methods presented the worst results. For task 3,
s the two segmentation models used (DeepLabV3 and U-Net), displayed similar
s7 loU values and the differences were probably due to differences in the training
es characteristics. For workflow recognition, the EfficientNetB7 and ResNet models
so Obtained similar results. For Tasks 4 and 5, the NCC NEXT team’s strategy

s (i.e., using the modality that gave the best results in the unimodal tasks for each
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sn  workflow component) provided the best result.

672 For the segmentation-based recognition task (task 3), the segmentation quality
ez seemed to influence workflow recognition up to a certain threshold. Indeed, the
e« workflow recognition performances of the three teams with Macro IoU values
o5 superior to 94.0% were similar (AD-Accuracy between 88.5% and 87.2%), but
e the ranking was inverted for the two first teams. Conversely, the workflow
e Tecognition performance with a Macro IoU value of 85% dropped drastically
o (60.3%). Additional research is required to fully quantify and understand the
o9 degree to which segmentation quality influences workflow recognition since, in
e0 this challenge, teams used different combinations of models for the segmentation
e1 and workflow recognition components.

682 For tasks 1 to 4, at least one team submitted a method that could be truly
es causal. It is important to note that several proposed methods were provably
ea non-causal due to their preprocessing steps and not the core network such as
s with NCC NEXT (task 3), SK (task 1, 3, 4, 5), and MediCIS (task 2, 4 and
s 5). Causal methods generally have lower performance than non-causal models.
e7  With the exception of task 4, the causal methods displayed performances that
es were surprisingly close to that of the best method. For example, for task 2, the
e AD-Accuracy of the best method was 90.7%, compared to 90.3% and 89.7%
s0 for the causal methods by NCC NEXT and SK, respectively. Obviously, it is
s  not possible to conclude that causal methods give similar results to acausal
62 models: i) because during the challenge we did not have the two versions of a
s0s -similar method, ii) due to data simplicity. Nevertheless, the results of the causal
s methods are promising for developing applications, such as the implementation
es of automatic reports after training sessions on a virtual simulator.

696 Among the seven participating teams, four (Hutom, NCC Next, SK, and
sor  MediCIS) participated in the multimodal tasks (4 and 5) with a combination of
es the same or similar models used for the unimodal tasks. In all cases, recognition
00 was improved when several modalities were used (Table 11); however, the
oo addition of segmentation modality decreased the performance. The statistical

7 analysis (Table 12) confirmed a significant performance improvement when using
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7 multimodal models, with the exception of tasks 2 and 5 for the MediCIS team.
73 The performance decrease experienced with the addition of the segmentation
¢ modality to the video/kinematic-based models was only significant for the
s MediCIS team.

706 Therefore, the combination of video and kinematic (task 4) data gives sig-
77 nificantly better results compared with other modality combinations. The
s results obtained by the MedAIR team could contradict this point because they
79 obtained better results for the kinematic-based recognition task than for the
70 video/kinematic-based one. However, the models they used were very different:
m  a Trans-SVNet and an MRG-Net combined with a CNN respectively. So, in this
n2  case, it is difficult to determine if the performance modifications were due to the
73 model or to the modalities used. However, task 4 was more time-consuming than
na  task 2 (53 vs. 3 minutes for SK, 57 vs. less than 1 for Hutom, and 203 vs. less
75 than 1 for MediCIS). One may ask whether it is wise to spend 2,000% to 20,000%
76 more computing time for less than a 3% improvement. The training time should
77 also be taken into account, as it is much more time-consuming [51, 52], but we
ns  did not have access to this information. Data storage should also be considered.
79 Video can require a lot of storage space, especially for long surgical interventions.
20 Conversely, kinematic data are less voluminous.

e Future work should focus on overcoming the limitations of the current data
22 set by including peg transfer sequences performed by several operators in different
=3 systems. Moreover, tests on more realistic data are necessary to validate the
=2 finding that kinematic data display the best performances in recognition rate
s and have less environmental impact thanks to the lowest computation time and

76 storage cost.
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