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Highlights

• Peg Transfer data set containing video, kinematic, semantic segmentation

and workflow annotation.

• Challenge of surgical workflow recognition with different modality

• Comparison of multiple deep learning based recognition methods
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Abstract

Background and Objective: In order to be context-aware, computer-assisted

surgical systems require accurate, real-time automatic surgical workflow recogni-

tion. In the past several years, surgical video has been the most commonly-used

modality for surgical workflow recognition. But with the democratization of

robot-assisted surgery, new modalities, such as kinematics, are now accessible.

Some previous methods use these new modalities as input for their models, but

their added value has rarely been studied. This paper presents the design and

results of the “PEg TRAnsfer Workflow recognition” (PETRAW) challenge with

the objective of developing surgical workflow recognition methods based on one

or more modalities and studying their added value.

Methods: The PETRAW challenge included a data set of 150 peg transfer

sequences performed on a virtual simulator. This data set included videos,
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kinematic data, semantic segmentation data, and annotations, which described

the workflow at three levels of granularity: phase, step, and activity. Five tasks

were proposed to the participants: three were related to the recognition at all

granularities simultaneously using a single modality, and two addressed the

recognition using multiple modalities. The mean application-dependent balanced

accuracy (AD-Accuracy) was used as an evaluation metric to take into account

class balance and is more clinically relevant than a frame-by-frame score.

Results: Seven teams participated in at least one task with four participating

in every task. The best results were obtained by combining video and kinematic

data (AD-Accuracy of between 93% and 90% for the four teams that participated

in all tasks).

Conclusion: The improvement of surgical workflow recognition methods

using multiple modalities compared with unimodal methods was significant for

all teams. However, the longer execution time required for video/kinematic-

based methods(compared to only kinematic-based methods) must be considered.

Indeed, one must ask if it is wise to increase computing time by 2,000 to 20,000%

only to increase accuracy by 3%. The PETRAW data set is publicly available

at www.synapse.org/PETRAW to encourage further research in surgical workflow

recognition.

Keywords: Surgical Process Model, Workflow recognition, Multimodal, OR of

the future

1. Introduction1

To fully integrate computer-assisted surgery systems in the operating room,2

a complete and explicit understanding of the surgical procedure is needed. A3

surgical process model (SPM) is a “simplified pattern of a surgical process that4

reflects a predefined subset of interest of the surgical process in a formal or5

semi-formal representation” [1], thus allowing for the surgical procedure to be rig-6

orously modeled and described. The SPM methodology consists of decomposing7

a surgical procedure into five increasingly-coarse levels of granularity: dexeme,8
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surgeme, activity, step, and phase [2, 3]. A dexeme, the lowest granularity level,9

is a numeric representation of the motion. A surgeme represents a surgical10

motion with an explicit semantic interpretation of the immediate motion (e.g.,11

pulling). An activity describes the motion’s overall action (action verbs; e.g.,12

cut) performed on a specific target (e.g., the pouch of Douglas) by a specific13

surgical instrument (e.g., a scalpel). A step is the succession of these activities14

which together achieve a specific surgical objective (e.g., resection of the pouch15

of Douglas). Finally, a phase is the succession of steps that constitute a main16

period of the intervention (e.g., resection). SPM’s are used for learning and17

expertise assessment [4, 5], robot assistance [6], operating room optimization18

and management [7, 8], decision-making support [9], and quality supervision19

[10].20

The primary limitation of the state-of-the-art in SPM’s [3, 4, 5, 7, 9, 10] is their21

need to be manually interpreted by human observers, which is observer-dependent,22

time-consuming, and subject to error [11]. Thus, the proposed solutions can23

not be directly used to bring context-awareness into computer-assisted surgery24

applications in the operating room. To overcome this limitation, automatic25

workflow recognition methods have been developed for multiple granularity levels,26

including phase [8, 12, 13], step [14, 15], and activity [6, 16]. With the emergence27

of deep learning, most of these recent automatic workflow recognition methods28

are based on convolutional neural networks, such as AlexNet [17] or ResNet [18];29

on recurrent neural networks, such as LSTM [19] or gated recurrent unit (GRU)30

[20]; and more recently on transformers [21].31

Along with what methodology to use, it is also an open question as to32

which data modalities should be used as input for this task. In robot-assisted33

surgery and virtual reality training environments, video and kinematic data are34

both readily available. Despite this, most state-of-the-art workflow recognition35

methods are based on a single modality, such as only video [22, 23] or only36

kinematic data [3, 24]. Few studies have used workflow recognition method based37

on both video and kinematic data [25, 26, 27]. However, with the exception of38

the study by Long et al.[26], they do not compare the results obtained based on39
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the number and type of input modalities.40

Semantic segmentation of surgical video is also essential for surgical under-41

standing and is an active area of research. For example, in five editions of the42

EndoVis MICCAI Challenge (2015 to 2020), six of the 19 proposed sub-challenges43

were dedicated to this topic. However, to the best of our knowledge, semantic44

segmentation has rarely been used as a supplementary task paired with, or as45

additional input for, surgical workflow recognition.46

Therefore, the “PEg TRAnsfer Workflow recognition by different modalities”47

(PETRAW) sub-challenge, which is part of EndoVis, provided a unique data set48

for automatic recognition of surgical workflows containing video, kinematic, and49

segmentation data on 150 peg transfer training sequences. Participants were50

asked to develop model(s) to recognize phases, steps, and activities using one or51

several of the available modalities.52

2. Methods: Challenge Design53

This section describes the challenge design, organization, objective, data set,54

and assessment methods.55

2.1. Challenge organization56

The PETRAW challenge was a one-time event organized as part of EndoVis57

during the online 2021 international conference on Medical Image Computing and58

Computer-Assisted Intervention (MICCAI2021). Four people were involved in the59

organization: Arnaud Huaulmé and Pierre Jannin from the University of Rennes60

1 (France), and Kanako Harada and Mamoru Misthuishi from Tokyo University61

(Japan). Complete information about the challenge was made available to62

participants using the Synapse platform: www.synapse.org/PETRAW.63

Challenge participants were subject to the following rules:64

• Participants had to submit a fully automatic method that could recognize65

phases, steps, and activities on the same model using one or several66

modalities; and67
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• Only data provided by the organizers and publicly available data sets,68

including pre-trained networks, were authorized for use in training. The69

publicly available data sets must have been open or otherwise available to70

all participants at the time the PETRAW data set was released.71

The results of all participating teams were announced publicly during the chal-72

lenge day. Challenge organizers and people from the organizing institutions73

could also participate in the challenge but were excluded from the competitive74

rankings. Participating teams were encouraged (but not required) to provide75

their code as open access.76

For a valid submission, the participating teams had to provide the following77

elements: a write-up, a Docker image allowing the organizers to compute the78

results, and a pre-recorded talk to limit technical issues during the challenge day79

(online event). Multiple Docker images could be submitted, but only the last80

submission was officially used to generate the evaluation results. No leaderboard81

or evaluation results were provided prior to the challenge day.82

The challenge schedule was as follows: The training data set, including videos,83

kinematic data, and workflow annotations, was released on June 1, 2021; corre-84

sponding semantic segmentation data was released on June 9, 2021; submissions85

were accepted until September 12, 2021 (23:59 PST); and the evaluation results86

were announced on October 1, 2021, during the online MICCAI2021 event. Some87

teams obtained unexpectedly poor results (i.e., workflow recognition rates inferior88

to 50%), which made further analysis of the results not relevant. Therefore, each89

team was allowed to provide a new submission before October 31, 2021. The90

teams that made a new submission are identified in Section 3.2. The challenge91

test data set and the organizers’ evaluation scripts were released with this paper92

at www.synapse.org/PETRAW93

2.2. Challenge objective94

The objective of the PETRAW challenge was to study the contribution of95

each modality (either alone or in combination) to surgical workflow recognition.96

To achieve this goal, participants were asked to create a single classification model97
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to determine the surgical task at three levels of granularity (phase, step, and98

action). Five different tasks were offered as part of the challenge: three concerned99

the development of unimodal models (i.e., video-based, kinematic-based, or100

semantic segmentation-based models); and two concerned multimodal-based101

models. The unimodal-based models were used as a baseline for comparison102

with the multimodal-based models. In order to keep to a reasonable number of103

tasks, not all multimodal configurations could be studied. For models based on104

semantic segmentation data (and to reflect the fact that clinically this modality105

can be only obtained through a trained segmentation model), participants were106

asked to use the output of such model as input for PETRAW.107

2.3. Challenge data set108

The challenge data set was composed of 150 sequences of peg transfer training109

sessions. The objective of the peg transfer session was to transfer six blocks from110

the left peg to the right and then back. Each block needed to be extracted from111

the peg using a grasper (operated by one hand), transferred to the other grasper112

(in the other hand), and finally inserted onto the peg on the opposite side of the113

board.114

All sequences were acquired by a non-medical expert at the LTSI Laboratory,115

University of Rennes 1, France. The data set was divided into training data116

(n=90 sequences) and test data (n=60 sequences). Each sequence included117

kinematic data, video, semantic segmentation of the video for each frame, and118

workflow annotations at each level of granularity. Only the training data set was119

provided to participants.120

2.3.1. Data acquisition121

The challenge data was acquired on a virtual reality simulator (Figure 1)122

developed at the Department of Mechanical Engineering, University of Tokyo,123

Japan [28], consisting of a laptop (i7-700HQ, 16Go RAM, GTX 1070), a 3D124

rendering setup (3D screen: 24 inches, 144Hz; and 3D glasses), and two haptic125

user interfaces (3D system TouchTM).126
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Figure 1: The virtual reality simulator used for data acquisition.

For data acquisition, a single operator performed a series of five consecutive127

peg transfer tasks followed by a break of at least 5 hours to limit fatigue. This128

was repeated 30 times to yield a total of 150 peg transfer task sequences. The129

COVID-19 crisis (acquisition made in 2020-2021) did not allow us to recruit130

multiple participants. To limit the effect of immediate learning or fatigue in a131

single session, three sequences from each series were randomly chosen for training,132

and the remaining two for testing.133

The kinematic data and videos were synchronously acquired at 30 Hz during134

each peg transfer task. Each video had a resolution of 1920x1080 pixels and135

semantic segmentation was performed for each frame off-line following the task.136

Kinematic data included the position, rotation quaternion, forceps aperture137

angle, linear velocity (obtained from simulation, not derived from position), and138

angular velocity (obtained from simulation, not derived from orientation) of the139

left and right instruments (i.e., graspers). The position and linear velocity were140

measured in centimeters and centimeters per second, respectively. The angle and141

angular velocity were measured in degrees and degrees per second, respectively.142

The semantic segmentation included six classes (shown in Figure 2): back-143
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ground (black, hexadecimal code:#000000), base (white, #FFFFFF), left instru-144

ment (red, #FF0000), right instrument (green, #00FF00), pegs (blue, #0000FF),145

and blocks (magenta, #FF00FF).146

Figure 2: Representative segmentation mask with the six classes: background (black), base

(white), left instrument (red), right instrument (green), pegs (blue) and blocks (magenta).

The workflow annotations were automatically computed using the scene in-147

formation and the ASURA method [11]. The challenge organizers had previously148

demonstrated in [11] that ASURA is more accurate and robust than manual149

annotation on peg transfer tasks. Two phases, twelve steps, six action verbs, two150

targets, and one surgical instrument were identified to describe the workflow151

(Table 1). Each phase corresponded to the transfer of all of the blocks in one152

direction (e.g. “L2R” for left to right). Each step (six per phase) corresponded to153

the transfer of a single block (e.g.“Block1 L2R” for the transfer of the first block154

from the left to the right). For the activities, two targets were differentiated:155

“block” and “other block”. “Block” corresponds to the one that is currently being156

transferred. “Other block” is an additional target used to differentiate when the157

user accidentally interacts with any block other than the one to be transferred.158

One limitation of the method presented by [11] was the inability to accurately159

differentiate between the action verbs “catch” and “touch”, as each tool tip was160

considered as a unique virtual object. The virtual reality simulator was updated161

to include four separating regions rather than one, allowing these actions to162

be readily differentiated. Accordingly, the workflow annotations were manually163

examined and corrected to ensure annotation quality.164
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Table 1: Peg-transfer vocabulary.

Phases Steps
Activities

Verb Target Tool

Transfer Left

To Right (L2R)

Block 1 L2R Catch Block Grasper

Block 2 L2R Drop Other block

Block 3 L2R Extract

Block 4 L2R Hold

Block 5 L2R Insert

Block 6 L2R Touch

Transfer Right

To Left (R2L)

Block 1 R2L

Block 2 R2L

Block 3 R2L

Block 4 R2L

Block 5 R2L

Block 6 R2L

2.3.2. Data pre-processing165

The original workflow annotations were formatted in terms of start and finish166

time, expressed in milliseconds. These annotations were sampled to provide a167

discrete sequence at 30Hz, synchronized with the kinematic, video, and segmenta-168

tion data to allow for frame-by-frame annotation. Due to their lack of variability,169

the two targets and the tool were not included in the workflow annotation.170

Furthermore, when no phase, step, or activity occurred, the term “idle” was used.171

For each timestamp, the following information was provided: timestamp_number,172

phase_value, step_value, verb_Left_Hand, verb_Right_Hand.173

2.3.3. Ground truth uncertainties174

The semantic segmentations were the primary source of uncertainty in the175

ground truth. Due to the transformation of 3D meshes into 2D images, some176

pixels were attributed to the wrong class, especially at boundaries between the177
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Figure 3: Zoom of 219x123 pixels from Figure 2 to highlight segmentation errors. Right

instrument/block (green/magenta) and left/right instruments (red/green) errors are shown

where pixels are labeled as background (black). On this zoom, only 51 pixels were miss-

segmented (around 0.2%).

right instrument/peg, left instrument/peg, left instrument/block, and left/right178

instruments (Figure 3). We estimated this uncertainty by counting the number179

of mis-segmented pixels on 10 images that included many boundary regions, such180

as those between surgical instruments, pegs, and blocks. On each image, the181

number of mis-segmented pixels represents less than 0.25% of the total image.182

To take into account the fact that this manual assessment was not representative183

of the whole data set, we estimated that this mis-segmentation represents less184

than 0.5% of pixels.185

Workflow annotations were another source of uncertainty. Although the186

ASURA method is consistent (i.e., it generates the same result in two identical187

situations) and a manual check was performed to limit inaccuracies, some188

components could not be recognized with complete certainty. Two particular189

instances were identified. First, in sequence 130 of the training data set, the190

block in step “Block 1 R2L” was inserted in a non-standard way. Specifically,191

the block was released by the operator, and while falling became inserted in192

the peg. Therefore, the insert action was absent. The other instance concerned193

sequence 79 of the test data set. This time, the operator caught a block before194

the previous one had been fully inserted, leading to an overlap between the steps195

“Block 5 R2L” and “Block 6 R2L”. The second was chosen as the sole annotation196

to maintain the true beginning of the step.197
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2.3.4. Data set characteristics198

The training and test data sets presented similar characteristics. The mean199

and standard deviation duration was 140.2±18.9 seconds for the training data set200

and 141.7± 18.0 seconds for the test data set. Figure 4 presents the distribution201

of every vocabulary component for each granularity level in the training data202

set (Figures 4a, 4c, 4e, 4g) and the test data set (Figures 4b, 4d, 4f, 4h). Even203

for underrepresented components, the distribution was very similar in both204

data sets. For instance, the verb “touch” (left hand) represented 0.59% and205

0.60% of the samples in the training and test data sets, respectively, and “touch”206

(right hand) represented 0.62% and 0.48%, respectively. The distribution of207

each vocabulary component between each data set is only statistically different208

(Mann-Whitney test) for two steps: “Block 1 L2R” and “Block 6 L2R”, with209

p=0.045 and p=0.036 respectively.210

Another important characteristic of the data sets was the high class unbalance211

of at least one vocabulary term for each granularity level. For the phases, the212

term “idle” represented less than 4% of all data, whereas the other phase terms213

accounted for more than 47% (L2R and R2L). For the steps, the term “idle”214

represented less than 4%, whereas the non-idle steps accounted for approximately215

more than 7.5% of each data set(Figures 4a-4d). This unbalance was more216

pronounced at the action level, where the least represented verb (i.e., “touch”)217

represented approximately 0.6% of the data set, whereas the verb “idle” accounted218

for more than 53%. The detailed distribution values for each granularity level in219

both data sets are provided in supplementary material.220

2.4. Assessment method221

2.4.1. Metrics222

To assess the participants’ workflow recognition models and to take into223

account the high class unbalance, balanced versions of accuracy, precision, recall,224

and F1 were used.225

In practice, however, some small variations in surgical task recognition are226

not clinically meaningful and do not constitute a true error. Motivated by this,227
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(a) Training phases (b) Test phases.

(c) Training phases. (d) Test steps.

(e) Training verb left hand. (f) Test verb left hand.

(g) Training verb right hand. (h) Test verb right hand.

Figure 4: Distribution of each term at each granularity level in the training and test data

sets.The y-axis represents the percentage of frames. In (a) and (b), “L2R” means transfer left

to right and “R2L” means transfer right to left. In (c) and (d), “B1 L2R” means block 1 left

to right, “B2 L2R” means block 2 left to right.
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Dergachyova et al. [29] proposed a re-estimation of these classic frame-by-frame228

scores, called application-dependent scores, to take into account an acceptable229

delay d. When a predicted transition occurs within a transition window (2d)230

centered on the ground truth transition, all frames between the two transitions231

are considered correct if it is the same transition type ( e.g. transition for232

verb “catch” or verb “extract”). Therefore, the balanced application-dependent233

accuracy (AD-Accuracy) was used and the acceptable delay was fixed at 250 ms.234

To assess the participants’ segmentation models, the mean Intersection-Over-235

Union (IoU) over all classes was also used, also known as the Mean Jaccard236

Index over all classes. The IoU is the area of overlap between the predicted237

segmentation (Pred) and the ground truth (GT ), divided by the area of union238

between the Pred and the GT . In our cases, there was a multi-class segmentation239

problem, therefore the mean IoU value of the image was calculated by taking240

the IoU of each class and averaging it over the classes:241

MeanIoUframe = 1
6

∑

class

IoUclass

= 1
6

∑

class

|GT ∩ Pred|class

|GT ∪ Pred|class
(1)

= 1
6

∑

class

TPclass

TPclass + FPclass + FNclass
,

where TP (True Positives) is the number of pixels inside the GT area that are242

correctly predicted, FP (False Positives) is the number of pixels outside the GT243

area but predicted as belonging to the class, and FN (False Negatives) is the244

number of pixels inside the GT area that are incorrectly predicted.245

2.4.2. Ranking method246

The ranking of the participating methods used only the surgical task recog-247

nition metrics. Metrics computed for evaluating the segmentation models were248

provided for information purposes only.249

A metric-based aggregation method using the AD-Accuracy values across250

all test sequences was used for the ranking. Metric-based aggregation was used251
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according to the recommendations made in [30], which show it to be one of252

the most robust. As all tasks consisted of recognizing the phase, step, and the253

actions of the left and right hands (i.e., the left and right verbs), the ranking254

score for the algorithm ai was computed as follows:255

s(ai) = sphase(ai) + sstep(ai) + sverb_left(ai) + sverb_right(ai)
4 (2)

with,256

sphase(ai) =
∑T

t=0 phase_balance_accuracy_case_t

T
, (3)

where T is the number of sequences to test. Similar equations were used for257

the other terms (sstep(ai), sverb_left(ai) and sverb_right(ai)) with a numerator258

specific to each, i.e.,
∑T

t=0 step_balance_accuracy_case_t for sstep(ai), etc.259

If a participant method did not produce a prediction for one or several260

granularity levels, the accuracy given for each missing granularity level was that261

expected for uniformly random predictions. For example, if a model did not262

predict the phase, sphase would be set to 1/3 corresponding to the phase having263

3 potential values. In practice, this was not encountered and each evaluated264

model produced results for each level of granularity.265

Ranking stability was assessed by testing different ranking methods: mean-266

ThenRank, medianThenRank, rankThenMean, rankThenMedian, and testBased.267

MeanThenRank was chosen for the ranking. MedianThenRank differs from the268

previous method because it used the median instead of the mean in equation269

3. For rankThenMean and rankThenMedian, first, the results of each sequence270

were ranked among participants, and then the final results were the mean or271

median of all ranks. The testBased method is based on bootstrapping. The272

ranking was considered stable if a team was ranked in the same position with273

the majority of ranking methods. If the ranking was not stable according to the274

chosen methods, a tie between teams was pronounced. The ranking computation275

and analysis were performed with the ChallengeR package provided by [31].276

2.4.3. Online recognition compatibility277

To be online compatible, the proposed methods must satisfy two conditions:278
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• to produce predictions faster than the duration between the two samples279

(i.e., faster than 30 Hz); and280

• to be causal (i.e., not use data from a future time point to make predictions).281

The computation time was not studied because it could not be assessed fairly for282

all teams. Indeed, the teams provided a unique Docker image for all tasks, and283

some teams did not write the output file to standard output as it was received,284

which did not allow for their durations to be precisely measured.285

To verify that the methods were causal, the online availability of the frames286

was mimicked. One additional sequence of 10 seconds, corresponding to the287

transfer of the first block from the left to the right, was recorded. This sequence288

was used to generate 300 sub-sequences, each one a frame longer than the289

previous. Thus, the first sequence only contained the information of the first290

frame, the second one contained the information of the two first frames, etc.291

The models were run on the 300 sub-sequences and the last prediction of each292

sub-sequence to create a definitely causal prediction sequence. A method was293

considered causal if and only if this definitely causal prediction sequence was294

identical to the prediction sequence given by the full 300 frames. This causality-295

testing method is fully automated and also takes into account the complete296

pipeline used to perform the prediction, such as pre- and post-processing steps,297

which could lead to a non-causal method even if the network only uses causal298

components. For reasons of computation time and environmental responsibility,299

this test was not performed on a whole sequence or the whole test data set. By300

testing the entire data set, we could be more confident in the causality of the301

proposed methods, but this would quickly display diminishing returns.302

2.5. Additional analyses303

To further analyze the impact of using multimodal instead of unimodal304

models, we performed two additional analyses that were not initially included305

in the challenge design: the statistical significance to use multimodal models306

instead of unimodal models, and the execution time. These additional analyses307
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only concerned the teams that participated in the multimodal tasks (4 and 5)308

with a combination of the same or similar models used for the unimodal tasks.309

2.5.1. Comparison between unimodal and multimodal models310

To assess the impact of each modality and its combinations on automatic311

workflow recognition, we performed a statistical analysis with the Wilcoxon test.312

The difference was significant if the p-value was inferior to 0.05.313

2.5.2. Execution time314

Performance is not the only important factor when developing automatic315

recognition models. Indeed, environmental aspects must also be taken into316

account [32]. To answer this question, we examined the execution time to317

compute the results of the 60 test sequences. These durations were interpolations318

that assumed the predictions in each task were computed independently and319

not the real execution time. Indeed, one team (Hutom, see section 3.2.1) used320

the predictions from tasks 1 to 3 as input for those of tasks 4 and 5, so the321

interpolation for the multimodal tasks took into account the execution time for322

the unimodal ones.323

3. Results: Reporting of the Challenge Outcomes324

3.1. Challenge submission325

By September 12, 2021, 29 participants had registered for the PETRAW326

challenge: 17 were members of one of the six competing teams. The organizers327

also submitted results as a non-competing team to provide a baseline. As328

explained in Section 2.1, some teams obtained unexpected results and three329

teams resubmitted results for at least one task.330

3.2. Information on the participating teams and their methods331

This section describes each team, the methods they used, and the tasks in332

which they participated. Competing teams are presented in alphabetical order333

and not in terms of their ranking.334
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3.2.1. Hutom335

The Hutom team (Bogyu Park, Seungbum Hong, and Minkook Choi from336

VisionAI hutom) participated in all proposed tasks. They resubmitted a Docker337

image for all tasks except the kinematic-based recognition task.338

Before training, they performed a simple pre-processing step. To preserve339

temporal information, they split data into clips of 8 frames. They normalized340

kinematic data by standardizing the raw input without data augmentation. They341

resized video data to 256× 256 pixels, followed by random cropping (224× 224342

pixels) and normalization. The cropping was limited to preserve the spatial343

information in each frame of the clip. They resized segmentation data to 512×512344

pixels.345

They used a similar baseline architecture for tasks based on the same modality.346

They computed segmentation data from the video recording using a DeepLabV3+347

architecture [33]. They used a 3D ResNet network [34] for workflow recognition348

based on the video modality. For the segmentation modality, they used a349

SlowFast50 network [35] for segmentation-based recognition and a 3D ResNet350

network for video/kinematic/segmentation-based workflow recognition. They351

inputted kinematic data on a bi-directional long short-term memory (Bi-LSTM)352

network [36]. For multimodal recognition tasks, they used a convolutional353

feature fusion layer to efficiently perform the fusion of the feature output of each354

modality. They obtained embedding features with individual modal inputs from355

each model trained accordingly. Then, they compared the embedding features of356

each modality with those of other modalities to learn the different representations357

of each modality. They used the stop gradient-based SimSiam method [37] to358

compare representations between embedding features. Concomitantly, they359

stacked embedding features by modality into one block as a chunk and fused360

them into one embedding through a convolution operation. The approach361

assumed that feature elements for each modality in the same column have similar362

temporal information in similar positions. For all networks, they used the Adam363

optimizer and an initial learning rate of 1e-3, with a combination of Equalization364
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loss v2 [38] and Normsoftmax Loss [39] as long-tail recognition for addressing365

data imbalance.366

3.2.2. JHU-CIRL367

The JHU-CIRL team (Michael Peven and Gregory D. Hager; Johns Hopkins368

University) participated in the kinematic-based workflow recognition task.369

They performed an under-sampling of the kinematic data to reduce the time370

dimension size in order to prevent vanishing gradient issues during training.371

For the test, they used the same under-sampling. The JHU-CIRL team did372

not perform any other pre-processing because they considered that besides the373

positional data, the addition of velocity data was sufficient for the recognition.374

They used a unidirectional LSTM network [40] to recognize the four workflow375

components. They trained the model using traditional cross-entropy loss and the376

Adam optimizer. They paid special attention to the selection of the following377

hyperparameters: sampling rate, learning rate, LSTM hidden dimension size,378

and the number of layers in the LSTM. They ran 5-fold cross-validation to obtain379

results from each of these hyperparameters. Then, they selected the best set of380

hyperparameters for the final training: 15Hz sampling rate, 1e-3 learning rate,381

256 LSTM Hidden dimension, and 2 LSTM layers.382

3.2.3. MedAIR383

The MedAIR team (Yunshuang Li, Yonghao Long, and Qi Dou, Zhejiang384

University and the Chinese University of Hong Kong) participated in three tasks:385

video-based, kinematic-based, and video/kinematic-based workflow recognition.386

They resubmitted a Docker image for the video-based workflow recognition task.387

The MedAIR team resized videos to 224×224 pixels and then augmented the388

data using a random horizontal flip and a random rotation of 5◦. For kinematic389

data, they used a linear layer to obtain 2048 dimensions from the 28 dimensions390

to enrich the information.391

For unimodal-based workflow recognition (video-based and kinematic-based392

tasks), the MedAIR team used a Trans-SVNet model [41]. First, they trained393
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two different convolutional neural networks (CNN) to extract spatial features,394

one for steps and another for left and right verbs. Then, they trained three395

multi-stage temporal convolutional networks (TCN) to obtain temporal features396

for steps and verbs. Finally, they used three transformer layers to combine397

spatial and temporal features to obtain the final output for the three labels.398

Phases were not directly predicted by the networks, but identified based on the399

predicted step. They used a stochastic gradient descent (SGD) optimizer with a400

cross-entropy loss and a learning rate of 5e-4.401

For multimodal-based workflow recognition (video/kinematic-based task),402

they used a multi-modal relational graph network (MRG-Net) [26]. Like for403

unimodal-based workflow recognition, they used two CNNs to extract features404

from each frame in the video for steps and verbs. Then, they obtained the step405

labels using the original MRG-Net structure, which was the result of the fully406

connected layer with the output of three nodes in the graph. For the verb labels,407

the MedAIR team used fully connected layers to produce outputs kl
t and kr

t , the408

final label prediction for left and right verb labels. They identified phases based409

on the predicted step. They used an Adam optimizer with cross-entropy loss410

and learning rate of 1e-4.411

3.2.4. MMLAB412

The MMLAB team was composed of Satyadwyoom Kumar, Lalithkumar413

Seenivasan, and Hongliang Ren from the Netaji Subhas University of Technology,414

National University of Singapore, and the Chinese University of Hong Kong.415

They participated in the video/kinematic-based recognition task.416

MMLAB team proposed a multi-task learning model to perform the recogni-417

tion. First, each video frame was resized to 224× 224 pixels. A ResNet 50 [18]418

pre-trained on ImageNet was used to extract visual features for each video frame.419

These features were passed with the frame-specific kinematic data through four420

label-specific networks (one per component). Each label-specific network was421

composed of two LSTMs [19], one for each modality, to capture the temporal422

features. The sequential length was set to 5, allowing the model to infer based423
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on the current and past 4 temporal information sets. The resulting temporal424

features were then passed through a single linear layer for recognition. Each425

label-specific network was trained independently with cross-entropy loss, Adam426

optimizer, and a learning rate of 1e-3 for phase and step recognition, and 1e-2427

for hand verbs.428

3.2.5. NCC NEXT429

The NCC NEXT team (Hiroki Matsuzaki, Yuto Ishikawa, Kazuyuki Hayashi,430

Yuriko Harai, and Nobuyoshi Takeshita, National Cancer Center Japan East431

Hospital) participated in all proposed tasks. They resubmitted a Docker image432

for all tasks except the kinematic-based recognition task.433

They resized the initial video frames to a resolution of 512× 256 pixels for434

video-based workflow recognition and of 480× 270 pixels for segmentation-based435

workflow recognition. This was followed by normalization. They did not perform436

any preprocessing of kinematic data.437

For video-based workflow recognition they used Xception networks [42] pre-438

trained on ImageNet, one per component. They used the Radam optimizer [43]439

with different learning rates with a batch size of 4, 1e-3 for phases and steps, and440

1e-4 with a cosine decay scheduler for hand verbs. They also used cross-entropy441

loss.442

For kinematic-based workflow recognition, the NCC NEXT used the light443

gradient boosting machine (LightGBM) framework [44]. Like for the previous444

task, they did the training and tuning of hyperparameters (i.e., learning rate,445

minimum data in leaf, number of iterations, and number of leaves) separately446

for each component (Table 2). They chose gradient boosting as a predictor447

optimizer and the mean absolute error (MAE) as loss of function.448
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Parameters Phase Step Verb_Left Verb_Right

Learning rate 0.1 0.05 0.05 0.05

min_data_in leaf 9 9 3 9

num_iteration 200 100 100 50

num_leaves 11 31 11 11

Table 2: Hyperparameters for the kinematic based model developed by the NCC NEXT team

The segmentation was performed by a Deeplabv3+ architecture [33] with an449

Xception backbone pre-trained on the Pascal visual object classes (PascalVOC)450

data set [45]. With the predicted segmentation, they trained a multi-output451

classification model, based on the EfficientNetB7 architecture [46], with Radam452

optimizer, cross-entropy loss function, a learning rate of 0.0001 with a cosine453

decay scheduler, and a batch size of 16.454

For the multimodal workflow recognition tasks, the NCC NEXT team se-455

lected the method used in the three previous tasks that displayed the highest456

accuracy for each component. Specifically, for video/kinematic-based workflow457

recognition task, they used the video-based architecture for phase and step458

recognition and the kinematic-based architecture for hand verb recognition.459

For the video/kinematic/segmentation-based model, they used the video-based460

architecture for phase recognition, the segmentation-based architecture for step461

recognition, and the kinematic-based architecture for hand verb recognition.462

3.2.6. SK463

The SK team (Satoshi Kondo, Muroran Institute of Technology) participated464

in all proposed tasks.465

For preprocessing, the SK team resized the images to 640× 353 pixels and466

then used random shifting (maximum shift size of 10% of the image size), scaling467

(0.9 to 1.1 times), rotation (-5 to 5 degrees), color jitter (-0.9 to 1.1 times for468

brightness, contrast, saturation, and hue), and Gaussian blurring (maximum469

sigma value = 1.0) for data augmentation. Finally, the images were normalized470
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and the kinematic data were normalized in each dimension.471

For the video-based workflow recognition task, the SK team used an 18-layer472

ResNet network [18], pre-trained on ImageNet. The SK team omitted the final473

fully-connected layer of ResNet and fed its input 512-dimensional feature vector474

into two fully-connected layers to obtain a prediction of the step and hand verbs.475

Between these fully-connected layers, they inserted one ReLU and Dropout476

layers. The team used an Adam optimizer, with learning rate changes with477

cosine annealing with an initial value of 7.2e-4, and a batch size of 96. The team478

optimized the initial learning rates for each task with the Optuna library [47].479

The team chose cross-entropy loss as the loss function, with weights for each480

class depending on the class frequency for hand verbs. Phases were not directly481

predicted from the image, but identified based on the predicted step.482

The SK team used a stacked LSTM [19] with two layers and 28 hidden483

layers for the kinematic-based workflow recognition task. The LSTM output484

was fed into three fully connected layers as done for the previous task. The same485

optimizer and loss function were used. The initial learning rate was 1.5e-3 with486

a batch size of 6 and the number of data in a sequence was 30.487

Image segmentation was done using the U-Net architecture [48] with ResNet18488

as encoder with the summation of cross-entropy loss and dice loss. The SK team489

exploited the same model used for the video-based workflow recognition task and490

for the segmentation-based task. Both models were trained separately with an491

Adam optimizer and an initial learning rate of 2.4e-5 with a batch size of 32 for492

segmentation, and a learning rate of 1e-4 with a batch size of 6 for recognition.493

For the video/kinematic-based task and video/kinematic/segmentation-based494

task, the SK team ensembled the previously trained dedicated modality networks495

to obtain a new prediction. As the SK team used the network parameters trained496

for the previous task, they did not train any network for these tasks.497

3.2.7. MediCIS: non-competing team498

The MediCIS team was a non-competing team due to the presence of challenge499

organizers (Quang-Minh Nguyen and Arnaud Huaulmé, University of Rennes 1).500
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The team participated in all proposed tasks.501

For the preprocessing step, they resized the frames to 256 × 512 pixels.502

Additionally, to train the segmentation model, they down-sampled the data to 6503

Hz. They z-normalized the kinematic data.504

For the video-based workflow recognition task, the MediCIS team used a505

hierarchical RestNet50 network [18] pre-trained on ImageNet to extract spatial506

features. Then, they used a Multi-Stage Temporal Convolutional Network called507

MS-TCN++ [49], with two stages, trained from scratch.508

For the kinematic-based workflow recognition task, they directly used data509

as features for a two-stage MS-TCN++.510

They selected as their segmentation model a U-Net [50] network trained from511

scratch with the Adam optimizer, cross-entropy loss, learning rate of 1e-4, and512

batch size of 10. Like for the video-based task, workflow recognition was done513

by hierarchical ResNet50 followed by a two-stage MS-TCN++.514

For the video/kinematic-based and video/kinematic/segmentation-based515

tasks, the MediCIS team extracted unimodal spatial features using a hierarchical516

ResNet50 network for video and segmentation data, followed by concatenation.517

Then, they trained a two-stage MS-TCN++.518

They trained all workflow recognition models with the Adam optimizer,519

cross-entropy loss, learning rate of 1e-4, and batch size of 2. For the hierarchical520

ResNet50 network, they emphasized the training for granularities that are harder521

to recognize using the following weights in the loss: 1 for phases, 2 for steps, and522

5 for both action verbs. They set the number of dilated convolutional layers in523

MS-TCN++ to 10, except for the first layer where it was 11. The number of524

feature maps for each layer was 64.525

3.3. Workflow recognition results526

All results were computed on the organizers’ hardware via the provided Docker527

images. This section only presents the results used for the ranking (balanced528

AD-Accuracy). Other results, such as application-dependent scores for each529
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sequence and task, for each participating team, are available as supplementary530

material and at www.synapse.org/PETRAW.531

3.3.1. Task 1: Video-based workflow recognition532

Task 1 consisted of recognizing phases, steps, and hand verbs using video data533

only. Table 3 summarizes the algorithms used by the five teams that submitted534

models for this task.535

Team Hutom * MedAIR * NCC Next * SK MediCIS

Preprocessing X X X X X

Augmentation X X X

Model 3DResNet Trans-SVNet Xception ResNet18
ResNet50

& MS-TCN++

Optimizer Adam SGD Radam Adam Adam

Loss
Equalization v2

& Normsoftmax
cross-entropy cross-entropy cross-entropy cross-entropy

Learning Rate 1e-3 5e-4 1e-3

& 1e-4
7.2e-4 1e-4

Causal X

Table 3: Algorithms used for task 1. Teams that resubmitted models are highlighted with an

asterisk. An “X” means that the method performed preprocessing, data augmentation, or is

causal.

Comparison of the mean AD accuracy values for each test sequence (all536

models) (Figure 5) showed only a slight performance decrease (from 95.1% to537

82.2%), but sequences 79 and 54 displayed the lowest performance (77.7% and538

72.9%, respectively). Moreover, for all the test sequences, one model displayed539

lower AD-Accuracy values than the other models.540
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Figure 5: Task 1 recognition AD-Accuracy values (%) for each sequence. Each dot represents

the AD-Accuracy of one model. The x-axis represent the test sequence id.

Comparison of the mean AD-Accuracy value for each model (Figure 6 showed541

that team SK and team Hutom, obtained the highest values (>90%), followed542

by team MediCIS and team NCC NEXT (>87%). MedAIR obtained the lowest543

results (≈84%).544

Figure 6: Mean task 1 recognition AD-Accuracy for each model. Each dot represents the

AD-Accuracy for one sequence.

Team ranking was not influenced by the chosen method (Figure 7), except545

for the ranking of the SK and Hutom teams using the rankThenMedian and546

testBased methods.547
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Figure 7: Task 1 recognition ranking stability using different ranking methods. Rank 1 indicates

the best method.

3.3.2. Task 2: Kinematic-based workflow recognition548

Task 2 consisted of recognizing phases, steps, and hand verbs using kinematic549

data only. Table 4 summarizes the methods used by the six participating teams550

for this task.551

As with task 1, the performance per sequence slightly decreased (Figure 8).552

The highest AD-Accuracy values were superior to 90% for all teams. Three553

sequences (including sequences 79 and 54) had mean AD-Accuracy values inferior554

to 80%. Unlike task 1, the majority of sequences did not have outliers.555
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Team Hutom JHU-CIRL MedAIR NCC Next SK MediCIS

Preprocessing X X X X X X

Augmentation

Model Bi-LSTM Uni-LSTM
Trans

-SVNet
LightGBM

Stacked

-LSTM
MS-TCN++

Optimizer Adam Adam SGD
Gradient

Boosting
Adam Adam

Loss
Equalization v2

& Normsoftmax

cross-

entropy

cross-

entropy
MAE

cross-

entropy

cross-

entropy

Learning Rate 1e-3 1e-3 5e-4 1e-1

& 5e-2
1.5e-3 1e-4

Causal X X X

Table 4: Summary of the models used for task 2. An “X” means that the method performed

preprocessing, data augmentation, or is causal.

Figure 8: Task 2 recognition AD-Accuracy for each sequence. Each dot represents the

AD-Accuracy of one model.

Results were very similar among teams (Figure 9). Four had a mean AD-556

Accuracy value of between 89.7% and 90.7%, and the other two displayed mean557

AD-accuracy values of 86.4% and 84.3%, respectively.558
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Figure 9: Mean task 2 recognition AD-Accuracy for each model. Each dot represents the

AD-Accuracy for one sequence.

Ranking was not stable for team SK and team MediCIS (Figure 10). As559

MediCIS was a non-competing team, SK was ranked third for this task.560

Figure 10: Task 2 recognition ranking stability using the indicated ranking methods.
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3.3.3. Task 3: Segmentation-based workflow recognition561

Task 3 consisted of recognizing phases, steps, and hand verbs using semantic562

segmentation data only. First, the results of the segmentation models provided563

by the participants will be described, and then the workflow recognition models.564

Segmentation models:565

Table 5 summarizes the methods used by the four participating teams to566

perform semantic segmentation.

Team Hutom * NCC Next * SK MediCIS

Preprocessing X X X X

Augmentation X X

Model DeepLabV3+ DeepLabV3+ U-Net U-Net

Optimizer Adam Radam Adam Adam

Loss
Equalization v2

& Normsoftmax
cross-entropy cross-entropy cross-entropy

Learning Rate 1e-3 1e-4 2.4e-5 1e-4

Table 5: Segmentation models used for task 3. Teams that resubmitted models are highlighted

with an asterisk. An “X” means that the method performed preprocessing, data augmentation,

or is causal.

567

Comparison of the IoU values for each class independently and for all classes568

(Macro) (Table 6) showed that, the IoU varied between 94.0% and 91.1% for569

Macro. Pegs were the least recognized structure (IoU between 83.9% and 82.3%).570

Specific sequences with lower performance were not identified.571

Comparison of the mean IoU values of each team for all classes (Macro) and572

for each class independently (Table 7) showed similar Macro results for the NCC573

Next, SK and MediCIS teams ( 96.9%, 96.4%, and 94.0%, respectively). The574

Hutom team’s Macro IoU was the lowest (85.0%), mainly due to the IoU for575

pegs (63.3%). Figure 11 presents the ground truth and the segmentation results576

of each team for one frame.577

Workflow models578
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Mean Median Max Min

Background 98.8 98.9 98.9 98.7

Base 96.1 96.2 96.3 95.6

Pegs 83.2 83.1 83.9 82.3

Blocks 91.7 91.7 92.5 90.8

Left tool 94.9 95.3 97.6 87.3

Right tool 94.0 94.5 96.9 88.9

Macro 93.1 93.2 94.0 91.1

Table 6: Mean Intersection-Over-Union values for all classes of each sequence independently

Hutom * NCC Next * SK MediCIS

Background 97.7 99.5 99.2 98.9

Base 91.4 98.4 98.4 96.1

Pegs 63.3 92.1 92.0 85.3

Blocks 82.8 96.0 96.0 92.2

Left tool 89.3 98.1 96.1 96.0

Right tool 85.5 97.8 96.7 95.8

Macro 85.0 96.9 96.4 94.0

Table 7: Mean Intersection-Over-Union values for all the classes of each team. Teams that

resubmitted models are highlighted with an asterisk and best results are in bold.

Table 8 summarizes the methods used by the four participating teams to579

perform the workflow recognition.580

Comparison of the mean AD-Accuracy values for each test sequence (Figure581

12) showed that performance decreased from 87.5% to 76.6%. The same two582

sequences (79 and 54) displayed very low results (67.4% and 65.5%, respectively).583

Moreover, for all test cases, one model had results lower than 70%.584
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(a) Ground Truth (b) NCC Next (c) SK

(d) Medicis (e) Hutom

Figure 11: Ground truth (a) and segmentation results for each team (b to e) for one frame.

Figure 12: Task 3 recognition AD-Accuracy for each sequence. Each dot represents the

AD-Accuracy of one model.

Comparison of the mean AD-Accuracy value for each model indicated that585

three teams obtained results between 88.5% and 87.2%, whereas the Hutom586

team had a mean AD-Accuracy value of 60.3% (Figure 13).587
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Team Hutom * NCC Next * SK MediCIS

Preprocessing X X X X

Augmentation X X

Model W SlowFast50 EfficientNetB7 ResNet18
ResNet50

& MS-TCN++

Optimizer Adam Radam Adam Adam

Loss
Equalization v2

& Normsoftmax
cross-entropy cross-entropy cross-entropy

Learning Rate 1e-3 1e-4 1e-4 1e-4

Causal X

Table 8: Summary of the models used for task 3 (segmentation-based workflow recognition).

Teams that resubmitted models are highlighted with an asterisk. An “X” means that the

method performed preprocessing, data augmentation, or is causal.

Figure 13: Mean recognition AD-Accuracy for each model for task 3. Each dot represents the

AD-Accuracy for one sequence.

The choice of method did not influence the team ranking, except for the588

second (NCC NEXT) and the third (MediCIS) rank (Figure 14).589
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Figure 14: Task 3 recognition ranking stability using the indicated ranking methods.

3.3.4. Task 4: Video/kinematic-based workflow recognition590

Task 4 consisted of recognizing phases, steps, and hand verbs using video and591

kinematic data. Table 9 summarizes the methods used by the six participating592

teams.593

AD-Accuracy values for each sequence were similar to those of the previous594

tasks (Figure 15). Indeed, performance slightly decreased from 95.1% to 83.1%595

for most sequences, and was again low for sequences 79 and 54 (81.2% and596

76.5%). For this task, the number of outliers was limited.597
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Team Hutom * MedAIR MMLAB NCC NEXT * SK MediCIS

Preprocessing X X X X X X

Augmentation X X X

Model
3D ResNet

& Bi-LSTM

MRG-Net

& CNN

ResNet50

& LSTM

Xception

& LightGBM

ResNet18

& Stacked

-LSTM

ResNet50

& MS-TCN++

Optimizer Adam Adam Adam
Radam

& Gradient

Boosting

Adam Adam

Loss
Equalization

v2 &

Normsoftmax

cross-

entropy

cross-

entropy

cross-

entropy

& MAE

cross-

entropy

cross-

entropy

Learning Rate 1e-3 1e-4 1e-3

& 1e-2

1e-1 & 5e-2

& 1e-3 & 1e-4

7.2e-4

& 1.5e-3
1e-4

Causal X

Table 9: Summary of the models used for task 4. Teams that resubmitted models are highlighted

with an asterisk. An “X” means that the method performed preprocessing, data augmentation,

or is causal.

Figure 15: Task 4 recognition AD-Accuracy values for each sequence. Each dot represents the

AD-Accuracy for one model.
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The NCC NEXT team obtained the best results (Figure 16), with a mean598

AD-Accuracy of 93.1%, followed by SK, Hutom, and MediCIS teams with results599

of between 91.6% and 90.2%. For the last two teams, the AD-Accuracy was600

above 84.5%.601

Figure 16: Mean task 4 recognition AD-Accuracy for each team. Each dot represents the

AD-Accuracy for one sequence.

The ranking is stable according to the ranking method chosen (Figure 17).602
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Figure 17: Task 4 recognition ranking stability using the indicated ranking methods.

3.3.5. Task 5: Video/kinematic/segmentation-based workflow recognition603

In task 5, teams recognized phases, steps, and hand verbs using video,604

kinematic and segmentation data. Table 10 summarizes the recognition methods605

used by the four participating teams. The models to create the segmentation606

were the same as those described in Table 5.607

As for the previous tasks, the mean AD-Accuracy values per sequence (Figure608

18) highlighted a slight performance decrease (from 97.2% to 85.9%). Sequences609

79 and 54 again displayed the lowest performances (80.8% and 78.0%, respec-610

tively).611
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Team Hutom * NCC NEXT * SK MediCIS

Preprocessing X X X X

Augmentation X X

Model
3D ResNet

& Bi-LSTM

Xception,

EfficientNetB7

& LightGBM

ResNet18

& Staked-LSTM

ResNet50

& MS-TCN++

Optimizer Adam
Radam

& Gradient Boosting
Adam Adam

Loss
Equalization v2

& Normsoftmax

cross-entropy

& MAE
cross-entropy cross-entropy

Learning Rate 1e-3 1e-1, 5e-2,

1e-3 & 1e-4

7.2e-4,

1.5e-3 & 1e-4
1e-4

Causal

Table 10: Models used for task 5. Teams that resubmitted models are highlighted with an

asterisk. An “X” means that the method performed preprocessing, data augmentation, or is

causal.

Figure 18: Task 5 AD-Accuracy for each sequence. Each dot represents the AD-Accuracy for

one model.

The teams’ mean AD-Accuracy values ranged between 93.1% and 89.8%612

(Figure 19). The SK and Hutom teams displayed very similar results, with 91.4%613
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and 91.3%, respectively. However, the chosen ranking method did not influence614

the final rank (Figure 20).615

Figure 19: Average task 5 recognition AD-Accuracy for each team. Each dot represents the

AD-Accuracy for one sequence.

Figure 20: Task 5 ranking stability using the indicated ranking methods.
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3.3.6. Workflow recognition results summary616

Table 11 summarizes the results of each team for the five tasks. All the best617

methods displayed mean AD-Accuracy superior to 90%, except for task 3.618

Team Task 1 Task 2 Task 3 Task 4 Task 5

Hutom 90.51 * 84.31 60.28 * 91.33 * 91.27 *

JHU-CIRL 86.45

MedAIR 84.31 * 90.72 86.98

MMLAB 84.80

NCC NEXT 87.77 * 90.32 87.71 * 93.09 * 93.09 *

SK 90.77 89.66 88.51 91.61 91.37

MediCIS 89.15 89.71 87.22 90.18 89.81

Table 11: Mean AD-Accuracy of each team for the five tasks. The best results are highlighted

in bold for each task. Resubmitted models are highlighted with an asterisk.

3.4. Additional analyses619

The additional analyses concern four of the seven participating teams: Hutom,620

NCC Next, SK, and MediCIS. They were the only teams to participate with a621

combination of the same or similar models used for the unimodal tasks. Although622

MedAIR team participated in task 4 and the two corresponding unimodal tasks623

(1 and 2), the models used were too different to allow a model comparison.624

3.4.1. Comparison between unimodal and multimodal models625

Table 12 presents the results of the statistical analysis. For the four teams,626

the combination of video and kinematics (task 4) is statistically different than627

the use of only one modality (tasks 1 and 2). The same statistical differences628

exist between the combination of the three modalities (task 5) and each modality629

individually (tasks 1, 2, and 3), with the exception of task 2 and task 5 for the630

MediCIS team. However, the addition of the segmentation modality (task 5) to631

the video/kinematic-based (task 4) models was only significant for the MediCIS632

team.633
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Team Hutom NCC NEXT SK MediCIS

T1 <> T4 X X X X

T2 <> T4 X X X X

T1 <> T5 X X X X

T2 <> T5 X X X

T3 <> T5 X X X X

T4 <> T5 X

Table 12: Significant performance differences between unimodal and multimodal tasks. T1 <>

T4: comparison of task 1 and task 4; X: significant performance variation (p-value < 0.05).

3.4.2. Execution time634

Table 13 presents the execution time for the four teams and each task. For635

NCC Next team, the duration could not be determined because the predictions636

were locally written at the end of the Docker image execution. Execution time637

was highly variable among the teams, with the shortest (except task 2) achieved638

by the SK team. The shortest execution times overall were obtained for task 2639

(3 min for SK and less than 1 minute for the Hutom and MediCIS teams).640

Team Hutom NCC NEXT SK MediCIS

Task 1 56 min CBD 50 min 202 min

Task 2 < 1 min CBD 3 min < 1 min

Task 3 13 550 min CBD 145 min 725 min

Task 4 57 min CBD 53 min 203 min

Task 5 13 600 min CBD 175 min 928 min

Table 13: Execution times to compute the results of the 60 test sequences. CBD: Could not

Be Determined
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4. Discussion641

Accurate surgical workflow recognition is necessary for context-aware computer-642

assisted surgical systems. The proposed methods obtained good results but643

were not perfect and the PETRAW data set itself presented several limitations.644

Specifically, the peg transfer task is significantly easier than a real surgical645

intervention due to the simpler environment, clearly identifiable objects, static646

field of view, and constant lighting. In addition, each sequence was performed647

by the same operator resulting in lower data set variability.648

By analyzing the performance of the methods across individual sequences,649

we observed a gradual decrease in performance, except for two sequences (54650

and 79) that displayed very low AD-Accuracy compared to the others regardless651

of modality. We analyzed these two sequences in detail to understand this poor652

performance. In sequence 54, the block was dropped twice during the transfer653

between hands, forcing the operator to catch the block for a second time. In654

addition, one block got stuck on the peg, forcing the operator to reposition it.655

Sequence 79 is one of the sequences identified as containing uncertainty (see656

Section 2.3.3). However, the overlapping steps (by 0.5 seconds) could not entirely657

explain the low performance, as the overlap was partially compensated by the658

delay of 0.25 seconds used to compute the AD-Accuracy. In addition, a block got659

stuck on a peg in this sequence and the order in which the blocks were caught660

did not correspond to the one used in most sequences. These deviations from661

the most common workflow might explain the low performance.662

For task 1 (video-based recognition), ResNet-based models gave the best663

results, and the simplest model was ranked first. For task 2 (kinematic-based664

recognition), LSTM-based methods presented the worst results. For task 3,665

the two segmentation models used (DeepLabV3 and U-Net), displayed similar666

IoU values and the differences were probably due to differences in the training667

characteristics. For workflow recognition, the EfficientNetB7 and ResNet models668

obtained similar results. For Tasks 4 and 5, the NCC NEXT team’s strategy669

(i.e., using the modality that gave the best results in the unimodal tasks for each670
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workflow component) provided the best result.671

For the segmentation-based recognition task (task 3), the segmentation quality672

seemed to influence workflow recognition up to a certain threshold. Indeed, the673

workflow recognition performances of the three teams with Macro IoU values674

superior to 94.0% were similar (AD-Accuracy between 88.5% and 87.2%), but675

the ranking was inverted for the two first teams. Conversely, the workflow676

recognition performance with a Macro IoU value of 85% dropped drastically677

(60.3%). Additional research is required to fully quantify and understand the678

degree to which segmentation quality influences workflow recognition since, in679

this challenge, teams used different combinations of models for the segmentation680

and workflow recognition components.681

For tasks 1 to 4, at least one team submitted a method that could be truly682

causal. It is important to note that several proposed methods were provably683

non-causal due to their preprocessing steps and not the core network such as684

with NCC NEXT (task 3), SK (task 1, 3, 4, 5), and MediCIS (task 2, 4 and685

5). Causal methods generally have lower performance than non-causal models.686

With the exception of task 4, the causal methods displayed performances that687

were surprisingly close to that of the best method. For example, for task 2, the688

AD-Accuracy of the best method was 90.7%, compared to 90.3% and 89.7%689

for the causal methods by NCC NEXT and SK, respectively. Obviously, it is690

not possible to conclude that causal methods give similar results to acausal691

models: i) because during the challenge we did not have the two versions of a692

similar method, ii) due to data simplicity. Nevertheless, the results of the causal693

methods are promising for developing applications, such as the implementation694

of automatic reports after training sessions on a virtual simulator.695

Among the seven participating teams, four (Hutom, NCC Next, SK, and696

MediCIS) participated in the multimodal tasks (4 and 5) with a combination of697

the same or similar models used for the unimodal tasks. In all cases, recognition698

was improved when several modalities were used (Table 11); however, the699

addition of segmentation modality decreased the performance. The statistical700

analysis (Table 12) confirmed a significant performance improvement when using701
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multimodal models, with the exception of tasks 2 and 5 for the MediCIS team.702

The performance decrease experienced with the addition of the segmentation703

modality to the video/kinematic-based models was only significant for the704

MediCIS team.705

Therefore, the combination of video and kinematic (task 4) data gives sig-706

nificantly better results compared with other modality combinations. The707

results obtained by the MedAIR team could contradict this point because they708

obtained better results for the kinematic-based recognition task than for the709

video/kinematic-based one. However, the models they used were very different:710

a Trans-SVNet and an MRG-Net combined with a CNN respectively. So, in this711

case, it is difficult to determine if the performance modifications were due to the712

model or to the modalities used. However, task 4 was more time-consuming than713

task 2 (53 vs. 3 minutes for SK, 57 vs. less than 1 for Hutom, and 203 vs. less714

than 1 for MediCIS). One may ask whether it is wise to spend 2,000% to 20,000%715

more computing time for less than a 3% improvement. The training time should716

also be taken into account, as it is much more time-consuming [51, 52], but we717

did not have access to this information. Data storage should also be considered.718

Video can require a lot of storage space, especially for long surgical interventions.719

Conversely, kinematic data are less voluminous.720

Future work should focus on overcoming the limitations of the current data721

set by including peg transfer sequences performed by several operators in different722

systems. Moreover, tests on more realistic data are necessary to validate the723

finding that kinematic data display the best performances in recognition rate724

and have less environmental impact thanks to the lowest computation time and725

storage cost.726
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