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How humans comply with a (potentially) faulty 

robot: Effects of multidimensional transparency 
 

Loïck Simon, Clément Guérin, Philippe Rauffet, Christine Chauvin and Éric Martin1

Abstract—This paper deals with how a human operator follows 

a request made by a robot in an industrial context. This robot is 

potentially myopic, i.e., its request could be based on partial and 

limited information. Therefore, it could possibly be faulty. This 

exploratory study aims to analyze whether multidimensional agent 

transparency may have an effect on two drivers of compliance 

identified in the literature: trust in signal and risk perception. In 

this experiment, we manipulated different agent transparency 

levels combined with two dimensions of agent transparency:  

robot-TO-human transparency (rTOh) and robot-OF-human 

transparency (rOFh). Results mainly show that adding rOFh to 

rTOh transparency changes human compliance with the agent 

and moderates both trust and risk perception. Moreover, task 

performance and completion time are shown to vary according to 

the different transparency levels. Our results show that 

transparency has no effect on mental workload. From a 

methodological perspective, this study shows the importance of 

distinguishing the different types of information about which a 

robot can be transparent, especially the combination of rTOh and 

rOFh transparencies. From a practical point of view, the study 

shows that the agent transparency framework needs to be 

considered carefully when designing human-robot teaming in the 

context of Industry 4.0 in the case of robots that may be unreliable 

due to their myopia. 

 

Index Terms— Agent transparency, Compliance, Trust, Risk 

perception, Industry 4.0. 

I. INTRODUCTION 

ndustry 4.0 is characterized by new technologies (e.g., 

digital twin, cobotics, virtual and augmented realities) to 

optimize, customize, and make production reconfigurable 

[1][2]. These technological innovations make it possible to 

control increasingly complex industrial processes that are 

increasingly using autonomous agents and intelligent cyber-

physical systems. If working with these new agents brings new 

capabilities in Industry 4.0, they can also generate new 

interferences. Research in the field of Intelligent Manufacturing 

Systems shows that the development of autonomous agents can 

disturb cooperative activities with humans, especially when 

considering the phenomenon of myopia [3]. Myopia represents 

the lack of information of an autonomous agent regarding the 

scope (between a local and a global level) and the time horizon 
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(between near and distant future) of the supervised process and 

the other entities of the system [4]. This myopia can be used as 

a compromise between reactivity and optimality of the 

decisions taken by these autonomous agents. Thus, it may bring 

about human operators’ perception of a faulty autonomous 

agent’s behavior.  

Several studies have focused on the effects of faulty robots in 

collaborative situations with humans, in particular the impact 

on the trust granted to the autonomous agent. These effects 

seem to differ depending on the nature of the associated risks, 

i.e., depending on consequences that may be more or less 

important or damaging. Rossi et al. [5] and Wang et al. [6] 

investigate the effects of different degrees of error 

consequences on trust. They show that trust decreases if the 

robot makes mistakes associated with serious consequences. 

Salem et al. [7] explain that trust can also be influenced when 

the consequences of the task are revocable. Correia et al. [8] 

also observe a decrease in the trust given to a faulty robot, but 

justifying the technical failure could mitigate the negative 

impacts on trust when the consequences of the failure are not 

significant. When these consequences are significant or serious, 

i.e., when the failure is likely to compromise the task, the 

justification would have no effect on trust. Daronnat et al. [9] 

investigate the effect of different types of agents’ errors 

(mistakes, lapses, slips, and violation) on performance and 

trust. They conclude that while autonomous agents are likely to 

be imperfect, a complete lack of information input is better than 

inaccurate information.  

Designing autonomous agent transparency is an issue for 

successful human-robot interaction [6][10]. Transparency is a 

key factor that influences humans’ willingness to interact with 

an autonomous agent such as a robot. Transparency helps 

develop the capacity of robots to inspire trust and to be 

considered as legitimate teammates. In this article, we use the 

term “agent” to refer to an autonomous agent (in our study, a 

collaborative robot, i.e., a cobot), and we focused on how this 

agent may provide information to human operators (hereinafter 

referred to as “operators”) depending on different transparency 

conditions. Our general objective was to investigate the effects 
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of these conditions, defined along several dimensions of 

transparency, on compliance with an autonomous agent that has 

partial observability (or myopia) in an industrial context, i.e.  an 

order preparation line. 

II. RELATED WORKS 

A. Compliance with an autonomous agent: Trust and 

perception of risk 

In several studies, compliance has been operationalized as the 

human decision following a request or robot’s recommendation 

(e.g., [7][6]). In Chen et al. [11], compliance is measured in 

terms of the agreement rate with the decision support system. 

This compliance is known to be affected by trust as it is a 

behavioral expression of attitude (i.e., trust) [12]. For Freedy et 

al. [13], trust has an effect on accepting suggestions from agents 

(i.e., being compliant). Compliance is also seen, in an objective 

way, as an observable behavioral indicator of trust [11]. Trust 

is especially compromised when the behavior of the agent is 

faulty, as trust is positively correlated to the perception of 

reliability [14]. 

Moreover, for Lee and See [15] and Chancey et al. [16], the 

perception of risk also needs to be considered to understand 

how human operators comply with an autonomous agent, given 

that  it is not unusual to use prior work on human-automation 

interaction in order to investigate human-autonomy teaming 

[17]. Chancey et al. [16] maintain that the uncertainty linked to 

risk plays a role in mediating trust. For Mayer, Davis and 

Schoorman cited by Stuck et al. [18], “An individual actually 

taking a risk is defined as exhibiting behavioral trust” (p. 4). In 

other words, risk perception is seen as a cognitive process that 

moderates trust and bears upon human compliance with robots, 

i.e., the decision to follow the advice provided by the robot.  

This relationship between compliance, trust, and risk 

perception is synthesized in Fig. 1, based on the work of Lee 

and See [15] and Chancey et al. [16]. The two main factors 

explaining a compliant behavior are (1) Trust, i.e., how humans 

perceive whether a system is faulty or not when it detects a new 

situation and emits a signal and whether they can rely on the 

agent and (2) Risk perception, i.e., how humans perceive the 

consequences of the signal emitted by the agent on the task and 

on other aspects. 

 

 
Fig. 1. Model of human–autonomous agent trust on compliance 

behavior (adapted from Chancey et al. [16]) 

 

Finally, these combined effects of trust and risk perception 

upon compliance are also mentioned by Hancock et al. [19]. 

The authors explain that the appropriate calibration of 

compliance (i.e., to avoid over- or under-compliance) is 

dependent on how humans cognitively process two types of 

information: robot or automation characteristics (e.g., in terms 

of reliability and rationale) and environmental characteristics 

(e.g., in terms of assessment of the work situation). For these 

authors, the robot's characteristics play a huge role in human 

compliance, and they especially cite among these 

characteristics the notion of agent transparency. 

B. Agent transparency: Definitions and framework 

Roundtree et al. [20] identify several definitions of 

transparency in the literature. Transparency has been described 

as a process, a method, a mechanism, a property, or an emergent 

characteristic. By means of transparency, autonomous agents 

provide information about their abilities or capabilities to a 

human operator. In this paper, we adopt Chen et al.’s [21] 

definition of agent transparency as “the descriptive quality of 

an interface pertaining to its abilities to afford an operator’s 

comprehension about an intelligent agent’s intent, 

performance, future plans, and reasoning process” (p.2). The 

terms “agent transparency” and “transparency” are 

interchangeable. 

As suggested in the two literature reviews on transparency 

proposed by Bhaskara et al. [22] and Rajabiyazdi and Jamieson 

[23], two main approaches have been adopted in the literature 

to describe and operationalize the concept of transparency: 

Chen et al.'s [21] situation awareness–based agent 

transparency, known as the SAT model, and Lyons’ framework 

[24] of transparency for human-robot interaction. In their 

review, Rajabiyazdi and Jamieson [23] specify that Lyons’ 

framework has been cited 119 times and Chen et al.'s model 91 

times. In these two approaches, transparency is unidirectional: 

an autonomous agent is the sender, and the human operator is 

the recipient. 

The SAT model proposed by Chen et al. [21] is based on the 

Situation Awareness theory of Endsley [25], on the Beliefs, 

Desires, Intentions (BDI) agent framework of Rao and Georgeff 

[26], and on the Process, Purpose, and Performance (PPP) 

framework related to trust of Lee and See [15]. The SAT model 

incorporates three levels of agent transparency. At level 1 (L1), 

the agent provides basic information about its current state, 

goals, intentions, plans, progress, and current and proposed 

actions. At level 2 (L2), the agent provides a rationale that 

justifies its action or decision. At this second level, the human 

operator is given information about the agent's reasoning, 

behavioral capabilities, and the constraints it considers. At level 

3 (L3), the agent provides a projection of future outcomes (e.g., 

success rate). At this third level, the human operator is given 

information regarding the agent’s anticipation of the future 

state, predicted consequences, and uncertainties. 

Lyons’ [24] model involves two dimensions of agent 

transparency:  

● The robot-TO-human transparency (rTOh) concerns 

information about the robot that is communicated to the 

human operator. The agent may be transparent about its 

intent or purpose (the intentional model), the current task 
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or the previous tasks conducted (the task model), the 

processes performed that led to a decision or an action (the 

analytical model), or aspects of the environment (the 

environmental model). 

● The robot-OF-human transparency (rOFh) concerns the 

robot’s awareness of “the others”, which is communicated 

to the human operator. The agent may be transparent about 

its perception of the operator's state (the operator model) or 

the task allocation (the teamwork model) that is responsible 

for a task or set of tasks. 

Chen et al. [21] have attempted to integrate the Lyons’s 

teamwork model into the original SAT model, in order to better 

support the interaction between the agent and the human 

operator. This extension of the SAT model that includes 

teammates is called the Dynamic SAT model [27].  

C. The impact of multidimensional transparency on operators 

regarding compliance 

Previous studies have examined the impact of agent 

transparency levels upon trust, risk perception, mental 

workload, and response time. These studies were applied 

mainly to the military domain [28][29][30][31] and 

transportation systems (monitoring and supervision 

[29][30][31], an aircraft landing aid [32], or driving an 

autonomous car [33][34]). These studies, however, do not deal 

with multiple dimensions of transparency and their interaction. 

Impact on trust. Trust has been examined as an effect of agent 

transparency level. In their study of landing assistance systems 

for pilots, Lyons et al. [32] observe that trust was higher when 

transparency was at a higher level, i.e., when operators had 

access to the logic of success calculations. Similarly, Selkowitz 

et al. [29] indicate that the more transparent the autonomous 

agent was, the higher the level of trust in the agent was. Chen 

et al. [21] state that transparency concerning unreliable 

elements tends to lower the operator’s trust level in the system. 

The authors show that when the system reveals its uncertainties 

at L3 (e.g., when it indicates that the required information is 

missing), the operator’s trust in the system diminishes. Salem 

et al. [7] find that the revocability of an action has an effect on 

compliance. However, Wang et al., [6] find no correlation 

between transparency and compliance. In this paper, we view 

compliance as an agreement rate with the agent’s request. 

Impact on risk perception. We did not find studies seeking to 

measure a link between risk perception and transparency, 

although a few studies use a high/low risk situation in their 

experiment (e.g., [35]). Although Chancey et al. [16] find a 

non-significant effect of risk on trust, their results are unclear. 

In this study, using measures of risk perception enables us to 

understand the effect of risk perception upon compliance.  

Impact on mental workload. Agent transparency provides 

operators with greater or lesser access to various types of 

information. A high level of agent transparency may produce 

an increased amount of information causing information 

overload, which affects the operators' mental workload directly 

and may cause interface usability issues [36]. However, results 

concerning the link between transparency and mental workload 

remain inconsistent [37] although they tend to show there is no 

detrimental impact on mental workload [10]. 

Impact on completion time. Findings differ from one study to 

another. Stowers et al. [28] report that the decision time is 

significantly longer in L3 than in L2, whereas Mercado et al. 

[30] and Wright et al. [31] find no differences between levels. 

Some authors have used a secondary task in addition to the 

decision task [31]. These authors do not find any difference in 

terms of secondary task performance or overall time to 

complete both tasks. 

D. Research question and hypotheses  

In this article, we seek to better understand how agent 

transparency may impact on two human cognitive processes, 

i.e., trust and risk perception, in a collaborative situation with 

robots. For Roundtree et al. [20], compliance is an indirect 

transparency factor to assess trust in human-machine 

interaction. Moreover, as emphasized in related works, agent 

transparency can be described according to two main 

dimensions (rTOh and rOFh) in Lyons’ framework [24]) and at 

different levels (Chen et al.’s SAT framework [21]). In this 

paper, we propose to combine the frameworks of Lyons [24] 

and Chen et al. [21]. Our research question is as follows: how 

may the combined transparency levels of rOFh and rTOh 

impact the operators' compliance, the trust they have in the 

autonomous agent, their risk perception, their mental workload, 

and their performance? We proposed five main hypotheses 

(Fig. 2):  

Hypothesis 1 (H1a): Transparency concerning agent 

limitations in rTOh will decrease human compliance [20] 

(H1b): Transparency concerning agent limitations in rTOh 

will decrease trust [20] 

Hypothesis 2 (H2a): Transparency concerning situational risk 

in rOFh will affect human compliance [16][20]. 

(H2b): Transparency concerning situational risk in rOFh will 

affect perceived risk [16]. 

Hypothesis 3 (H3): rOFh transparency concerning a risk will 

moderate the effect of rTOh transparency and decrease 

compliance. [16]. 

 

 
Fig. 2. Hypothesized effects of multidimensional transparency 

on trust in signal and risk perception upon compliance 

 

III. METHOD 

In order to investigate the research question, we set up a 

scenario in which a collaborative industrial robot (referred to as 

cobot) was an autonomous agent. This cobot emitted a signal 
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towards the human operator in the form of a request.  

A. Participants  

A total of 53 engineering students in the field of mechatronics 

or industry participated in our experiment. The gender 

distribution included 17 women and 36 men, the average age 

was 21.34 years (SD = 1.67 years), and no participant had 

vision problems affecting color perception (e.g., color blindness 

or dyschromatopsia). The recruiting campaign for the 

participants took place over 3 weeks through e-mails, posters, 

and oral communication at the beginning of class. The students 

were invited to participate in a one-hour study on the topic of 

human-cobot cooperation through a software package 

simulating an order preparation line. The students received a 

10-euro voucher for their participation. All the participants 

signed a free and informed consent form containing the 

objective of the experiment, their right to withdraw from the 

experiment at any time, their right to ask to suppress their data, 

information on the use of their data, and the measures that 

would be used in the experiment. 

B. Scenario 

 In the experimental scenario, participants had to supervise a 

simulated order preparation line composed of one conveyor belt 

and three preparation stations (see Fig. 3). In this context, the 

participants were decision-makers on resource sharing between 

two production workstations in which a cobot and a human 

teammate work together (they each fill a box with colored 

resources to complete a production order). Regularly, the cobot 

requested that the participants transfer resources from the 

human teammate's stock to its stock because it experienced a  

stock-out of a critical resource; in our study this occurred only 

on the “red cube” resource (Fig. 3). The cobot’s request was 

based on the analysis of its own local stock quantity and the 

stock in the warehouse (i.e., whether there was enough of this 

type of resource in the warehouse) (underlined in Fig. 3). In 

some cases, however, the information about the stock in the 

warehouse might not processed by the cobot due to potential 

myopia. Hence, the cobot’s request could be faulty. 

 

 
Fig. 3. Experimental context and role of the agent and human 

teammate 

 

For example, the cobot could request help from the participant 

even if there was enough stock in the warehouse. Participants 

were invited to decide whether they would comply or not with 

the cobot’s request, i.e., pick resources from the human 

teammate, which would imply interfering with the teammate’s 

stock.  

To answer this decision task, participants were placed into two 

different modalities of the rTOh transparency level: 

● In the first modality (referred to as rTOh L2), the cobot 

provides a request and its rationale (i.e., it sends a possible 

stock-out alert), but it is not transparent about its myopia 

(i.e., it does not indicate whether it has checked the 

warehouse stock or not before making its request). Hence, 

participants could think that the cobot has checked the 

warehouse stock. 

● In the second modality (referred to as rTOh L3), the same 

information is provided, but the cobot specifies that it has 

not taken the warehouse stock into account when making 

its request. The cobot is transparent on its myopia. Hence, 

participants were certain that the cobot had not checked the 

warehouse stock. 

Moreover, to study the effect of adding rOFh transparency to 

rTOh transparency, we reproduced the previous two conditions 

by displaying information related to the capabilities of the 

human teammate (i.e., whether he is busier than the cobot on 

his production orders). The cobot did not use this information 

to make its request and to estimate the resources available on 

the preparation line but communicated it to the operator. This 

additional information is not related to the decision task but 

may be considered by participants as cobot interference on the 

human teammate’s activity; the cobot's request could be correct, 

but the outcomes of the cobot's action could have a negative 

effect on the human teammate, due to a transfer of resources. 

This information is related to the perception of risk. In this 

experiment, this rOFh transparency shows the relative capacity 

factor of the teammate, indicating whether the human teammate 

is busier (value superior to 100%) or less busy (value inferior 

to 100%) than the cobot. The two modalities of rTOh 

transparency were combined with three modalities of rOFh 

transparency: 

● a modality with no rOFh transparency (referred to as rOFh 

L0) 

● a modality with positive feedback on the teammate’s 

capacity factor (referred as to rOFh L1+). The cobot 

perceives that the teammate is less busy with his 

production order than the cobot itself is.  

● a modality with negative feedback on the teammate’s 

capacity factor (referred as to rOFh L1-). The cobot 

perceives that the teammate is busier with his production 

order than the cobot itself is.  

Combining these levels of transparency with the two 

dimensions generated six experimental conditions (Table I). 

Each participant was confronted with the six experimental 

conditions twice; hence, each participant had to make twelve 

decisions. Situations were randomized to prevent a participant 



5 

>THMS-22-09-0339 < 

 

from having the same two “rTOh” transparency situation in a 

row and to counterbalance a possible order effect. Each 

decision was independent from the others since it had no impact 

on the unfolding of the scenario. As participants were placed in 

short-term situations, they could not set up projections 

regarding the existing situation.  

 

TABLE I 

THE TRANSPARENCY LEVELS IN THE SIX EXPERIMENTAL 

CONDITIONS 

 
 

C. Material 

To operationalize these experimental conditions, a software 

package was developed specifically for the experiment. This 

software showed an interface presenting the information 

communicated by the cobot to the supervisor (see Fig. 4). The 

cobot’s request about the resource transfer randomly popped up 

during the first 10 seconds of each session lasting 90 seconds. 

Participants could comply with the request by clicking on 

“accept”, and the cobot took resources in the teammate’s stock. 

Participants could reject the request by clicking on either 

“refuse” (i.e.,  they consider that the human teammate is too 

busy for the moment and the cobot cannot take resources) or 

“alternative” (i.e., the cobot should check the warehouse stock 

quantity) (Fig. 4 - top half). Therefore, accepting the request 

could possibly solve the cobot’s problem at the cost of potential 

negative interference on the teammate’s stock, and refusing the 

request did not help solve the cobot's problem but permitted it 

to avoid negative interference. After making their decision, 

participants did not have access to the consequences of their 

choice. 

The information provided by the cobot to the supervisor (Fig. 

4 - bottom half) could differ depending upon the agent’s 

transparency levels. Fig. 4 shows the different display options 

concerning the warehouse in-stock indicator (relating to the 

rTOh dimension) and the relative capacity factor indicator 

(relating to the rOFh dimension). The black square represents 

the agent’s lack of transparency about the information gathering 

for reasoning for the rTOh dimension and its myopia (if rTOh 

= L2) and about the resources of the human teammate for the 

rOFh dimension (if rOFh = L0). In addition to this decision task, 

participants had to complete a secondary task. This secondary 

task involved filling in a grid by reproducing a visual pattern of 

cubes (Fig. 4 - top half) within a set time frame of 90 seconds.  

 

 
Fig. 4. The interface showing the filling task and the cobot’s 

request (top half) and the indicator display in line with 

transparency levels (bottom half). The stock-out alert is shown 

as a red exclamation mark. 

 

D. Participants’ guidance.  

Participants were first welcomed, and they signed the consent 

agreement. Next, the industrial context and the experimental 

scenario were presented using visual aids, to ensure they 

understood what the cobot was communicating. Participants 

were told that they were in charge of supervising the production 

line. Then, the rTOh transparency levels were presented, as 

described in section III.B. Especially for rTOh L3, participants 

were told that the cobot communicates about its myopia (i.e., 

about its potential error and incomplete information gathering), 

and that it is transparent about not having checked the 

warehouse in-stock. This possible limitation could result in an 

inaccurate request for help. The participants could not know for 

certain that the robot was faulty because they did not have 

access to the warehouse in-stock. Finally, the cobot’s rOFh 

transparency was explained. Participants were told that this 

information was not used by the cobot to make its request, but 

it was additional information that the robot communicates. This 

information could help assess the interference of the cobot’s 

transfer from the human teammate’s stock:  

● For the rOFh L1+ level, participants were told that the 
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conditions were favorable for a transfer of resources. 

● For the rOFh L1- level, participants were told that the 

conditions may interfere with the work of the human 

teammate. 

● For the rOFh L0 level, participants were told that they did 

not have access to this information. 

Before the experiment, we used a short questionnaire to 

control two possible and non-desired characteristics of this 

panel: the participants’ familiarity with games such as Poker or 

Blackjack, since their decision was made with missing 

information, and a risk-taking propensity. These control 

variables were tested and showed no significant effect on the 

data collected. The participants’ tendency to be trustful of 

technologies was also controlled through a 2-item scale but 

showed no significant effect on the data collected. 

E. Data collection and processing 

Collected data. The software package enabled the simulation 

of an industrial context and automatically collected the data 

after the participants had made each of the 12 decisions (see 

Table II). Compliance was coded as follows: Comply, when 

participants decide to “accept” the request from the robot; Do 

not comply, when participants use the “refuse” or “alternative” 

button. Trust was assessed by a questionnaire adapted from Jian 

et al. [38] and Yagoda and Gillian [39].  

 

TABLE II  

DATA COLLECTED IN THE EXPERIMENT (R STANDS FOR 

REVERSE ITEM) 

 

 

Risk perception was assessed by a single item created for this 

experiment in order to analyze how participants perceived the 

possible interference of the cobot’s request with the human 

teammate’s activity. Due to a limited amount of time, the 

Instantaneous Self-Assessment (ISA) technique [40] was 

chosen to assess the cognitive workload of participants. 

Statistical methods. We used R (R Core Team, 2012), and 

especially the lme4 package [41] ordinal logistic regression 

(function polr to study the effects on ordinal variables like Trust 

or ISA), and linear mixed effects analyses (function lmer to 

study the effects on continuous variables, such as completion 

time, task completion). Regarding the linear effects analysis, 

visual inspection of residual plots did not reveal any obvious 

deviations from homoscedasticity or normality. For all the 

statistical models, we entered rTOh transparency and the rOFh 

transparency as fixed effects (with interaction terms) into the 

full model. As a random effect, we had an intercept for 

participants. Regarding fixed effects, a stepwise model 

selection by AIC (stepAIC) was conducted. During each step, a 

new model was fitted, in which one of the terms of the model 

was eliminated and tested against the former model.  

F. Experimental plan and exploratory questions  

To answer the research question (Section II.D) and in view of 

the experimental protocol presented above, we adopted a mixed 

factorial design, with rTOh transparency (L2 or L3) and rOFh 

transparency (L0, L1+ or L1-) as within-subject factors. Fig. 5 

represents the integration of experimental conditions and 

measures on the theoretical model. 

 

 
Fig. 5. Integration of the experimental conditions and 

measures on the theoretical model 

IV. RESULTS 

A. Effect of transparency upon compliance with the cobot 

We first investigated the effect of rTOh and rOFh 

transparency levels upon human compliance with the cobot’s 

requests. We conducted a logistic regression that reveals main 

effects of rTOh and rOFh.  

 

TABLE III 

LOGISTIC REGRESSION: EFFECT OF RTOH AND ROFH 

TRANSPARENCY UPON HUMAN COMPLIANCE WITH COBOT’S 

REQUEST 

 
 

Table III shows that compliance is significantly lower when 

rTOh transparency is at L3 when compared to L2 (OR = 0.14, 

p < .001). This decrease in compliance corresponds to when the 

agent shows that the request is based on partial observation of 
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the situation (rTOh L3) and confirms hypothesis H1(a). 

We also observed that compliance was significantly lower 

when rOFh transparency indicated negative feedback, 

compared to the other levels of rOFh transparency. In effect, 

rOFh L1-, indicating possible important interference with the 

human teammate, resulted in lower compliance than rOFh L1+, 

indicating minimal interference with the human teammate (OR 

= 26.34, p < .001). Similarly, compliance was lower with rOFh 

L1- than with rOFh L0 (with no information on the human 

teammate) (OR = 8.47, p < .001). This result supports 

hypothesis H2(a).  

A cobot that is not transparent about its myopia and that 

communicates negative feedback (rTOh L2*rOFh L1-) induces 

less compliance than a robot that is transparent about its myopia 

but does not communicate negative feedback (OR = 7.29, p < 

.01 for rTOh L3*rOFh L1+, and OR = 2.5, p = .08, for rTOh 

L3*rOFh L0). These effects support hypothesis H3. 

 

These effects are shown in Fig. 6, where human compliance 

is always lower in rTOh L3 than in rTOh L2, regardless of the 

associated rOFh transparency level. We also observe that rOFh 

transparency has an important effect on the variations of 

compliance and moderates the effect of rTOh transparency. 

When no information is presented on the impact on the human 

teammate (rOFh L0), participants are predicted to be likely 

noncompliant with rTOh L2 (34%), and totally noncompliant 

with rTOh L3 when indicating a partial observability of the 

agent for its request (12%). However, when adding information 

related to the other operator, these tendencies to comply or not 

comply change slightly. With a positive situation indicating 

minimal impact on the other operator (rOFh L1+), participants 

are predicted to be rather compliant (86% with rTOh L2, 62% 

with rTOh L3). On the contrary, participants become totally 

noncompliant with the cobot (6% with rTOh L2, 1% with rTOh 

L3) when it is shown that the impact on the human teammate 

could be serious (rOFh L1-).  

 

 
Fig. 6. Prediction of compliance with the cobot as a function of 

rOFh and rTOh transparency levels (error bars correspond to a 

95% confidence interval, representing the uncertainty of the 

estimation) 

 

B. Transparency on trust in robot and perception of risk  

As asserted in the introduction, the two dimensions of 

transparency are assumed to modify the two main factors of 

human compliance with the robot’s request. rTOh transparency 

is supposed to play upon trust, whereas rOFh transparency may 

change risk perception. We sought to verify these relationships 

by studying the subjective responses from participants on the 

different questionnaires related to these two factors. With an 

ordinal logistic regression, we analyzed the effect of 

transparency on the additional question presented to 

participants, designed to estimate the level of risk perception 

(Table IV).  

 

TABLE IV 

ORDINAL LOGISTIC REGRESSION: RISK PERCEPTION  

  
 

We observed a significant effect of rOFh transparency. The 

risk was perceived as higher and more certain by participants in 

rOFh L1- than in rOFh L1+ conditions (OR = 1.73, p = .014), 

which confirms H2(b) (Table IV). 

When conducting ordinal logistic regressions on the different 

items of our trust questionnaire, we also observed a significant 

effect of the rOFh transparency. Participants found the agent 

more understandable (OR = 1.57, p = .009), more reliable (OR 

= 1.66, p = .004), and more trustworthy (OR = 1.70, p = .002) 

when rOFh transparency is at level L1+ (i.e., with a minimal 

impact on the other production operator) compared to L0. 

Conversely, we did not observe any significant effect of the 

rTOh levels or the effect of their interaction (see Table V). 

Hence, results do not support H1(b). 

 

TABLE V 

ORDINAL LOGISTIC REGRESSION: EFFECT OF TRANSPARENCY 

ON TRUST IN THE ROBOT   
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C. Relationships between compliance, trust, and perceived 

risk 

We also examined whether compliance can be related to trust 

and perceived risks. Mann-Whitney analyses revealed that 

compliance and trust are significantly associated in the different 

questions on trust. Participants complying with the robot's 

request reported higher scores on the robot’s understandability 

(W=50846, p = .008), reliability (W=51383, p = .004), and 

trustworthiness (W=55450, p < .001), in comparison with 

participants who did not comply.  Similarly, there was also a 

significant association between compliance and risk perception. 

Participants complying with the robot reported the perception 

of a lower risk (W=23378, p=.038) than those not complying 

with the robot. 

D. Transparency on dual task performance and mental 

workload 

Completion time and dual task performance. Table VI shows 

a significant positive effect of rOFh L1+ on the time used to 

make a decision; the time needed is reduced by -3.92 seconds. 

For rTOh L3, the total time significantly increased (+ 5.34 

seconds) in particular for the time needed between the analysis 

of indicators and the decision: + 4.27 seconds. There is a 

significant reduction of the performance obtained on the filling 

rate for the operational secondary task for rTOh L3.  

 

TABLE VI 

MIXED LINEAR MODEL OF PERFORMANCE (ON THE 

SECONDARY TASK AND TIME TO MAKE A DECISION) 

 
(*** = p < .001, ** = p < 01, * = p < .05) 

 

For rTOh L2, operators have a 99.9% filling rate, which is 

superior to the 98.2% filling rate observed when it is at L3. 

Conversely, we do not observe any significant effect of the 

interaction between rTOh and rOFh 

Subjective mental workload. Variations in rTOh transparency 

and rOFh transparency did not show any significant effect on 

mental workload.   

V. DISCUSSION 

This study offers theoretical, methodological, and practical 

contributions. Those contributions help provide greater 

understanding of the effects of trust and risk perception upon 

the compliance of human operators with collaborative 

machines. This study also shows the possibility of manipulating 

two drivers of compliance with different levels and different 

dimensions of agent transparency.  

From a theoretical perspective, the results show that human 

compliance with a myopic agent, reasoning with partial and 

limited information on the available resources, significantly 

changed according to how transparent the robot was regarding 

its myopia. Thus, a higher robot-TO-human transparency (rTOh 

L3) was linked with lower compliance with the robot’s request 

than when the myopia was hidden to the operator (rTOh L2). 

This result is also corroborated by a lower performance, in 

terms of completion time or secondary task performance 

(production orders completion), when participants work with a 

robot using a rTOh L3 transparency than when collaborating 

with a robot with a rTOh L2 transparency. This result is 

contrary to recent analyses [10] but can be explained by the 

nature of the information transmitted by the rTOh L3 

transparency (i.e., the cobot shows faulty reasoning).  

Moreover, compliance drastically varied when robot-OF-

human transparency was added. The transparency regarding the 

positive situation of the other operator (as in condition rOFh 

L1+ corresponding to a minimal impact on this other operator) 

increased compliance in comparison with the no transparency 

condition (rOFh L0), whereas the transparency of a negative 

situation (rOFh L1-) decreased compliance in comparison with 

rOFh L0. The interaction between the rTOh and rOFh 

dimensions is significant when a risky situation is reported by 

the robot (rOFh L1-). It is congruent with Chancey et al.’s 

model as risk that moderates trust. This effect of robot-OF-

human transparency on human compliance could be explained 

by how trust in the robot and risk perception are related to this 

rOFh transparency. We observed that a robot transparent about 

a positive situation (rOFh L1+) significantly led to a lower 

perception of the risk by the human operator than when the 

transparency is related to a negative situation (rOFh L1-).  

Transparency about the positive situation of the other operator 

also resulted in a higher trust of participants in the robot’s 

reliability than when no information was shown on the other 

operator (rOFh L0).  

These findings were therefore congruent with the model of 

Chancey et al. [16] (Fig.1) assuming that risk perception can be 

viewed as a moderator of human trust in the robot’s reliability, 

and the moderating effect impacts human compliance with a 

robot. These authors were not successful in supporting this 

assumption (“It is unclear from our results whether risk 

moderated the mediating effect of trust on compliance”, p. 342). 

Our results brought stronger evidence, by showing that adding 

information (with rOFh transparency) about the risk of 

interfering with another operator can moderate the relation of 

trust and compliance with the collaborative machines. 

Conversely, our findings were inconsistent with Wang et al. [6], 

who do not find a correlation between transparency and 

compliance. This inconsistency can be explained by the type of 

transparency examined in the different studies. In Wang et al. 

[6], robot transparency concerned only the rationales and the 

explanation of the robot’s decision. In our experiment, the 

transparency was more about the non-revocability (as suggested 

by Salem et al. [7]) and the consequences of the robot’s decision 

on the activity of the human operator. However, the rTOh did 
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not have an impact on trust. We believe that the reason for this 

is that compliance (i.e., objective trust) is more context 

sensitive than subjective trust. Nonetheless, we found a 

relationship between the objective measure of trust and its 

subjective measure, which means that the behavioral measure 

is related to the attitudinal measure. 

From a methodological perspective, the results of the study 

confirm that it is useful to distinguish the different types of 

information about which an autonomous agent can be 

transparent [10]. Information transparency must be analyzed 

not only in terms of levels, as proposed in the initial SAT model 

of Chen et al. [21], but also by considering the different 

transparency dimensions suggested by Lyons [24]. Some 

dimensions could have a more significant role in the quality of 

the decision making and could have greater influence than the 

other dimensions. This is why this paper analyzes the effect of 

transparency along two main dimensions, robot-TO-human and 

robot-OF-human transparency, to better understand the effect 

of transparency on trust in and compliance with an agent when 

combining these two dimensions. We believe it is necessary to 

consider these different dimensions separately, in particular 

when relating them to the operators’ cognitive processes, as this 

may explain how trust and risk perception are formed in given 

situations.  

From a practical perspective, this paper deals with the case of 

robots that may be unreliable in the context of Industry 4.0. This 

situation may commonly be found in industry, due to the robot’s 

myopia or some technical problem of access to the information 

needed to correctly analyze a situation. Our study has explored 

this issue by highlighting how trust can be formed with a 

myopic agent, according to which rationale, and which 

elements of the context the agent communicates to the human 

operator.  

In addition, the effect of expertise in the decision-making 

processes needs to be explored because the participants in our 

study were novices as they lacked experience in order 

preparation. Through the paradigm expert/novice, it would be 

worth examining populations familiar with and expert in 

industrial situations (e.g., production line operators in industry) 

[10]. 

Finally, this work opens interesting perspectives on the topic 

of Human-Autonomy Teaming and in the domain of Industry 

4.0. The key issues concern designing the new interactions 

between the operators and cyber-physical systems of Industry 

4.0 in order to improve the reliability of the decision-making 

process and avoid errors. Parasuraman and Riley [42] have 

shown that overtrust in and overcompliance with autonomous 

agents do not necessarily improve performance. Operators may 

not challenge the agents' choices and choose to blindly follow 

their propositions, which could lead to poor decision making, 

especially if an agent is not reliable. In the cooperation 

configurations found in Industry 4.0 where human operators 

supervise autonomous agents, two different behaviors may be 

observed: either the operators conduct an in-depth analysis of 

the situation, thereby increasing their activity level, or they 

carry out a superficial analysis and merely accept the 

proposition made by the machine. The latter behavior is the 

complacency phenomenon [42]. Following some recent studies 

[43][44], we could imagine dynamically calibrating or repairing 

the trust of humans in autonomous agents, in a bi-directional 

transparency perspective between human and agent [45]. This 

dynamic trust calibration could be based on compliance, i.e., 

how humans provide feedback to the robot by accepting or 

refusing its requests. We would then play upon the robot 

transparency level, regarding not only the information related 

to the rationale and the analysis of the situation by the robot, 

but also the complementary information related to the 

perception of risk, that can interfere with trust in the agent. We 

could also vary the robot's etiquette and the way it presents the 

different types of information [46]. Such a dynamic process 

would help avoid inappropriate compliance with the robot and 

improve human-autonomy teaming.  

VI. CONCLUSION 

This study has focused upon human decision making 

following the request of a cobot. The effects of agent 

transparency have been examined through the transparency 

levels of Chen et al.'s model [21] and applied to transparency 

dimensions using Lyons’s framework [24]. We have observed 

the effects upon human operators' compliance, trust in the 

cobot, and risk perception. In addition, congruent with the 

results of prior studies [10], we have not observed any increase 

in the participants' mental workload despite the increased 

transparency level. We have also found that risk perception can 

moderate trust. Further research might want to use a risk 

perception scale in order to have better comprehension of the 

role of risk perception in trust and compliance.  

To promote the emergence of an Operator 4.0 in symbiosis 

with cyber-physical systems, optimizing human-machine 

cooperation needs to rely upon a high-quality dialogue. 

Therefore, it would be worth exploring in more detail the effect 

of other agent transparency levels applied to these dimensions 

upon the quality of the dialogue between human operators and 

autonomous agents. Greater understanding of these 

mechanisms would improve the dialogue and optimize 

cooperation between the two entities through the adaptability of 

the human-machine interfaces. Greater comprehension of 

transparency and its effects on trust and risk perception could 

be a way to dynamically calibrate trust in order to avoid 

overtrust or undertrust. 
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