Marc Briane 
email: mbriane@insa-rennes.fr
  
Juan Casado-Díaz 
  
A divergence-curl result for measures. Application to the two-dimensional ODE's flow

Keywords: Divergence-curl, measure, ODE's flow, invariant measure, rotation set Mathematics Subject Classification: 34E10, 37C10, 37C40, 42B05

de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

In the spring of 1974, starting from the initial integration by parts

∀ σ ∈ C ∞ c (R N ) N , ∀ u ∈ C ∞ c (R N ), ˆRN σ(x) • ∇u(x) dx = - ˆRN (div σ)(x) u(x) dx,
and putting it in the more general context of Fourier analysis, Murat and Tartar proved the following result:

   σ ε σ weakly in L 2 loc (R N ) N , div (σ ε ) → div (σ) strongly in H -1 loc (R N ), η ε η weakly in L 2 loc (R N ) N , curl (η ε ) → curl (η) strongly in H -1 loc (R N ) N ×N ⇓ σ ε • η ε σ • η in D (R N ), (1.1) 
called as the divergence-curl lemma. So, they inaugurated by result (1.1) the famous compensated compactness method [START_REF] Murat | Compacité par compensation[END_REF][START_REF] Tartar | Compactness and applications to partial differential equations[END_REF] with many fruitful applications to partial differential equations. Historically, the divergence-curl lemma was introduced as the crucial tool in H-convergence theory [START_REF] Murat | H-convergence[END_REF][START_REF] Murat | H-convergence[END_REF] (see also [START_REF] Tartar | The General Theory of Homogenization: A Personalized Introduction[END_REF]Chapter 7]), independently from the earlier Gconvergence theory due to Spagnolo [START_REF] Spagnolo | Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche[END_REF]. There have been many applications of the divergencecurl lemma beyond H-convergence. We cite three other applications due to Tartar: estimates of effective coefficients [START_REF] Tartar | Estimations fines des coefficients homogénéisés[END_REF], homogenization of hyperbolic equations [START_REF] Tartar | Homogenization and hyperbolicity, dedicated to Ennio De Giorgi[END_REF] and optimal design [START_REF] Tartar | An introduction to the homogenization method in optimal design[END_REF].

Since more than forty years, divergence-curl lemma (1.1) has been the subject of several refinements and various applications. We focus on the main assumptions and applications in the following divergence-curl results:

• In [START_REF] Briane | Nonlocal effects in two-dimensional conductivity[END_REF][START_REF] Briane | Two-dimensional divergence-curl results. Application to the lack of nonlocal effects in homogenization[END_REF] replacing for any open bounded set Ω of R 2 , the L 2 (Ω) 2 -boundedness of σ ε by the L 2 (Ω) 2 -boundedness of the sequence A -1/2 ε σ ε where A ε is an equi-coercice sequence of symmetric positive matrix-valued in L ∞ (Ω) 2×2 , but only equi-bounded in L 1 (Ω) 2×2 . This divergence-curl result allows us to prove the Γ-convergence compactness of the strongly local Dirichlet form u → ´Ω A ε ∇u•∇u to a similar strongly local one, without the presence of local and nonlocal terms of the classical Beurling-Deny representation of Dirichlet forms [START_REF] Beurling | Espaces de Dirichlet[END_REF].

• In [START_REF] Briane | The divergence-curl lemma 'trente ans après': an extension and an application to the G-convergence of unbounded monotone operators[END_REF] the sequences σ ε and η ε are bounded respectively in L p (Ω) N , L q (Ω) N for an open set Ω of R N , and div σ ε , curl η ε are compact respectively in the dual spaces W -1,q (Ω), W 1,p (Ω) N ×N , under the condition

1 ≤ 1 p + 1 q < 1 + 1 N for 1 < p, q < ∞. (1.2)
This divergence-curl result allows us to obtain in particular a G-convergence compactness result for non-uniformly bounded monotone operators.

• In [START_REF] Conti | The divergence-curl lemma for sequences whose divergence and curl are compact in W -1,1[END_REF] the sequences σ ε , η ε are bounded respectively in the conjugate spaces L p (Ω) N , L p (Ω) N for an open set Ω of R N and for 1 < p < ∞, and div σ ε , curl η ε are compact sequences respectively in the dual spaces of W 1,∞ (Ω), W 1,∞ (Ω) N ×N under the extra equiintegrability of σ ε • η ε in L 1 (Ω). This divergence-curl result allows them to prove a very weak continuity of the Jacobian determinant in dimension two [START_REF] Conti | The divergence-curl lemma for sequences whose divergence and curl are compact in W -1,1[END_REF]Corollary].

• In [START_REF] Briane | A new divergence-curl result. Applications to the homogenization of elliptic systems and to the weak continuity of the Jacobian[END_REF] the condition (1.2) of [START_REF] Briane | The divergence-curl lemma 'trente ans après': an extension and an application to the G-convergence of unbounded monotone operators[END_REF] is replaced by the weaker one

1 ≤ 1 p + 1 q < 1 + 1 N -1 for 1 < p, q < ∞. (1.3)
under the extra condition that the product σ ε •η ε converges weakly in the dual of W 1,∞ (Ω). This divergence-curl result allows us to extend in particular a result due to Brezis, Nguyen [START_REF] Brezis | The Jacobian determinant revisited[END_REF] on the weak continuity of the Jacobian determinant, under weaker convergences of the Jacobian matrix.

• In connection with the former divergence-curl results, we have to mention the famous result on Hardy spaces [START_REF] Coifman | Compensated compactness and Hardy spaces[END_REF]Theorem II.2] due to Coifman, Lions, Meyers, Semmes who proved that if σ ∈ H p (R N ) N is divergence free and η ∈ H q (R N ) N is curl free, with p, q ∈ (1, ∞) and 1 r

:= 1 p + 1 q < 1 + 1 N , (1.4) 
then the scalar product σ • η has a sense as a distribution in the Hardy space H r (R N ). This allowed us to recover (with r = 1) the remarkable result of Müller [START_REF] Müller | A surprising higher integrability property of mappings with positive determinant[END_REF] on the regularity J(u) ln J(u) ∈ L 1 loc (R N ) of any non negative Jacobian determinant J(u) for u in W 1,N loc (R N ) N . In the context of the ODE's flow we also get a specific divergence-curl result involving invariant measures. More precisely, let b ∈ C 0,1 (R N ) N be a Z N -periodic Lipschitz continuous vector field in R N , and consider the associated flow X(•, x) for x ∈ R N , the solution to the ODE (see, e.g, [START_REF] Hirsch | Differential equations, Dynamical Systems, and an Introduction to Chaos[END_REF]Section 17.4])

     ∂X ∂t (t, x) = b(X(t, x)), t ∈ R X(0, x) = x.
(1.5)

A probability measure µ on the torus T N := R N /Z N is said to be invariant for the flow X if

∀ t ∈ R, ∀ ψ ∈ C 0 (T N ), ˆTN ψ Ä X(t, y) ä µ(dy) = ˆTN ψ(y) µ(dy), (1.6) 
or equivalently, by virtue of Liouville's theorem (see, e.g., [START_REF] Ya | Introduction to Ergodic Theory[END_REF]Lecture 7])

div (b µ) = 0 in D (R N ). (1.7)
We easily deduce from (1.7) (see, e.g., [9, Proposition 2.2, Remark 2.2]) the periodic divergencecurl result satisfied by any invariant probability measure µ on T N for the flow X,

∀ ∇ψ ∈ C 0 (T N ) N , ˆTN b(y) • ∇ψ(y) µ(dy) = LjT N b(y) µ(dy) å • LjT N ∇ψ(y) dy å , (1.8) 
where σ := b µ is a divergence free measure-valued field and η := ∇ψ is a continuous curl free field.

More generally, in their famous article [START_REF] Franks | Rotation sets of toral flows[END_REF] Franks and Misiurewicz proved that for any two-dimensional continuous flow on the torus T 2 associated with a lift Φ := (Φ t ) t∈R to R 2 , the convex Herman rotation set [START_REF] Herman | Existence et non existence de tores invariants par des difféomorphismes symplectiques[END_REF] (see also [START_REF] Misiurewicz | Rotation sets for maps of tori[END_REF]Remark 2.5]) defined by

ρ(Φ) := ®ˆT 2 Ä Φ(1, y) -y ä µ(dy) : µ invariant probability measure on T 2 for Φ ´,
(1.9)

has the remarkable property to be a closed line segment of a line of R 2 passing through 0 R 2 . By virtue of [START_REF] Misiurewicz | Rotation sets for maps of tori[END_REF]Theorem 2.4,3.4] and [START_REF] Misiurewicz | Rotation sets for maps of tori[END_REF]Remark 2.5] (see also [9, Appendix A]) applied in the context of a two-dimensional ODE's flow X (1.5), it turns out that the rotation set agrees with the set of the cluster points of the sequences Ä X(n, x)/n ä n∈N for x ∈ T 2 . Therefore, in this framework the Franks-Misiurewicz result [START_REF] Franks | Rotation sets of toral flows[END_REF] means geometrically that the unbounded orbits X(R, x) in R 2 , x ∈ T 2 , have all the same asymptotic direction.

A more precise structure of Herman's rotation set is also derived in [START_REF] Franks | Rotation sets of toral flows[END_REF] depending on the presence or not of incommensurable points in ρ(Φ), and leading to a final conjecture. This conjecture has been widely studied (see, e.g., [START_REF] Koropecki | Area-preserving irrotational diffeomorphisms of the torus with sublinear diffusion[END_REF][START_REF] Kocsard | A mixing-like property and inexistence of invariant foliations for minimal diffeomorphisms of the 2-torus[END_REF][START_REF] Dàvalos | On annular maps of the torus and sublinear diffusion[END_REF]) with a significative recent progress in [START_REF] Kocsard | On the dynamics of minimal homeomorphisms of T 2 which are not pseudorotations[END_REF]. Here, restricting ourselves to the ODE's flow X (1.5) associated with a vector field b ∈ C 1 (T 2 ) 2 and in view of the properties (1.6) and (1.7), the Franks-Misiurewicz result can be regarded as the following two-dimensional divergence-curl result for measures: for any pair (µ, ν) of probability measures on T 2 , we have

div (b µ) = div (b ν) = curl (b ν ⊥ ) = 0 ⇓ LjT 2 b(y) • µ(dy) å • LjT 2 b(y) ⊥ • ν(dy) å = 0. (1.10)
In the present paper, we extend the divergence-curl result (1.10) associated with the Franks-Misiurewicz theorem [START_REF] Franks | Rotation sets of toral flows[END_REF] both to a non-periodic framework with any pair of signed bounded Radon measures on R 2 (see Theorem 2.4), as well as a periodic divergence-curl result in dimension N > 2 provided that one of the two measures has a Lebesgue's density in L 1 (T N ) (see Theorem 3.1).

The Section 2 of the paper deals with several two-dimensional divergence-curl results. The first result (Theorem 2.4) involves in any open set Ω of R 2 , a non-vanishing vector field b in C 1 (Ω) 2 (or more generally, according to Remark 2.6, b := r Φ where r is an arbitrary real function in C 1 (Ω) and Φ an arbitrary unit vector field in C 1 (Ω) 2 ) satisfying the divergence-curl result: for any bounded measure ν on Ω and any bounded variation function u in Ω,

div (b ν) = 0 in D (Ω) b • ∇u = 0 in D (Ω)    ⇒ div (u b ν) = 0 in D (Ω), (1.11) 
which can be recovered as the equality "div (u b ν) = b ν • ∇u = 0". Of course, the previous equality is only formal due to the bad-defined product of measures ν ∇u. However, the product u σ in (1.11) has a distributional sense, since we show (see Lemma 2.3) that there exists a neighborhood V of any point in Ω, a bounded variation function S in R and a function w in C 1 (V ) such that u = S • w a.e. in V . As a consequence, the function u belongs to L ∞ loc (Ω). The second result (Theorem 2.7) provides a divergence-result for a finitely almost periodic vector-valued measure b ν and a finitely almost periodic bounded variation function u. Actually, Theorem 2.7 is not an immediate consequence of Theorem 2.4, since the assumptions of Theorem 2.7 just carry on the function u which is a finite sum of bounded variation functions u k with periodic measure gradients, but not on each of its components u k . Then, we need an extra result (Proposition 2.12) which is original by itself, and shows that u reads as a bounded function plus a linear one. As a by-product of Theorem 2.7, we also obtain (see Corollary 2.18) an extension of the periodic Franks-Misiurewicz result (1.10) to two signed Radon measures on two multiples of the torus T 2 .

In the higher-dimensional setting of Section 3, the representation of the bounded variation function u in Ω satisfying the orthogonality condition b • ∇u = 0 on Ω, does not allow us to get that u ∈ L ∞ loc (Ω). Then, restricting ourselves to the periodic framework and replacing the divergence free measure-valued field σ by the vector-valued function σ := f b with f ∈ L 1 (T N ) and b ∈ W 1,∞ (T N ) N (i.e. b is Z N -periodic and Lipschitz), we prove (see Theorem 3.1) the N -dimensional periodic divergence-curl result:

div (f b) = 0 in D (R N ) b • ∇u = 0 in D (R N )    ⇒ LjT N f (y) b(y) dy å • LjT N ∇u(dy) å = 0.
(1.12)

However, this result has no more connection with any possible N -dimensional extension of the Franks-Misiurewicz result. Indeed, in dimension N > 2 and contrary to the two-dimensional duality: div (b ν) = curl (b ν ⊥ ) = 0, a divergence free vector field in T N can only read as a curl of a divergence free field in T N . Actually, such an extension cannot hold already in dimension N = 3, since [START_REF] Briane | Specific Properties of the ODE's Flow in Dimension Two Versus Dimension Three[END_REF]Theorem 4.1] shows that any convex polyhedron of R 3 with rational vertices is realizable as a Herman's rotation set for a suitable ODE's flow (1.5).

Notation

• (e 1 , . . . , e N ) denotes the canonical basis of R N , and 0 R N denotes the null vector of R N .

• I N denotes the unit matrix of R N ×N ,

• R ⊥ denotes the (2 × 2) rotation matrix

Å 0 1 -1 0 ã . For any ξ ∈ R 2 , ξ ⊥ denotes the perpen- dicular vector R ⊥ ξ.
• " • " denotes the scalar product and | • | the euclidean norm in R N .

• " × " denotes the cross product of two vectors in R N defined by

ξ × η := î ξ i η j -ξ j η i ó 1≤i<j≤N ∈ R N (N -1) 2 
for ξ, η ∈ R N , " ⊗ " the tensor product of two vectors in R N defined by

ξ ⊗ η := î ξ i η j ó 1≤i<j≤N ∈ R N ×N for ξ, η ∈ R N , (1.13) 
and " " the symmetric tensor product of two vectors in R N defined by

ξ η := 1 2 (ξ ⊗ η + η ⊗ ξ) ∈ R N ×N for ξ, η ∈ R N . (1.

14)

• #A denotes the cardinal of the set A, 1 A denotes the characteristic function of the set A, and ffl A denotes the mean value 1 |A| ´A over the set A.

• B(x, R) denotes the euclidean open ball of R N centered on x ∈ R N and of radius R > 0, and B R simply denotes the ball B(0 R N , R).

• Y N for N ≥ 2, denotes the unit cube := [0, 1) N of R N .

• T N for N ≥ 2, denotes the N -dimensional torus R N /Z N which is identified to Y N in R N , and 0 T N denotes the null vector of T N .

• dx or dy denotes the Lebesgue measure on R N , and |A| denotes the Lebesgue measure of any measurable set in R N or T N .

• D (Ω) denotes the space of the distributions on an open set Ω of R N .

• The Jacobian matrix of a mapping Φ ∈ L 1 loc (R N ) N is defined by the matrix-valued distribution DΦ with entries

î DΦ ó i,j := ∂Φ i ∂x j ∈ D (R N ) for i, j ∈ {1, . . . , N }.
The divergence of Φ is defined by the distribution

div Φ := N i=1 ∂Φ i ∂x j ∈ D (R N ).
The curl of Φ is defined by the skew matrix-valued distribution in

D (R N ) N ×N with entries î curl Φ ó i,j := ∂Φ i ∂x j - ∂Φ j ∂x i ∈ D (R N ) for i, j ∈ {1, . . . , N }.
• The abbreviation "a.e." for almost anywhere, will be used throughout the paper. The simple mention "a.e." refers to the Lebesgue measure on R N .

• Let (ξ 1 , . . . , ξ N ) be a basis of R N . We denote the parallelotope spanned by this basis

P := N i=1 θ i ξ i : θ i ∈ [0, 1) for i = 1 . . . N (1.15) 
which is associated with the lattice group of R N

Λ P := N i=1 Z ξ i , (1.16) 
and the torus defined by the quotient group

Π P := R N /Λ P .
(1.17)

For example, when P = Y N we get that Λ P = Z N and Π P = T N .

• C k c (R N ), k ∈ N ∪ {∞}, denotes the space of the real-valued functions in C k (R N ) with compact support in R N . • C k (Π P ), k ∈ N ∪ {∞}, denotes the space of the real-valued functions f ∈ C k (R N ) which are Λ P -periodic, i.e. ∀ κ ∈ Λ P , ∀ x ∈ R N , f (x + κ) = f (x). (1.18) • C 0,α (Π P ) for α ∈ [0, 1]
, denotes the set of the Λ P -periodic functions which are α-Hölderian if α > 0, and the set of the continuous Λ P -periodic functions if α = 0.

• For a Borel measure µ on the torus Π P , L p (Π P , µ), p ≥ 1, denotes the space of the µ-measurable functions f :

Π P → C such that ˆΠP |f (x)| p µ(dx) < ∞.
L p (Π P ) denotes the space of the Lebesgue measurable functions f in L p loc (R N ), which are Λ P -periodic dx-a.e. in R N .

• For a Borel measure µ on the torus Π P and for f ∈ L 1 (Π P , µ) which is Λ P -periodic µ-a.e.

in R N , we denote the mass of f with respect to µ by

µ(f ) := ˆΠP f (x) µ(dx) = ˆP f (x) µ(dx), (1.19) 
which is simply denoted by f when µ is Lebesgue's measure.

The two formulations of µ(f ) will be used indifferently along the paper.

Notation (1.19) will be also used for a vector-valued function in L 1 (Π P , µ) N .

• M (Ω) denotes the space of the bounded Borel measures on an open set Ω of R N .

M loc (Ω) denotes the space of the Radon measures on Ω, i.e. the Borel measures which are finite on any compact set of Ω.

M (Π P ) denotes the space of the Radon measures on the torus Π P , and M p (Π P ) denotes the space of the probability measures on Π P .

• BV (Ω) denotes the space of the bounded variation functions on an open set Ω of R N , i.e. the set of the functions u ∈ L 1 (Ω) such that the gradient distribution ∇u is in M (Ω) N .

BV (Π P ) denotes the space of the functions f ∈ BV loc (R N ) (i.e. with bounded variation locally in R N ) which are Λ P -periodic a.e. in R N , i.e. the set of the functions u ∈ L

N N -1 (T N ) such that ∇u ∈ M (Π P ) N . • o(δ) = δ o δ (1) where o δ (1) denotes a term satisfying lim δ→0 o δ (1) = 0. O(δ) = δ O δ (1)
where O δ (1) denotes a bounded term with respect to δ.

• c denotes a positive constant which may vary from line to line.

2 Two-dimensional results 

Some results on bounded variation functions

S ∈ W 1,∞ loc (R) with S ∈ L ∞ (R), we have S(u) := S • u ∈ BV (Ω) and ∇(S(u)) M (Ω) ≤ S L ∞ (Ω) Du M (Ω) N . (2.1)
Moreover, for any vector-valued function

Φ ∈ C 0 (Ω) N satisfying Φ • ∇u = 0 in M (Ω) or equivalently (2.2)
we have

Φ • ∇(S(u)) = 0 in M (Ω). (2.3) Proof of Lemma 2.1. For ρ a radial function in C ∞ c (R N ) satisfying supp (ρ) ⊂ B(0 R N , 1), ρ ≥ 0 in R N , ˆΩ ρ(y) dy = 1, (2.4) 
and for ε > 0, define the rescaled function

ρ ε (x) = 1 ε N ρ Å x ε ã for x ∈ R N , (2.5) 
and u ε := ρ ε * u. Taking into account that the sequence S(u ε ) converges to S(u) in L 1 loc (Ω),

∇(S(u ε )) = S (u ε ) (ρ ε * ∇u) in ¶ x ∈ Ω : dist(x, ∂Ω) > ε © , and |∇u ε | * |∇u| in M (Ω),
we get that S(u) ∈ BV (Ω) and (2.1). Let us prove (2.3). For ϕ ∈ C 0 c (Ω) and ε small enough, we have by (2.2)

ˆΩ ϕ(x) Φ(x) • ∇(S(u ε ))(x) dx = ˆΩ ϕ(x) S (u ε )(x) LjR N ρ ε (x -y) Φ(x) • ∇u(dy) å dx = ˆΩ ϕ(x) S (u ε )(x) LjR N ρ ε (x -y) (Φ(x) -Φ(y)) • ∇u(dy) å . Therefore, setting ω ε := max |y-z|<ε |Φ(y) -Φ(z)|,
for any open set Ω ⊂ Ω and supp (ϕ) Ω, we have

ˆΩ ϕ(x) Φ(x) • ∇(S(u ε ))(x) dx ≤ c ω ε ˆΩ ˆB(x,ε) ρ ε (x -y) |∇u|(dy) dx ≤ c ω ε ε N ˆB(0 R 2 ,ε) LjΩ |∇u|(dx) å dy = c ω ε . This proves that ˆΩ ϕ Φ(x) • ∇(S(u ε ))(x) dx -→ ε→0 0.
On the other hand, the sequence ∇(S(u ε )) converges in the weak- * measures sense to ∇(S(u)). Therefore, we obtain that

ˆΩ ϕ(x) Φ(x) • ∇(S(u))(dx) = 0. Lemma 2.2. Let Θ, Ω be two open sets of R N , let F : Ω → Θ be a diffeomorphism of class C 1 . Then, for any u ∈ BV (Ω), we have v := u • F -1 ∈ BV (Θ) and ∀ Φ ∈ C 0 c (Θ) N , ˆΘ Φ(y) • ∇v(dy) = ˆΩ det(DF (x)) D(F -1 )(F (x)) Φ(F (x)) • ∇u(dx). (2.6)
Proof of Lemma 2.2. Let ρ ε be defined by (2.5), let

u ε := ρ ε * u and v ε := u ε • F -1 . Then, the sequence v ε converges strongly to v in L 1 (Θ). Moreover, for any Φ ∈ C 0 c (Θ) N , we have ˆΘ Φ(y) • ∇v ε (y) dy = ˆΘ D(F -1 )(y) Φ(y) • ∇u ε (F -1 (y)) dy = ˆΩ det(DF (x)) D(F -1 )(F (x)) Φ(F (x)) • ∇u ε (x) dx.
Using that ∇u ε converges in the weak- * measures sense to ∇u, we deduce that ∇v ε is bounded in M (Ω) N , so v belongs to BV (Ω) and (2.6) holds. 

F : B(x 0 , ε) → Θ such that F 1 = w in B(x 0 , ε). Then, define v := u • F -1 in Θ.
∈ C 0 c (Θ) N , ˆΘ Φ(y) • ∇v(dy) = ˆB(x 0 ,ε) det(DF (x)) Φ(F (x)) • Ä D(F -1 ) ä T (F (x)) ∇w(x) µ(dx) = ˆB(x 0 ,ε) det(DF (x)) Φ(F (x)) • ∇(w • F -1 )(F (x)) µ(dx) = ˆB(x 0 ,ε) det(DF (x)) Φ 1 (F (x)) µ(dx) (Φ 1 := Φ • e 1 ),
which implies that

∀ Φ = (0, Φ ) ∈ C 0 c (Θ) N , ˆΘ(div Φ)(y) v(y) dy = 0.
Therefore, v is a bounded variation function depending only on the variable y 1 , which allows us to conclude. 

A two-dimensional divergence-curl result

div σ = 0 in D (Ω), (2.8) b • ∇u = 0 in M (Ω). (2.9)
Then, the function u belongs to L ∞ loc (Ω). Moreover, for any y ∈ Ω, there exist two values u ± (y) satisfying ⊥ in V for some non-vanishing function α ∈ C 1 (V ). Hence, condition (2.9) yields the condition (2.7) in V . As a consequence of Lemma 2.3, the product of distributions u σ in equation (2.12) thus has a sense in M loc (Ω) for a suitable representative of the function u ∈ BV (Ω) (using to this end the local representation of u and a partition of unity of Ω). More precisely, by virtue of the local representation in Lemma 2.3 of the function u ∈ BV (Ω) satisfying (2.9) in the neighborhood V , we have u = S V • w V where S V is a BV function on an open interval of R and w V is a function in C 1 (V ). This gives a sense to limits (2.10). Therefore, we will be able to use in the proof of Theorem 2.4 below, the bounded representation (2.11) of the function u ∈ BV (Ω) solution to equations (2.8) and (2.9).

lim ε→0 1 |B(y, ε)| ˆB(y,ε)∩H ± (y) |u(x) -u ± (y)| dx = 0, H ± (y) := ¶ ± b ⊥ (y) • (x -y) > 0 © , (2 
Proof of Theorem 2.4. For y ∈ Ω, the characteristic method ensures (see Lemma 2.13 below for details) the existence of δ > 0 and a unique function

w ∈ C 1 Ä B(y, δ) ä , such that b • ∇w = 0 in B(y, δ) and w(x) = b ⊥ (y) • (x -y) on B(y, δ) ∩ ¶ x ∈ R 2 : b(y) • (x -y) = 0 © .
In particular, we have ∇w(y) = b ⊥ (y) = 0. Since the function u satisfies (2.9), we conclude the existence of δ ∈ (0, δ) and µ ∈ M This proves in particular that u belongs to L ∞ (B(y, δ)), and then that u belongs to L ∞ loc (Ω). Moreover, defining u -(y) = lim s→w(y) -S(s), u + (y) = lim s→w(y) + S(s), and reminding that ∇w(y) = b ⊥ (y), condition (2.10) is thus satisfied according to [14, Theorem 3, Section 5.9].

Let us now prove that (2.12) holds. For ρ ε , ε > 0, defined by (2.5), we define the regularized function

σ ε := b (ρ ε * ν) of σ. Taking ϕ ∈ C ∞ c (Ω), we have ˆΩ u(x) σ ε (x) • ∇ϕ(x) dx = ˆΩ u(x) LjΩ ρ ε (x -y) ν(dy) å b(x) • ∇ϕ(x) dx = ˆΩ LjΩ ρ ε (x -y) u(x) b(x) • ∇ϕ(x) dx å ν(dy).
(2.13)

Integrating by parts and reminding that b • ∇u = 0, we get that

ˆΩ LjΩ ρ ε (x -y) u(x) b(x) • ∇ϕ(x) dx å ν(dy) = -ˆΩ ϕ(x) u(x) LjΩ b(x) • ∇ρ ε (x -y) ν(dy) å dx - ˆΩ LjΩ ρ ε (x -y) ϕ(x) u(x) (div b)(x) dx å ν(dy).
(2.14)

On the one hand, by Lebesgue's theorem we have

ˆΩ LjΩ ρ ε (x -y) ϕ(x) u(x) (div b)(x) dx å ν(dy) -→ ε→0 ˆΩ ϕ(y) (div b)(y) u(y) ν(dy), (2.15) 
where u is defined by (2.11). On the other hand, by (2.8) we have

ˆΩ ϕ(x) u(x) LjΩ b(x) • ∇ρ ε (x -y) ν(dy) å dx = ˆΩ ϕ(x) u(x) LjΩ Ä b(x) -b(y) ä • ∇ρ ε (x -y) ν(dy) å dx = ˆΩ ˆB(y,ε) ϕ(x) u(x) Ä b(x) -b(y) -∇b(x) (x -y) ä • ∇ρ ε (x -y) dx ν(dy) + ˆΩ ˆB(y,ε) ϕ(x) u(x) ∇b(x) (x -y) • ∇ρ ε (x -y) dx ν(dy).
Due to u ∈ L ∞ loc (Ω) the first term of the right-hand side converges to 0 by Lebesgue's theorem, since the first-order expansion of b around y ∈ Ω implies that ˆB(y,ε)

ϕ(x) u(x) Ä b(x) -b(y) -∇b(x) (x -y) ä • ∇ρ ε (x -y) dx ≤ o(1) ε 2 ˆB(y,ε) |∇ρ| Å x -y ε ã dx -→ ε→0 0 uniformly with respect to y ∈ Ω.
Similarly, the second term of the right-hand side reads as ˆΩ ˆB(y,ε)

ϕ(x) u(x) ∇b(x) (x -y) • ∇ρ ε (x -y) dx ν(dy) = ˆΩ ˆB(y,ε) u(x) ∇b(y) (x -y) • ∇ρ ε (x -y) dx ϕ(y) ν(dy) + o(1).
(2.16)

Moreover, by Lebesgue's point estimates (2.10) we have ˆB(y,ε)

u(x) ∇b(y) (x -y) • ∇ρ ε (x -y) dx = u + (y) ˆB(y,ε)∩H + (y) ∇b(y) (x -y) • ∇ρ ε (x -y) dx + u -(y) ˆB(y,ε)∩H -(y) ∇b(y) (x -y) • ∇ρ ε (x -y) dx + o(1).
Then, integrating by parts and noting that ˆB(y,ε)∩H ± (y)

ρ ε (x -y) dx = 1 2 ˆB(y,ε) ρ ε (x -y) dx = 1 2 ˆB(0 R 2 ,1) ρ(z) dz = 1 2 , we get that ˆB(y,ε)∩H ± (y) ∇b(y) (x -y) • ∇ρ ε (x -y) dx = -(div b)(y) ˆB(y,ε)∩H ± (y) ρ ε (x -y) dx ∓ ˆB(y,ε)∩∂H ± (y) ∇b(y) (x -y) • b(y) ρ ε (x -y) (dx) = - 1 2 (div b)(y) ∓ ˆB(y,ε)∩∂H ± (y) ∇b(y) (x -y) • b(y) ρ ε (x -y) (dx).
However, since the function

Ä z → ∇b(y) z • b(y) ρ ε (z) ä is odd in B(0 R 2 , ε), the last integral is equal zero, which implies that ∀ y ∈ Ω, lim ε→0 ˆB(y,ε)∩H ± (y) u(x) ∇b(y) (x -y) • ∇ρ ε (x -y) dx = -u(y) (div b)(y),
where the function u is pointwise defined by (2.11). Therefore, using Lebesgue's theorem in the right-hand side of (2.16) combined with expression (2.14) and convergence (2.15), we obtain that lim

ε→0 ˆΩ LjΩ ρ ε (x -y) u(x) b(x) • ∇ϕ(x) dx å = 0.
Making ε tend to 0 in (2.13) owing to this limit we deduce the desired equation (2.12).

The case of finitely almost periodic functions

The following theorem deals with a divergence-curl result involving elementary almost periodic functions (see notations (1.15), (1.16), (1.17)).

Theorem 2.7. Let n, m ∈ N. Let Q k , 1 ≤ k ≤ n, P j , 1 ≤ j ≤ m, be parallelograms in R 2 , let σ k be n vector-valued measures in M (Π Q k ) 2
, and let u j be m functions in BV loc (R 2 ) such that ∇u j belong to M (Π P j ) 2 . Assume that there exist a vector field b in

C 1 (R 2 ) 2 with b = 0 R 2 in R 2 , and a measure ν in M loc (R 2 ) satisfying              div σ = 0 in D (R 2 ) where σ := b ν = n k=1 σ k , b • ∇u = 0 in D (R 2 ) where u := m j=1 u j .
(2.17)

Then, we have the formula

m j=1 n k=1 P j ∇u j (dx) • Q k σ k (dx) = 0. (2.18)
As a particular case of Theorem 2.7, we have the following partial (since we do not discuss the commensurability of the rotation vectors) extension of the celebrated Franks-Misiurewicz theorem on two-dimensional continuous torus flows [START_REF] Franks | Rotation sets of toral flows[END_REF] to ODE's flows with invariant signed measures.

Corollary 2.8. Let b ∈ C 1 (T 2 ) 2 be a vector field in R 2 such that b = r Φ with r ∈ C 1 (T 2 ) and Φ a unit vector field in C 1 (T 2 ) 2 . Let P, Q be the two rectangles P := [0, p) 2 , Q := [0, q) 2 for p, q ∈ N, and let µ, ν be two torus measures µ ∈ M (Π P ), ν ∈ M (Π Q ) (see (1.15) and (1.17)). Assume that the signed measures µ, ν are invariant for the flow (1.5) associated with the vector field b, i.e. (recall the equivalence between (1.6) and (1.7))

div (b µ) = div (b ν) = 0 in D (R 2 ).
(2.19)

Then, we have the collinearity property

µ(b) = ˆP b(x) µ(dx) ˆQ b(x) ν(dx) = ν(b).
(2.20)

Remark 2.9. The Franks-Misiurewicz theorem claims that the Herman rotation set [START_REF] Herman | Existence et non existence de tores invariants par des difféomorphismes symplectiques[END_REF] (see also [ Remark 2.10. Theorem 2.7 provides a first extension of the Franks-Misiurewicz theorem to the case of almost periodic functions. Similarly to Corollary 2.8, it implies the following result: Assume that b is a vector field in 2 , Q k , P j as in Theorem 2.7. Then, we obtain the collinearity property lim

C 1 (R 2 ) 2 , with b = 0 R 2 in R 2 , and that ν, µ are two measures in M loc (R 2 ) such that b ν = n k=1 σ k , b µ = m j=1 τ j , div (b ν) = div (b µ) = 0 in D (R 2 ), with σ k ∈ M (Π Q k ) 2 , τ j ∈ M (Π P j )
R→∞ B R b(x) ν(dx) = n k=1 Q k σ k (dx) m j=1 P j τ j (dx) = lim R→∞ B R b(x) ν(dx).
Remark 2.11. Proposition A.1 in the appendix below provides both necessary conditions and sufficient conditions for a regular vector field b in R 2 to satisfy the regular polar decomposition b = r Φ where Φ is a unit vector field. Theorem 2.7 is far to be an easy consequence of Theorem 2.4. Indeed, we cannot apply the boundedness results of Section 2.1 combined with Remark 2.6, to each function u j from the decomposition of the finitely almost periodic function u in (2.17), i.e. to get that

∀ j ∈ {1, . . . , n}, Å x → u j (x) - P j ∇u j (dx) • x ã ∈ L ∞ (R 2 ).
We only have the assumptions (2.17) on the sum

v(x) := n j=1 Å u j (x) - P j ∇u j (dx) • x ã = u(x) -M (∇u) • x for x ∈ R 2 , (2.22)
where M (∇u) denotes the mean value of the gradient of u. Then, we need the following result which allows us to prove that v ∈ L ∞ (R 2 ).

Proposition 2.12. Let b be a vector field in

C 1 (R 2 ) ∩ W 1,∞ (R 2 ) satisfying |b| ≥ α a.e. in Ω, (2.23)
and let u be a function in BV loc (R 2 ) such that ∇u • b = 0 in R 2 . Also assume that ∇u is a finite sum of periodic measures (with possibly different periods). Then, we have

Ä v : x → u(x) -M (∇u) • x ä ∈ L ∞ (R 2 ). (2.24)
Proof of Theorem 2.7. Set

ψ k := Q k σ k (dx) and φ k := P k ∇u k (dx) for k = 1 . . . n.
Since by (2.24) the function v belongs to L ∞ (R 2 ) and the function u satisfies (2.17), by virtue of Remark 2.6 the product u σ = v σ + M (∇u) σ has a sense in M loc (R 2 ), and by virtue of Theorem 2.4 the vector-valued measure u σ is divergence free in

D (R 2 ). For R > 1, let θ n be the cut-off function in C ∞ c Ä R 2 ; [0, 1] ä satisfying θ n (x) :=    1 if |x| ≤ R -1 0 if |x| > R. (2.25)
Since the function v and the vector-valued function ∇θ n (whose support is contained in the annulus

¶ x ∈ R 2 : R -1 ≤ |x| ≤ R © ) are bounded in R 2 and the measures σ k of(2.17) are Λ Q k -periodic (recall (1.15) and (1.16)) for k = 1 . . . n, we have (B R denotes the ball B(0 R 2 , R)) B R v(x) ∇θ n (x) • σ(dx) ≤ c R -→ R→∞ 0. (2.26)
On the other hand, since the vector-valued measure u σ and σ are divergence free, integrating by parts we get that

B R v(x) ∇θ n (x) • σ(dx) = B R u(x) ∇θ n (x) • σ(dx) - n j=1 B R (φ j • x) ∇θ n (x) • σ(dx) = n j=1 φ j • B R θ n (x) σ(dx) = n j=1 n k=1 φ j • B R θ n (x) σ k (dx) .
(2.27)

Moreover, due to the property of the cut-off function θ n and the Λ Π Q k -periodicity of the measures σ k for k = 1 . . . n, we have

B R v(x) ∇θ n (x) • σ(dx) = n j=1 n k=1 φ j • B R θ n (x) σ k (dx) = n j=1 n k=1 φ j • B R σ k (dx) + o(1) -→ R→∞ n j=1 n k=1 φ j • ψ k .
(2.28)

Finally, this combined with estimate (2.26) yields the desired formula (2.18).

Proof of Corollary 2.8. Since the vector-valued measure b µ is divergence free in D (R 2 ), there exists a function u in

BV loc (R 2 ) such that b µ = ∇u ⊥ ∈ M (Π P ) 2 .
Hence, the vector-valued measures

σ := (r ν) Φ ∈ M (Π Q ) 2 and ∇u ∈ M (Π P ) 2
satisfy the two conditions of (2.17) with k = 1. Therefore, applying Theorem 2.7 with the unit vector field Φ rather than b, formula (2.18) is reduced to

0 = Q Φ(x) (r ν)(dx) • Ç P ∇u(dx) å = Q b(x) ν(dx) • Ç - P b(x) µ(dx) å ⊥ = µ(b) • ν(b) ⊥ |P | |Q| ,
which leads us to the collinearity property (2.20).

Proof of Proposition 2.12

The proof of Proposition 2.12 is based on the two following results.

Lemma 2.13. Let b a vector field in C 1 (R 2 ) ∩ W 1,∞ (R 2 ) satisfying (2.23).
Then, there exists r > 0 such that for any x 0 ∈ R 2 and any h ∈ C 1 (B(x 0 , r)), the problem

   ∇u(x) • b(x) = 0 in B(x 0 , r) u(x) = h(x) on ¶ x ∈ R 2 : b(x 0 ) • (x -x 0 ) = 0 © , (2.29) 
has a unique solution u in B(x 0 , r). Moreover, the function u belongs to C 1 (B(x 0 , r)) provided that r is chosen small enough.

Lemma 2.14. Take b and r as in Lemma 2.13. Then, there exists a constant C > 0 such that

       ∀ x ∈ B(x 0 , r/2), ∀ u ∈ BV (B(x 0 , r)) such that ∇u • b = 0 in B(x 0 , r), |u(x) -u(x 0 )| ≤ C ˆB(x 0 ,r) |∇u|(dx). (2.30) 
Proof of Proposition 2.12. Take r as in Lemma 2.13 and

ρ ∈ C ∞ c (R 2 ) such that supp (ρ) ⊂ B r/2 and ˆR2 ρ dx = 1. (2.31) 
Noting that M (∇u) = M (∇(ρ * u)), we have the decomposition

u(x) -M (∇u) • x = u(x) -(ρ * u)(x) + (ρ * u)(x) -M (∇(ρ * u)) • x for x ∈ R 2 . (2.32)
Due to the multiple periodicity of ∇u we have

sup x 0 ∈R 2 ˆB(x 0 ,r) |∇u|(dx) < ∞.
which by virtue of Lemma 2.14 (taking x 0 := x -y) implies that

∀ x ∈ R 2 , u(x) -(ρ * u)(x) ≤ ˆBr/2 |u(x) -u(x -y)| ρ(y) dy ≤ C sup x 0 ∈R 2 ˆB(x 0 ,r) |∇u|(dx) < ∞, which implies that u -ρ * u is in L ∞ (R 2 )
. Moreover, since ∇(ρ * u) = ρ * ∇u is a finite sum of smooth periodic functions, so is the function

Ä x → (ρ * u)(x) -M (∇(ρ * u)) • x ä
. Therefore, it is also in L ∞ (R 2 ), which by (2.32) implies (2.24).

Proof of Lemma 2.13. Consider the flow X associated with the vector field b by (1.5). Using the characteristics method, it is enough to prove the existence of δ > 0 such that

∀ x ∈ B(x 0 , r), ∃ ! t x ∈ (-δ, δ), Ä X(t x , x) -x 0 ä • b(x 0 ) = 0.
(2.33) Indeed, by the uniqueness of the time t x and the semi-group property satisfied by the flow X, we have for any x ∈ B(x 0 , r),

∀ s ∈ R with X(s, x) ∈ B(x 0 , r) t x -s ∈ (-δ, δ), t X(s,x) = t x -s, (2.34) 
Hence, defining u(x)

:= h Ä X(t x , x) ä , it follows that u Ä X(s, x) ä = h Ä X(t X(s,x) , X(s, x) ä = h Ä X(t x -s, X(s, x)) ä = h Ä X(t x , x) ä = u(x). (2.35) 
Taking the derivative at s = 0 we get the orthogonality condition of (2.29). Moreover, due to the uniqueness property (2.33) we obtain that

b(x 0 ) • (x -x 0 ) = b(x 0 ) • Ä X(0, x) -x 0 ä = 0 ⇒ t x = 0 ⇒ u(x) = h Ä X(0, x) ä = h(x),
which implies the second condition of (2.29). Conversely, if the function u satisfies (2.29), by (2.33) we get immediately that u(x) = h Ä X(t x , x) ä , which implies the uniqueness of u. Therefore, the solution u to problem (2.29) is given by

∀ x ∈ B(x 0 , r), u(x) = h Ä X(t x , x) ä .
(2.36) Moreover, we have

∀ t ∈ (-δ, δ), ∀ x ∈ B(x 0 , r), ∂ ∂t ï Ä X(t, x) -x 0 ä • b(x 0 ) ä ò = b(X(t, x)) • b(x 0 ) > 0,
provided that r, δ are small enough. Therefore, by virtue of the implicit function theorem we get that the function (x → t x ) defined by (2.33) belongs to C 1 (B(x 0 , r)), which by definition (2.36) implies that u ∈ C 1 (B(x 0 , r)). Now, it remains to prove property (2.33). Define

K := b L ∞ (R 2 ) and L := ∇b L ∞ (R 2 ) 2 , (2.37) 
We have

X(t, x) -x -t b(x) = ˆt 0 Ä ∂ t X(s, x) -b(x) ä ds ≤ ˆt 0 b(X(s, x)) -b(x) ds ≤ ˆt 0 b(X(s, x)) -b(x + s b(x)) ds + ˆt 0 b(x + s b(x)) -b(x) dt ≤ L ˆt 0 X(s, x) -x -s b(x) ds + L 2 t 2 |b(x)|,
which by Gronwall's inequality (see, e.g., [START_REF] Hirsch | Differential equations, Dynamical Systems, and an Introduction to Chaos[END_REF]Section 17.3]) implies that

X(t, x) -x -t b(x) ≤ KL 2 t 2 e Lt . (2.38) Using inequality (2.38) in Ä X(t, x) -x 0 ä • b(x 0 ) = t |b(x 0 )| 2 + Ä x -x 0 + t b(x) -t b(x 0 ) ä • b(x 0 ) + Ä X(t, x) -x -t b(x) ä • b(x 0 ), we get that Ä X(t, x) -x 0 ä • b(x 0 ) -t |b(x 0 )| 2 ≤ K (1 + L|t|) |x -x 0 | + KL 2 t 2 e Lt .
This combined with (2.23) and (2.38) yields

d dt îÄ X(t, x) -x 0 ä • b(x 0 ) ó = b(X(t, x)) • b(x 0 ) ≥ |b(x 0 )| 2 -KL |X(t, x) -x 0 | ≥ α 2 -KL |X(t, x) -x -t b(x)| -KL |x -x 0 | -K 2 L |t| ≥ α 2 - K 2 L 2 2 t 2 e Lt -KL |x -x 0 | -K 2 L |t|.
From this inequality we deduce the existence of two positive constants r, δ which only depend on the constants α, K, L, such that

∀ x ∈ B(x 0 , r),      Ä X(δ, x) -x 0 ä • b(x 0 ) > 0 and Ä X(-δ, x) -x 0 ä • b(x 0 ) < 0, ∀ t ∈ [-δ, δ], d dt îÄ X(t, x) -x 0 ä • b(x 0 ) ó > 0.
Therefore, property (2.33) holds true for any x ∈ B(x 0 , r).

Proof of Lemma 2.14. Let x 0 ∈ R 2 and let u ∈ BV (B(x 0 , r)), and define the function w as the solution to

   ∇w(x) • b(x) = 0 in B(x 0 , r) w(x) = b(x) ⊥ • (x -x 0 ) on ¶ x ∈ R 2 : b(x 0 ) • (x -x 0 ) = 0 © .
According to Remark 2.6 there exist δ > 0 and S ∈ BV (-δ, δ) such that u = S • w. For such a function S, there exists a sequence (S n ) in W 1,1 (-δ, δ) which converges to S in L 1 (-δ, δ), such that (S n ) converges weakly * to S in M (-δ, δ), and S n L 1 (-δ,δ) converges to S M (-δ,δ) . Then, it is enough to prove the result for S ∈ W 1,1 (-δ, δ). By the coarea formula (see, e.g., [14, Theorem 2, Section 3.4.3]) we have

ˆB(x 0 ,r) |∇u(x)| dx = ˆB(x 0 ,r) |S (w(x))| |∇w(x)| dx = ˆδ -δ |S (s)| H 1 Ä {x ∈ B(x 0 , r) : w(x) = s} ä ds, (2.39) 
where H 1 denotes the one-dimensional Hausdorff measure. Let x ∈ B(x 0 , r/2). Then, by (2.38) we have for any t ∈ R with |t| small enough,

X(t, x) -x 0 | ≤ |x -x 0 | + K Å |t| + L 2 t 2 e Lt ã ≤ r 2 + K Å |t| + L 2 t 2 e Lt ã < r. (2.40)
where the constants K, L are given by (2.37). Noting that the equality ∇w(x) • b(x) = 0 implies that w(x) = w(X(t, x)) for any t ∈ R with X(t, x) ∈ B(x 0 , r), we deduce from estimate (2.40) the existence of a constant c > 0 independent of x 0 (as r is), satisfying Finally, to prove (2.30) we just use that for any x ∈ B(x 0 , r/2),

∀ x ∈ B(x 0 , r/2), H 1 Ä ¶ y ∈ B(x 0 ,
|u(x) -u(x 0 )| = S(w(x)) -S(0) ≤ ˆw(x) 0 |S (t)| dt ≤ ˆI |S (t)| dt ≤ 1 c ˆB(x 0 ,r) |∇u(x)| dx.
3 An extension to dimension N ≥ 2

In the following we extend the divergence-curl result of Theorem 2.4 to any dimension N ≥ 2, but restricting ourselves to a Z N -periodic function f in L 1 (T N ) N rather than a measure ν in M (T N ) N . (3.5)

Note that using successively Fubini's theorem, the change of variables z = (x -y)/ε and the continuity of the translation operator in L 1 (T N ) combined with estimate (3.2), we get that

σ ε u L 1 (T N ) ≤ b L ∞ (T N ) ˆRN ρ(z) LjT N f (x -ε z) u (x) dx å dz ≤ c < ∞. (3.6)
First step: Strong convergences of σ ε and div σ ε in L 1 (T N ). First of all, we have for a.e. x ∈ R N ,

(div σ ε )(x) = (div b)(x) ˆRN ρ ε (x -y) f (y) dy + b(x) • ˆRN ∇ρ ε (x -y) f (y) dy. (3.7)
For the first term on the right-hand side we clearly have

(div b)(x) ˆRN ρ ε (x -y) f (y) dy -→ ε→0 div b(x) f (x) in L 1 (T N ). ( 3.8) 
For the second one, the divergence free condition (3.1) implies that b

(x) • ˆRN ∇ρ ε (x -y) f (y) dy = ˆRN (b(x) -b(y)) • ∇ρ ε (x -y) f (y) dy. (3.9)
Using that b is Lipschitz and (2.31), (2.5), equality (3.9) shows in particular the existence of a constant C > 0 independent of ε, such that b

(x) • ˆRN ∇ρ ε (x -y) f (y) dy ≤ C ε N ˆB(x,ε) |f (y)| dy a.e. x ∈ R N . (3.10)
On the other hand, since b is Lipschitz, it is derivable a.e. in R N . Then, taking a Lebesgue's point

x ∈ R N for f such that b is derivable at x, we get that ˆRN (b(x) -b(y)) • ∇ρ ε (x -y) f (y) dy = ˆRN Ä b(x) -b(y) + ∇b(x)(y -x) ä • ∇ρ ε (x -y) f (y) dy - ˆRN ∇b(x)(y -x) • ∇ρ ε (x -y) (f (y) -f (x)) dy + LjR N ∇b(x)(x -y) • ∇ρ ε (x -y) dy å f (x),
where the two first terms on the right-hand side tend to zero, while in the third one the change of variables z = (x -y)/ε gives

ˆRN ∇b(x)(x -y) • ∇ρ ε (x -y) dy = ˆB1 ∇b(x)z • ∇ρ(z) dz = - ˆB1 div z (∇b(x)z) ρ(z) dz = -(div b)(x).
We have just proved that b 

(x) • ˆRN ∇ρ ε (x -y) f (y) dy -→ ε→0 -(div b)(x) f (x) a.e. x ∈ R N . ( 3 
(x) • ˆRN ∇ρ ε (x -y) f (y) dy -→ ε→0 -(div b)(x) f (x) strongly in L 1 (T N ).
This strong convergence combined with (3.7), (3.8) and (3.11) implies that div σ ε → 0 strongly in L 1 (T N ).

(3.12)

Moreover, by definition (3.5) it is clear that

σ ε → σ strongly in L 1 (T N ) N . (3.13)
Second step: Proof of equality (3.4). Consider the truncation function T n at size n ∈ N, defined by

T n (t) := (t ∧ n) ∨ (-n) for t ∈ R.
Then, by virtue of Lemma 2.1, Since ∇T n (u) is not Z N -periodic contrary to ∇u, we make the integrations by parts in R N rather in the torus T N . Then, recalling the cut off function θ n , n > 1, defined by (2.25) we have

T n (u) is a sequence in BV loc (R N ) ∩ L ∞ (R N ) satisfying ∇T n (u) * ∇u in M loc (R N ) N and b • ∇T n (u) = 0 in D (R N ). ( 3 
Bn ∇θ n (x) • σ ε (x) T n (u)(x) dx = Bn ∇θ n (x) • σ ε (x) T n (ξ • x) dx + Bn ∇θ n (x) • σ ε (x) Ä T n (u(x)) -T n (ξ • x) ä dx. (3.16) 
On the one hand, integrating by parts the first integral of (3.16), using the second equality of (3.14) and the Z N -periodicity of σ ε combined with the strong convergence (3.12), we get that

Bn ∇θ n (x) • σ ε (x) T n (u)(x) dx = Bn θ n (x) (div σ ε )(x) T n (u)(x) dx ≤ n |B n | ˆBn |div σ ε |(x) dx ≤ c n div σ ε L 1 (T N ) = n o ε (1). 
(3.17)

Let K n be the minimal covering of the set {|ξ • x| < n} ∩ B n by the cubes (κ + Y N ) for κ ∈ Z N , and let J n be the set of the vectors κ ∈ Z N such that the cubes (κ + Y N ) meet the boundary of the set {|ξ • x| < n} ∩ B n . Since the volume of {|ξ • x| < n} ∩ B n is of order n N and the surface of its boundary is of order n N -1 , we have the cardinal estimates

#K n ≈ n N and #J n ≈ n N -1 . (3.18)
Next, integrating by parts the second integral of (3.16) and using the Z N -periodicity of σ ε combined with the two last estimates of (3.18) and again the strong convergence (3.12), we get that If ∇b(0 R 2 ) = 0 R 2×2 , then from (A.5) we deduce that ∇r(0 R 2 ) = 0 R 2 . This combined with (A.6) implies immediately the desired result (A.3).

Proof of the sufficient condition. Assume that x 0 = 0 R 2 is a root of b satisfying (A.4). Without loss of generality we have for some ε = ±1 and α ∈ R,

ε ∇ 2 b 1 (0 R 2 ) > 0 and ∇ 2 b 2 (0 R 2 ) = α ∇ 2 b 1 (0 R 2 ).
Then, the fourth-order Taylor's formula with integral remainder at 0 R 2 applied to the functions b 1 , b 2 , yields for any x ∈ R 2 close to 0 R 2 , b(x) = ε q(x) + R(x) where

         q j (x) := ε 2 ∇ 2 b j (0 R 2 )x • x R j (x) := 1 6 ˆ1 0 (1 -t) 3 ∇ 4 b j (tx)(x, x, x, x) dt, j = 1, 2.
Hence, it follows that for any x = 0 R 2 close to 0 R 2 , b(x) = ε q 1 (x)

>0 Ä e 1 + α e 2 + ε R(x)/q 1 (x)

ä = |b(x)| Φ(x),
where |b(x)| = q 1 (x) e 1 + α e 2 + ε R(x)/q 1 (x) , Φ(x) := ε e 1 + α e 2 + ε R(x)/q 1 (x) e 1 + α e 2 + ε R(x)/q 1 (x) . (A.7)

Since R is a vector field in C 1 (Ω) 2 of order |x| 4 around 0 R 2 and q 1 is quadratic, the quotient R/q 1 defines a continuous vector-valued function around 0 R 2 which satisfies (R/q 1 )(0 R 2 ) = 0 R 2 and lim x→0 R 2 ∇(R/q 1 )(x) = 0 R 2×2 , so that R/q 1 actually can be extended to a C 1 -regular vector-valued function around 0 R 2 . Therefore, the vector field Φ is a C 1 -regular unit vector field around 0 R 2 such that b = |b| Φ. Moreover, the expression of |b| involving R/q 1 in (A.7) clearly shows that |b| is also C 1 -regular in the neighborhood of 0 R 2 . Now, consider the n ≥ 1 roots x 1 , . . . , x n of b in a given compact set K of Ω. By the conditions (A.4) the previous construction at point x 0 = 0 R 2 allows us to define n vector fields Φ 1 , . . . , Φ n of type Φ in (A.7), which are C 1 -regular respectively in two-by-two disjoint closed neighborhoods V 1 , . . . , V n of the respective points x 1 , . . . , x n in K, and such that

ε k ∇ 2 b i k (x k ) > 0 and ∇ 2 b 3-i k (x k ) = α k ∇ 2 b i k (x k ), for some ε k = ±1, i k = 1, 2 and α k ∈ R.
Therefore, it is easy to check that the vector field Φ defined by

Φ :=        Φ k in V k for k = 1, . . . , n b |b| in K \ (V 1 ∪ • • • ∪ V n ),
belongs to C 1 (K) 2 and satisfies the desired decomposition b = |b| Φ.

Lemma 2 . 1 .

 21 Let Ω be a non-empty open set of R N , N ≥ 2, and let u ∈ BV (Ω). Then, for any

Lemma 2 . 3 .

 23 Let Ω be an open set of R N , let u ∈ BV (Ω) and let w ∈ C 1 (Ω). Assume that there exists µ ∈ M (Ω) such that ∇u = ∇w µ in Ω.(2.7)Then, for any x 0 ∈ Ω with ∇w(x 0 ) = 0 R N , there exist ε > 0, an interval (a, b) ⊂ R, and a function S ∈ BV (a, b) such that ∀ x ∈ B(x 0 , ε), w(x) ∈ (a, b) and u(x) = S(w(x)) a.e. x ∈ B(x 0 , ε).Proof of Lemma 2.3. Let x 0 ∈ Ω with ∇w(x 0 ) = 0 R N . By the inverse function theorem there exist an open set Θ of R N , ε > 0 and a C 1 -diffeomorphism

Theorem 2 . 4 .

 24 Let Ω be an open set of R 2 , and let b be a function in C 1 (Ω) 2 with b = 0 R 2 in Ω. Let σ := b ν with ν ∈ M (Ω), and let u ∈ BV (Ω) be such that

. 10 ) 2 ÄRemark 2 . 6 .

 10226 and the representative of u, still denoted by u, defined by u(y) := 1 u + (y) + u -(y) ä for y ∈ Ω, (2.11) satisfies div (u σ) = 0 in D (Ω). (2.12) Remark 2.5. When the vector field b is in C 1 (T 2 ) 2 , the divergence free condition (2.8) satisfied by the vector-valued measure σ := b ν means by virtue of Liouville's theorem (see, e.g., [8, Proposition 2.2]) that the measure ν ∈ M (T 2 ) is invariant for the flow X associated with b defined by (1.5). More generally, we can replace the vector-valued measure b ν in M (Ω) 2 by b α ν in M (Ω) 2 where α ∈ C 1 (Ω), which is equivalent to replace the invariant measure ν ∈ M (Ω) by the measure α ν, thus keeping the non-vanishing property of the vector field b. Since the vector field b ∈ C 1 (Ω) 2 does not vanish in Ω, by virtue of the local rectification theorem (see, e.g., [1, Chap. 2, § 7.1]), for any y ∈ Ω, there exists an open ball V ⊂ Ω centered on y and a local diffeomorphism Φ ∈ C 2 (V ) 2 such that ∇Φ b = e 1 in V . Hence, we have b • ∇Φ 2 = 0 in V (Φ 2 := Φ • e 2 ), which implies that b = α ∇Φ 2

  ∇u = ∇w µ in B(y, δ). By Lemma 2.3 we can choose δ small enough to get the existence of an interval (a, b) ⊂ R and a function S ∈ BV (a, b) such that for any x ∈ B(y, δ), we have w(x) ∈ (a, b) and u(x) = S(w(x)).

21 ,

 21 Remark 2.5]) associated with the vector field b composed of the masses µ(b) with respect to invariant probability measures µ for the flow (1.5), is a closed line segment of R 2 supported by a line passing through 0 R 2 . Extending Herman's rotation set including the signed measures in M (T 2 ), we get the subspace of R 2 S(b) := ¶ µ(b) : µ ∈ M (T 2 ) invariant for the flow (1.5) © . (2.21) Therefore, property (2.20) means that S(b) is either the unit set {0 R 2 }, or a line of R 2 passing through 0 R 2 .

1 Ä

 1 r) : w(y) = w(x) ©ä ≥ c. (2.41) Note that in (2.41) the positive constants r, c and the function w are independent of x 0 , while the positive constant δ and the function S do depend on x 0 . Therefore, extending the Borel measure S by 0 outside the compact set w Ä B(x 0 , r/2) ä and denoting I := ¶ s ∈ R : ∃ x ∈ B(x 0 , r/2) such that w(x) = s © which is an open interval, we deduce from (2.39) and (2.41) that c ˆI |S (s)| ds ≤ ˆI |S (s)| H {x ∈ B(x 0 , r) : w(x) = s} ä ds ≤ ˆB(x 0 ,r) |∇u(x)| dx.

Theorem 3 . 1 .∈ 1 .

 311 Let b ∈ W 1,∞ (T N ) N , let f ∈ L 1 (T N ) and let u ∈ BV loc (R N ) with N ≥ 2. Assume that div σ = 0 in D (R N ) where σ := f b, BV (T N ) and f u ∈ L 1 (T N ), (3.2) b • ∇u = 0 in M (T N ). For a function ρ ∈ C ∞ c (R) N satisfying (2.31) in R N and for ε > 0, we define ρ ε by (2.5) and the Z N -periodic function σ ε by σ ε = (ρ ε * f ) b.

. 11 )

 11 Also note that the right-hand side of (3.10) may read as a convolution of |f | by an approximate identity which thus strongly converges to |f | in L 1 (T N ). Therefore, by Lebesgue's theorem (3.10) and (3.11) yield b

Bn

  ∇θ n (x) • σ ε (x) T n (ξ • x) dx = -Bn 1 {|ξ•x|<n} (x) θ n (x) σ ε (x) • ξ dx -Bn θ n (x) (div σ ε )(x) T n (ξ • x) dx = -1 |B n | ˆ{|ξ•x|<n}∩Bn σ ε (x) • ξ dx + O(1/n) + n o ε (1) = O(1) σ ε • ξ + O(1/n) + n o ε (1). (3.19)For example to get the estimate1 |B n | ˆ{|ξ•x|<n}∩Bn σ ε (x) • ξ dx = O(1) σ ε • ξ,(3.20)we consider a minimal covering of the intersection of the strip {|ξ • x| < n} with the ball B n by cubes κ + Y N , κ ∈ Z N . The volume of this intersection is of order n N so that the number of cubes (of unit volume) of the covering is also of order n N . Then, the Z N -periodicity of σ ε implies that ˆ{|ξ•x|<n}∩Bnσ ε (x) dx ≈ n N σ ε ,which yields the desired estimate (3.20). Moreover, using the Z N -periodicity of σ ε u , the estimate (3.6) satisfied by σ ε u and that T n is 1-Lipschitz and the first estimate of (3.18), we also get thatBn ∇θ n (x) • σ ε (x) Ä T n (u(x)) -T n (ξ • x) ä dx ≤ 1 |B n | κ∈Jn ˆYN |∇θ n (y + κ)| |σ ε (y)| |u (y)| dy ≤ c #J n |B n | σ ε u L 1 (T N ) ≤ c n .(3.21)Now, using equality (3.16) and collecting estimates (3.17),(3.19),(3.21) we deduce the existence of a constant c > 0 such that|σ ε • ξ| ≤ c n + n o ε (1). (3.22) Finally, passing successively to the limsup as ε → 0 for a fixed n > 1, and to n → ∞ in (3.22) and (3.15), we obtain the equality σ • ξ = 0, or equivalently (3.4), which concludes the proof of Theorem 3.1.

  By Lemma 2.2 the function v is in BV (Θ), and formula (2.6) reads as for any Φ
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A Polar decomposition of a two-dimensional vector field Proposition A.1. Let Ω be a non-empty open set of R 2 , and b be a vector field in C 2 (Ω) 2 the roots of which are isolated in Ω.

• Assume that b reads as b = r Φ, where r ∈ C 2 (Ω) and Φ is a unit vector field in C 2 (Ω) 2 .

Then, any root

where ∇ 2 b i denotes the Hessian matrix of b i .

• Conversely, assume that b ∈ C 5 (Ω) 2 and that for any root x 0 ∈ Ω of b, the three following conditions hold:

Then, for any compact set K of Ω, b admits the polar decomposition b = |b| Φ, where Φ is a unit vector field in

Proof of Proposition A.1. For the sake of simplicity we deal with the case

Hence, it follows that (see (1.13))

which is a matrix of rank ≤ 1. Therefore, equality (A.1) holds.

Proof of (A.2). We reason by contraposition. Let ξ ∈ R 2 , and assume that

Then, without loss of generality we may suppose that

Hence, from the implicit function theorem we deduce the existence of a real function f ∈ C 1 (R) such for any x ∈ Ω in some neighborhood of 0 R 2 ,

which implies that the function ξ • b has an infinite number of roots in some compact set K of Ω. Therefore, this proves condition (A.2).

Proof of (A.3). Let i ∈ {1, 2}. We have (see (1.14))

(A.6)