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BACKGROUND

Speciation, Darwin’s mystery of mysteries, is a continuous process that results

in  genomic divergence  accompanied by the  gradual increment of reproductive barriers

between  lineages. Since the beginning of research on the genetics of speciation, sev-
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eral questions have emerged such as: What are the genetic bases of incompatibilities? 

How many loci are necessary to prevent hybridization and how are they distributed 

along genomes? Can speciation occur despite gene flow and how common is ecologi-

cal speciation? Early stages of divergence are key to understand the ecology and ge-

netics of speciation, and semi-isolated species where hybrids can still be produced are 

particularly relevant. Here we argue that the recent divergence between wild and do-

mesticated lineages is an excellent model to capture the very-first steps of reproduc-

tive barriers formation, and will bring novel insights into the speciation process. 

WHY IS DOMESTICATION A GOOD MODEL TO STUDY SPECIATION? 

Domestication is the process of divergent selection between wild forms under-

going natural selection in their habitats, and domesticates evolving under combined 

natural and human-mediated selection. It has been increasingly recognized that evolu-

tion of domesticated species shows many similarities with evolution in the wild: it 

results primarily from changing environmental conditions and involves unconscious 

selection under a protracted process (Purugganan 2019) with selection intensities of 

the same magnitude or even smaller (Yang et al. 2019). Thus, domestication has been 

considered as a choice example to study adaptation. Here, we argue that it also offers 

an excellent opportunity to catch the very-first processes at work in ecological specia-

tion, where adaptive divergence between nascent lineages triggers the onset of repro-

ductive isolation (RI).  

Allele differentiation resulting from divergent selection can be measured by 

FST. FST between wild and domestic pairs range between 0.05 in sweet cherry and 0.51 

in Tomato (Appendix S1, and references herein; see the Supplementary Data with this 

article), which cover a wide range of divergence within a “grey zone of speciation” in 

which barriers to gene flow exist but are not complete (Roux et al. 2016). Interesting-
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ly, within this continuum, self-fertilizing taxa display greater genetic differentiation 

than outcrossers (Figure 1). As mating systems are predicted to affect the speciation 

process, domestication also offers the opportunity to address this question (Marie-

Orleach et al. 2022). In contrast, life span seems to have no significant effect on di-

vergence (Figure 1), although annuals and perennials experience contrasted domesti-

cation dynamics in many respects (Gaut et al. 2015). 

The existence of reproductive barriers between wild and domesticated plants 

has been repeatedly documented. Despite the occurrence of wild-cultivated gene flow, 

the establishment of wild alleles into domesticated populations and reciprocally – 

introgressions – is rare (Ellstrand et al. 2013). Perhaps the best documented examples 

come from maize, where the introgression from the mexicana teosinte subspecies has 

contributed to highland adaptation of maize landraces (Calfee et al. 2021); and con-

versely, introgression from locally-adapted maize has contributed to teosinte adapta-

tion in Europe (Le Corre et al. 2020). Interestingly, introgressions in the two direc-

tions are removed by selection around domestication genes (Le Corre et al. 2020; 

Calfee et al. 2021). This points to a prominent role of pre- and post-zygotic genetic 

barriers in the divergence of wild and domesticated lineages, and some genes in-

volved in reproductive barriers have been identified such as the Tcb1 locus in maize 

that governs pollen rejection by teosinte (Lu et al. 2019).  

Whether partial isolation between wild and domesticated forms will ultimately 

result in full speciation is unknown. But clearly, partial RI does occur and has con-

tributed to the maintenance of the distinct features between wild and domesticated 

forms, the so-called domestication syndrome. RI therefore stands as a major compo-

nent of the domestication syndrome, but has been so far largely ignored (Dempewolf 

et al. 2012). It is even possible that reinforcement played a role in the establishment 
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of the domestication syndrome, which involves the evolution of stronger RI due to the 

costs associated with producing low-fitness hybrids (Rushworth et al. 2022). 

THE GENETIC BASES OF REPRODUCTIVE ISOLATION 

The establishment of reproductive barriers can occur through various mecha-

nisms. Selection leading to the fixation of advantageous alleles in different environ-

ments, resulting in local adaptation, can cause hybrid offspring to have lower fitness 

in parental environments, which strengthens isolation as populations adapt to differing 

conditions. This process may contribute to RI between wild and domesticated forms, 

and some crops may already be considered as independently evolving lineage once 

human-mediated cessation of gene flow is complete. Loci involved in such adapta-

tion, those governing domestication traits, display a high degree of differentiation 

between wild and domesticated forms as well as a pattern of positive selection within 

forms compared with neutral loci (Figure 2). They contribute to limiting effective 

gene flow at nearby loci, leading to the progressive buildup of the so-called genomic 

islands of divergence (Wolf and Ellegren 2017). 

RI may also be promoted by the buildup of intrinsic barriers from the differen-

tial fixation of alleles that are incompatible at two or more interacting loci (Bateson-

Dobzhansky-Muller Incompatibilities – BDMIs). Such BDMIs can evolve as a by-

product of local adaptation to contrasting environments or through non-adaptative 

processes (Wolf and Ellegren 2017). If selection favors distinct mutational steps at 

several loci in each population, deleterious side effect interactions may arise when 

brought together in hybrids. These interactions may in turn provoke detrimental 

symptoms and/or Transmission Ratio Distortions (TRDs) at F2 generation for reces-

sive alleles, contributing to intrinsic post-zygotic isolation.  
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In domesticated forms, the accumulation of deleterious mutations through do-

mestication bottlenecks and linked selection may have accelerated the evolution of 

BDMIs between wild and domesticated forms. The loci underlying BDMIs should 

display genomic fingerprints that can be similar to those left by selection for habitat 

adaptation in domestic or wild populations (Figure 2). However, in the absence of 

intra-form selection, we expect increased divergence between forms while the level of 

polymorphism is not affected by the cessation of gene flow (Figure 2). This illustrates 

how the use of different statistics helps to clarify the mechanisms at work in RI 

(Cruickshank and Hahn 2014). There is of course a continuum of scenarios between 

those presented above: the barrier loci that limit gene flow between wild and domesti-

cates can be directly targeted by selection within one of the two forms. 

A particular kind of negative epistatic interaction can emerge as a by-product 

of coevolution between nuclear and cytoplasmic genomes. If different combinations 

have coevolved in divergent lineages, this may result in organelle dysfunction and 

hybrid breakdown when inter-lineage crosses occur (Burton et al. 2013). Such nega-

tive cytonuclear conflicts often result in asymmetrical reproductive barriers, which 

can be revealed by reciprocal crosses between wild and domesticated lineages as ob-

served in Citrus (Wang et al. 2022).  

Finally, reproductive barriers may result from parental conflicts generating al-

lelic dosage perturbations. If species have evolved contrasting levels of parental con-

flicts, it can translate into paternal or maternal excess of gene expression in a hybrid 

context (Florez-Rueda et al. 2016). As evidenced by transcriptomic comparisons of 

wild and domestic forms (e.g., common bean, Bellucci et al. 2014; tomato, Sauvage et 

al. 2017) and simulations (Burban et al. 2022), domestication led to a profound reor-

chestration of coexpression networks, which can then cause disruptions in allelic dos-
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age between wild and domestic forms resulting in fitness decline in wild x domesti-

cated crosses.  

HYPOTHESES TESTING & CHALLENGES 

Do the number of generations since domestication correlate with hybrid de-

fects? Does the mutation load depend on the domestication history and the strength of 

RI? Do “stronger” domestication syndromes and/or higher genome-wide neutral di-

vergence and/or extent of islands of differentiation induce stronger isolation? 

Answering these questions will bring unique insights into the very-first steps 

of reproductive barriers formation, but detecting barrier genes is a daunting task. Di-

vergent selection and BDMIs among loci create patterns of strong allelic differentia-

tion relative to the genomic background (Figure 2) that together with linked loci, form 

genomic islands of differentiation. Their detection requires overcoming confounding 

effects such as local variation in recombination rates and effective population size 

(Wolf and Ellegren 2017). At the species level, parameters such as mating system, 

intensity of domestication and changes in effective population size (e.g., due to do-

mestication bottlenecks) determine the extent of selection, genetic drift and linkage 

disequilibrium, and in turn the expected size and depth of islands of differentiation. 

Ultimately, interpretations of genomic differentiation patterns need to be guided by 

modelling in order to properly estimate the fraction of the genome recalcitrant to gene 

flow and identify the corresponding regions, which can then be combined to experi-

mental results.  

CONCLUSION 

The alterations of habitats due to human activities are precious laboratories to 

explore the mechanisms involved in adaptive divergence and the initial phases of spe-

ciation (Thompson et al. 2018, Touchard et al. 2023). The establishment of RI be-
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tween wild and domestic forms is a crucial aspect of domestication that has received 

little attention. In addition to providing basic information about the processes at work 

in the early stages of speciation, testing for cross-compatibility between cultivated 

plants and their wild relatives and detecting the underlying barrier loci are essential 

for overcoming them. Crops wild relatives have faced continuous environmental chal-

lenges in their natural environment and often exhibit greater genetic diversity than 

their domesticated relatives, so they are a valuable reservoir of adaptive alleles that 

transferred to crops could help mitigate their vulnerability. 
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Figure legends 

 

Figure 1. The grey zone of speciation as defined by Roux et al. 2016 encompasses 

the range of allele differentiation between wild and domestic forms across 27 

plant species. Upper panel: Data illustrating the grey zone of speciation are taken 

from (Roux et al. 2016). FST values (x-axis) were computed for 61 pairs of animal 

populations/species across sequenced loci (natural divergence/speciation). The poste-

rior probability of ongoing migration (y-axis) for a given pair reflects the capacity of 

demographic models that allow for ongoing exchange of migrants between diverging 
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lineages to predict the observed data compared to models where gene flow has 

stopped. The light grey rectangle spans the range of FST values in which both current-

ly isolated and currently connected pairs are found, and therefore defines the co-called 

grey zone of speciation. Lower panel: Black dots along the x-axis correspond to FST 

values obtained for 27 wild/domestic plant species (Appendix S1 and references here-

in, see the supplementary data with this article). FST values for plant species were used 

to compute boxplots for annual (/biannual) species and perennial species. Boxplots 

are colored according to mating system.  

 

Figure 2. Theoretical expectations of summary statistics under divergence with 

gene flow in wild and domestic populations. Patterns of allele differentiation (FST), 

divergence (Dxy) and diversity within the domesticated populations () are displayed 

along the chromosome around three loci (black arrows) evolving under distinct sce-
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narios: selective sweep at a locus involved in environmental adaptation and/or gov-

erning a domestication trait (domestication locus), neutrality (neutral locus), gene 

flow arrest at a locus that contributes to RI between populations (barrier locus). Rep-

resentative genealogies of eight individuals from two divergent populations, a domes-

tic population 1 and a wild population 2 are displayed (adapted from Hejase et al. 

(2020)). At a neutral locus and under continuous gene flow (light grey vertical bar), 

no allelic differentiation (FST=0) is observed between populations that behave as a 

single population. Allelic differentiation (FST>0) can be initiated either because the 

time to the most recent common ancestor – TMRCAs are represented by black circles 

for population 1 and 2 – is reduced by a selective sweep (light orange rectangle) in 

one of the two populations, in this case the domestic population 1; or because the time 

to the first cross-coalescence between the populations (diamond) is increased by se-

lection against gene flow (barrier locus, solid vertical bar). Note that in all graphs, the 

TMRCA of the population 2 is also the TMRCA of wild and domestic populations. 
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