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(MEMS) has become available at relatively low cost and allows to use integrated INS/GPS systems in a lot of new applications, as land vehicle applications. Performance of these systems is largely dependent upon the inertial sensors quality. Inertial sensors errors have a bias instability which affects the accuracy of the navigation system. As a "rule of thumb", an inertial navigation system equipped with gyroscopes whose bias instability is 1°/hour leads to a position error of 60 nautical miles over 1 hour.

The aim of this paper is to assess the performance of an integrated GNSS/INS navigation system with regards to the features of inertial sensors. On one side it provides a comprehensive view of the gyroscopes and accelerometers bias requirements in order to select the most appropriate sensors to be used in current applications. On the other side it shows the interest of GNSS ranging measurement used for INS calibration. So this study is very relevant in order to choose, in a INS/GNSS design, the most appropriate inertial sensors for a given application.

Within the frame of this study mass market applications for Land vehicle navigation are considered. In this case, solid-state sensors, such as MEMS systems have significant cost and size advantages. The performance of these systems is continually improving. Thus we consider three classes of sensors which are representative of current low cost technology development. These sensors are characterized and then inertial systems, operating in a stand alone mode, are assessed.

Then accuracy improvement provided in a GNSS/INS tightly coupled scheme will be determined for different kinds of environments.

INTRODUCTION

For mass market applications, inertial navigation systems are based on Micro-Electro-Mechanical Systems (MEMS). These systems have significant cost and size advantages, but needs to be continuously calibrated in order to limit error growth. GNSS systems are usually used to provide inertial systems error correction. With allin-view tracking an integrated INS/GPS navigation system provides an accuracy which is sufficient in many applications. However GNSS ranging measurements are affected in urban canyon environment. Attenuation of the signal can be caused by trees and buildings and leads to a reduction of the signal/noise ratio, or to the loss of ranging measurements. Multipath must also be considered. Depending on the dynamic of the vehicle, multipath results in biased range measurements or in signal/noise ratio degradation.

In order to face the aforementioned issues, this paper investigates the impact of inertial navigation system technology on the performance of an integrated GNSS/INS system. It focuses on accuracy of integrated systems based on MEMS sensors.

The paper is organized as follows. In the section I we propose a review of inertial sensors trends, focusing on MEMS technology. Three classes of sensors to be used in current applications are explored, to give a realistic view of low cost sensor spectrum.

In the section II sensor errors are characterized. Inertial sensors have multiple sources of errors. The most important ones are run to run bias that can be estimated in an initialization stage, random walk noise which leads to bias drift and Gaussian white noise which generates short term errors. In the case of this study, other error sources such as non linearity, scale factor instability and temperature dependent sensitivity are neglected. Only the bias instability is considered and is modeled as a white noise, a random walk noise and a Gauss-Markov process. Static measurements allow determining the Allan variance which is used in order to estimate the different parameters of the noise model. Thus this section gives a comprehensive view of MEMS sensors characteristics.

In the section III, performance of a stand-alone INS system is explored, in the frame of Land vehicle navigation. When the statistical values of the error sources are known, it is possible to use a simple sensor model to statistically simulate the sensor output. So this sensor model can be used to characterize a class of inertial sensor. The accuracy of an INS system is analyzed using a Monte Carlo simulation. Indeed runs are averaged to compute the root mean square errors (RMSE) over the time. This section shows how the bias stability impacts the accuracy. First only the accelerometer instability is taken into account, considering that magnetometers are used for gyroscope calibration. Then, impact of gyroscope instability is evaluated and the accelerometer drift is neglected. Finally both of the two sensors are considered. This study is performed for each class of sensor.

In the section IV improvement resulting from GNSS range measurements is studied. Inertial systems are coupled to a GPS receiver in a tightly mode. GPS range measurements are used in a Kalman filter to update the state estimate. The parameters of the inertial sensor noise models allow an accurate description of the state model. GNSS/INS systems are assessed from a simulated trajectory. The position error is provided for different scenarios, depending on the sensors class and on the environment. This study highlights the impact of the INS errors on the final solution, especially during GNSS signal outages which characterize urban environment.

Finally a measurement campaign is performed to validate the results obtained from the previous simulation. Land-Vehicle navigation is considered. The system is based on a GPS receiver from Ublox, and different kinds of inertial sensors. Here a gyroscope is used as a heading sensor whereas an accelerometer is mounted on the vehicle to provide the acceleration in the main axis of vehicle frame. Two classes of inertial sensors are assessed from experimental results. Measurements provided with the use of the best class of sensors are simulated. Performance is assessed by comparing the estimated trajectory to the true trajectory.

INERTIAL SENSORS TREND

For mass market applications, solid-state inertial sensors such as MEMS systems offer several advantages in term of size, weight, power consumption and cost. Inertial unit based on these sensors results in high integrated low cost system. Nowadays manufacturers such as Analog devices and STMicroelectronics, develop MEMS devices which integrate the sensing element and the signal conditioning circuitry on a single monolithic integrated circuit. These devices include a temperature sensor for temperature coefficient calibration. Some of these sensors integrate a test module which allows mechanical and electric part calibration. This technology which results in small, thin and low power devices is used to design and manufacture 3 axis accelerometers and 2 axis gyroscopes. These robust sensors are used in a wide variety of mass market applications. In this paper we'll refer to these sensors as class 1-IMU. An integrated GPS/INS system based on this technology is shown Figure 1.

Fig.1-Low cost GPS/INS integrated navigation system

Performances enhancement in term of stability can be obtained to the detriment of other advantages such as the size and the cost. Thus Melexis enters the market with its accurate angular rate sensor (gyroscope). In the same way Colibrys provides accelerometers in MEMS technology which combine low power, reasonable cost with a good bias stability. These sensors allow one axis measurement and result in a more expensive and bigger unit compared to the previous one. An inertial measurement unit based on these sensors is a good compromise. It is referenced as class 2-IMU.

Considering that gains in performance of MEMS sensors will progress in the next decade we consider here
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another class of inertial sensors. These sensors are characterized by taking into account expected improvement in the future technology. We'll refer to these sensors as class 3-IMU.

The following figures (Figure 2 and Figure 3) give an overview of MEMS sensors spectrum we can expect towards the middle of the next decade. The performances of the three classes of IMU studied in this paper are specified on these figures.

Fig.2-Overview of low cost MEMS gyroscopes

Fig.3-Overview of low cost MEMS accelerometers

MEMS MODELING

Inertial sensors have multiple error sources. A simple model assumes that the sensor output consists of the true value plus the sum of a random bias, a white noise, a random walk and a 1 st order Gauss-Markov (GM) process. This model can be expressed as below:

gm rw g r r m b b w b K + + + + = 2 θ θ θ (1)
θ is the true value, m θ is the measured value and θ

K

is the scale factor. The run to run noise r r b 2 can be determined by calibration and then removed from the raw measurements.

In order to characterize the sensor, the noise parameters must be estimated. This will be performed by using an Allan variance chart [START_REF] Picinbono | Traitement du signal[END_REF]. The Allan variance of the noise b is defined as: ( ) ( )
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The Allan variance of a white noise with a variance equal to
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σ σ = whereas its expression is ( ) On the Figure 4 and 5 is represented, in green, the Allan variance chart obtained from experimental data for different accelerometers and gyroscopes which correspond to the three classes of IMU defined before. From these chart the parameters of the sensor noise model described in the equation ( 1) are identified. Thus noise processes are generated with respect to these models in order to simulate sensor outputs. On the Figure 4 and 5 are represented, in blue, the Allan variance charts obtained from simulated data. Largely described in the literature [2 & 3], this type of navigation is based on the integration of acceleration to provide velocity and then position but needs also the estimation of the platform-to-navigation transformation matrix thanks to angular rate to keep the heading. It is important to notice that this type of navigation cannot be perturbed by any external cause but leads to an unbounded error over time.

To assess the different unit a Monte Carlo simulation has been carried out. This studied is performed in a realistic case. Ideal gyroscopes and accelerometers values are computed from the true trajectory. Then noised measurements are provided by adding a noise whose parameters have been previously estimated. One hundred runs are used to compute the RMSE over the whole way. The model of the platform used here is defined in [START_REF] Giremus | Apports des techniques de filtrage non linéaire pour la navigation avec les systèmes de navigation inertiels et le GPS[END_REF] and represented Figure 6.

Fig.6-Inertial platform defined in the body frame

On this figure measurements provided by the accelerometer and the gyroscope are represented by a blue arrow. Three different cases have been tested during this study about inertial navigation. The first one considers that the angular rate is known thanks to a magnetometer and the second one assumes that the acceleration is relatively well known thanks to another sensor (e.g. odometers or wheel speed sensors). The third one is the really INS case where the acceleration and angular rate are provided by accelerometers and gyroscopes.

On the figures of this paper dark blue line, green line and light blue line will refer respectively to the class 1-IMU, class 2-IMU and Class 3-IMU.

Accelerometer and Magnetometer Navigation

In that case, we assume that the angular rate is known thanks to the use of a magnetometer. Figure 7 gives the RMS error over the time for the three classes of accelerometers. We observe that this error grows as the square of the time. 

Fig.8-Position error due to gyroscope noise

Thanks to the use of an odometer, we assume that the accelerometers provide un-noised signals. Only gyroscopes measurements are considered here. The RMS error due to gyroscope noise is represented, for each class of gyroscope, on the Figure 8. The error grows quickly over the time. This error is proportional to the power 3 of the time.

Gyroscope and Accelerometer Navigation

In that case IMU including a gyroscope and an accelerometer are considered and the RMS error is represented, for each class of IMU, on the Figure 9. 

Fig.9-Position error due to gyroscope and accelerometer noise

Results obtained in this last case are very similar to those obtained with un-noised accelerometers. In fact the accelerometer impacts the performance over the first seconds of the simulation. As well known, long term errors are mainly due to gyroscope instability. The Figure 10 highlights this phenomenon when the Class 2-IMU is considered.

To conclude this study it is interesting to see that the use of the Class 2-IMU allows to limit the error at a value lower than 10m over the first 40 s, lower than 100m over the first 100s. Moreover significant improvement is obtained when the Class3-IMU is used. In that case the error is lower than 10m after 100s. 

GNSS/MEMS NAVIGATION

The complementary of GNSS and INS systems has been used efficiently in many applications: short-term position errors of INS are relatively small but degrade without remaining bounded over the time whereas GNSS errors do not degrade with time but are more important during a short period. Many different integration architectures have been proposed in the literature [2 & 3].

In this study, the choice has been made to work using a tightly coupled architecture in a case of GPS aided INS integration solved by an EKF.

State model definition

The hybridized navigation can be formalized by a state model such as: 
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In this study, the accelerometer and gyroscope drifts ( )
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have been also added in the state vector: The observation vector contains the available GPS pseudoranges and the function t h is the composition of the mathematical expression of the satellites/receiver ranges and the transformation between cartesian and geodetic coordinates [START_REF] Giremus | Apports des techniques de filtrage non linéaire pour la navigation avec les systèmes de navigation inertiels et le GPS[END_REF].
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Hybridized Navigation

The choice has been made to study two cases of GPS outage in hybridized navigation. The first one is a total outage which lasts 30 seconds whereas the second one considers the case of a partial outage which occurs occurs up to the end of the simulation. In that case only 3 satellites are in view (satellites 5, 9, and 28 on Figure 11). In nominal case, the receiver processes the signals provided by the 6 satellites represented on the constellation (Figure 11).

Fig.11-GPS constellation

Two models of IMU are considered over this study. The first IMU uses a gyroscope to determine the angular rate. The second one uses a magnetometer as a heading sensor and its behavior is modeled by a gyroscope providing the true value of the angular rate. When the accelerometer/gyroscope IMU coupled to a GPS receiver in a tightly mode is considered (Figure 12 and 13), we can see that the standard deviation, under nominal conditions of satellite visibility, depends slightly on the sensor class and remains bounded to small values: between 5 and 6 meters for the class 1-IMU, approximately 4 meters for the class 2-IMU and lower than 3 meters for the class 3-IMU.

During the total outage (Figure 12), the behavior of the INS, observed previously in standalone mode, is found again and the position error grows over the time. After 30 seconds of GPS outage, the standard deviation depends greatly on the sensor class: 450 meters for a class 1-IMU, 50 meters for a class 2-IMU and approximately 10 meters for a class 3-IMU.

In the case of partial outage (Figure 13), we can see that the error is greater than the error observed under nominal condition but performance is greatly improved with respect to the total outage. When the accelerometer/magnetometer navigation system coupled to a GPS receiver in tightly mode is considered (Figure 14 and 15), we observe the same type of results but the accuracy is improved due to the quality For this configuration the standard deviation, under nominal conditions of satellite visibility, is between 1 and 3 meters, depending on the sensor class. After 30 seconds of GPS outage (Figure 14), the position error is lower than 8 meters for the class 1-IMU sensor and 3 meters for the class 2-IMU and 3-IMU.

In the case of partial outage (Figure 15), we can see that the position error grows over the time but the outage lasts 100 s whereas the error remains lower than 6meters for the class 2-IMU. 

EXPERIMENTAL RESULTS

This section presents the results obtained from a measurement campaign performed over a way, in ISAE, Campus Supaéro (Figure 16). For this campaign a vehicle has been equipped with a GPS receiver from UBLOX, and with a class 1 and a class 2-IMU. The class 3-IMU is not available at the present time and its behavior has been simulated.

Here is only considered the case of an accelerometer and a gyroscope hybridized with a GPS receiver in tightly coupled mode. The trajectory is estimated in post processing for the 3 classes of inertial sensors that have been detailed previously.

Fig.16-Reference trajectory in ISAE Campus Supaéro

During this experiment and for test purpose, we have simulated a satellite outage over a period which allows highlighting impact of the IMU quality

The estimated trajectory is drawn on the figure 17 and compared to the true trajectory (red line).

Fig.17-Position estimation from reference trajectory

This figure shows that experimental results are agreed with the previous analysis obtained from a Monte Carlo simulation. During satellite outage position errors grow over the time, depending on IMU technology. But using the class 3-IMU defined by stability related to expected performance improvement, this error is notably lower than the error obtained with present technology.

CONCLUSION

Current progresses in MEMS technology have made possible the use of inertial sensors in low cost mass market applications. Improvement should continue in the future decade. This paper gives an overview of low cost IMU available towards the middle of the next decade. In environment such as urban canyon characterized by partial satellite outage and poor GDOP, or total satellite outage, performance of a GNSS/INS system are closely linked to the IMU quality. Once specified the level of performance of the navigation system and the environment constraint, this paper proposes an approach to choose the IMU the most appropriate.

Improvement resulting from GPS/INS system augmentation is mentioned in this paper. These systems depend largely of the application. For example magnetometers should be advantageously used in a controlled magnetic environment. In the same way odometer should improve performance of automotive applications. For aircraft-based navigation the use of optical odometer is very relevant and takes benefit from CMOS image sensor technology.

Of course IMU needs to be calibrated and the final result will depend on GNSS systems. Improvement can be obtained by exploiting efficiently GNSS measurements. Taking advantage of the future GNSS constellations, and considering an efficient use of range and Doppler measurement a navigation system will result in performance enhancement.
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 15 Fig.15-Position error due to a partial outage in the case of accelerometer and magnetometer hybridized with GPS

  state vector

	t Y is the observation vector
	t A is the state transition matrix
	t B is the state noise matrix
	t h is the observation function
	t v is the process noise
	t w is the observation noise
	Classically in this case, the state vector can contain INS position errors t p δ , INS velocity errors t v δ , INS
	attitude errors biases ( a δ , accelerometer and gyroscope t ρ ) t g t t s b b b , , , , = and GPS clock biases and drifts ( )