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One method to study the impact of climate change on host-parasitoid relationships is to compare 

populations along geographical gradients in latitude, altitude or longitude. Indeed, temperatures, which 

vary along geographic gradients directly shape the life traits of parasitoids and indirectly shift their 

populations through trophic interactions with hosts and plants. We explored the pros and cons of using 

these comparisons along gradients. We highlighted that the longitudinal gradients, although understudied, 

are well correlated to winter warming and summer heat waves and we draw attention to the impact of the 

increase in extreme events, which will probably be the determining parameters of the effect of climate 

change on host-parasitoid relationships. 
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Introduction 

Changes in climate include both an increase of average temperatures as well as an increase of the 

frequency of extreme events, such as droughts, heat and cold waves [1]. Both types of changes are directly 

challenging for ectotherms like insects, first because these organisms present generally a weak thermal 

plasticity and weak adaptation abilities to these rapid changes, and second because these changes affect 

indirectly the ectotherms via their interactions with other species [2, 3, 4, 5]. Thus, climate change can lead 

not only to species loss, but also to profound alterations of their physiology, behaviour and fitness traits, 

with subsequent shifts in abundance [6], distribution [7, 8] as well as species’ assemblage and interactions 

with other species [4, 9, 10]. It is of tremendous importance to understand these effects for biodiversity 

conservation and maintaining ecosystem services such as pollination or pest regulation. 

When studying the impact of climate change in nature, temporal and spatial empirical approaches can 

be used. Long-term data are ideal but rarely available [11]. The Space-for-time substitution approach, 

comparing populations of the same species/guild/community along a geographic gradient, is a useful 

substitute to study future climatic effects [12]. Three main types of geographic gradients are used to study 

insects’ responses over various environmental conditions: altitudinal, latitudinal, and longitudinal ones (Fig. 

1).  As the most differentiating characters of each of these gradients we can note that for example, as 
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latitude increases, day length becomes shorter in winter and longer in summer, while temperature and 

precipitation decrease. For altitudinal gradients, increased elevation is associated with decreasing 

temperatures and partial pressure of atmospheric gases, as well as rising UV radiation input, wind speed, 

and precipitation in the form of rain or snow. However, these characteristics are evident especially on the 

windward side of a mountain. Finally, at a given longitude, the photoperiod of different localities is similar, 

while the temperatures can be very different, which could make it possible to dissociate the effects of 

temperature and photoperiod on processes which depend on them, such as the induction of diapause [12]. 

Among terrestrial ecosystems, parasitoids that obligatorily develop within, or on a host, leading to 

the death of the latter [13], are key components of agrosystems as they are, with predators, major 

biological controllers of pests [12, 13, 14]. , As parasitoids present tightly co-evolved interactions with their 

hosts, climate change may affect parasitoids and hosts separately, disrupting their interactions, especially 

when both partners express asymmetric responses to temperatures. Indeed, the trophic-rank hypothesis 

predicts that higher trophic level organisms, such as parasitoids or predators, are more strongly affected by 

environmental changes [15, 16], because of cascading effects in the trophic networks [3]. When 

interactions between species at different ranks of the food chain are altered (like parasitoids and their 

hosts or predators and their preys), climate change could challenge associated ecosystem functions such as 

biological control. In this review, we aim to demonstrate how geographic gradients can help to understand 

the direct and indirect effects of climate change on parasitoids. We first address the direct effects of 

temperature along these gradients on individual and population traits of parasitoids. Then, we address the 

indirect effects through their host species and the resulting consequences on their interactions and 

associated services along theses gradients. In both sections, we discussed the limits of the use of climatic 

gradients for predicting climate change effects on parasitoids. 

 

Direct effects of geographic gradients on parasitoids 

Geographic gradients affect insect body size, life histories, physiology, diapause and voltinism. Insect 

size increases along latitudinal gradients (Bergmann’s rule) at both species and population levels, 

Jo
ur

na
l P

re
-p

ro
of



4 
  

individuals being larger in colder localities (higher latitudes) [17, 18]. Bergmann’s rules and converse 

Bergmann’ s rules tend to be both operating in parasitoids depending on parasitoid subfamilies [19]. 

Indeed, in parasitoids, the Bergmann’s rule could be modified by the indirect effect of the host size as for 

instance, smaller parasitoids tend to be egg parasitoids rather than larval or pupal parasitoids [20]. A larger 

body size or mass is generally correlated with higher fecundity and longevity. For example, the dry body 

mass, longevity and reproduction rate of the Iranian populations of the parasitoid Leptopilina boulardi 

(Figitidae), increase with latitude, which is explained by the increase of humidity, at the origin of a higher 

abundance of hosts [21]. In the parasitoid Asobara tabida (Braconidae), Northern European populations 

present a longer lifespan and a higher reproduction than southern ones [22]. Physiological traits, such as 

thermal and desiccation tolerance, also vary along geographic gradients. For ectotherms, the thermal 

tolerance breath increases with latitudes: species which are both less cold and less heat resistant are living 

closer to the equator as an adaptation to the smaller temperature range at these low latitudes [23]. In the 

egg parasitoid Trichogramma cacoeciea (Trichogrammatidae), cold tolerance increases with the winter 

severity along a longitudinal gradient within the French Mediterranean region [24]. In the aphid parasitoid 

Aphidius platensis (Aphididae), cold tolerance also decreases in the colder areas along a latitudinal gradient 

[25]. In several insect taxa like beetles, some ant species and social wasps, the proportion of Cuticular 

Hydrocarbon Compounds (CHCs), involved in insect protection from desiccation, is higher for 

populations/species living in warmer and drier areas [26]. For parasitoids, this was only investigated in 

females of the globally distributed parasitic wasp Nasonia vitripennis (Pteromalidae). In this species, the 

proportion of CHCs with intermediate length increases at higher latitude sites reducing the probability of 

desiccation in areas with lower summer temperatures [26]. More studies will be necessary to define a 

general pattern. Along geographic gradients, populations vary in diapause expression and voltinism. Winter 

insect diapause is induced by short day length and cold temperature. Insect taxa at higher latitudes 

expressed the earliest onset of diapause [27]. For both the parasitoids Nasonia vitripennis (Pteromalidae) 

[28] and Trichogramma drendrolimi (Trichogrammatidae) [29], the proportion of diapausing offspring 

increased with latitude, reflecting gradients of winter severity. Earlier emergence was observed in several 
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parasitoid species (Family: Chalcidoidea) in response to earlier spring onset at lower latitudes in USA. In the 

context of global warming, populations of parasitoids from mild winter areas do not enter diapause 

anymore, as the temperature threshold for diapause induction is no longer reached [31]. In the parasitoid 

Meteorus trachynotus (Tortricidae) [32], voltinism (i.e. the number of generations per year) increases in 

populations at low, compared to these at high latitude. Studying diapause and voltinism along geographical 

gradients may allow to better predict the impact of climate change on these specific traits world-wide. 

However, studies using geographic gradients may fail to explain phenotypic variation among 

populations in different cases. First,  Geographic gradients can mismatch climatic gradients. For instance, 

populations of the parasitoid Aphidius platensis (Aphididae) did not differ in fresh body mass and 

reproductive traits along a 1000km latitudinal gradient in the Central valley of Chile, because climatic 

conditions recently became more homogeneous among localities [25]. To improve these studies, 

identifying climatic heterogeneity along gradients is thus necessary. Scotta et al. (2021) [24] succeeded in 

detecting a positive relationship between cold tolerance and winter severity by classifying three climatic 

zones (Mediterranean climate, Mediterranean mountain climate and continental climate) based on 

sampling locations in a French regional study. On a continental scale, Branca et al. (2019) [33] conducted 

Köppen-Geiger climate classification to identity 162 localities in Africa into five clusters to study the genetic 

structure of the parasitoid Cotesia sesamiae (Braconidae), which visualized the climatic divergence 

effectively.  Second, high gene flow among populations leads to trait homogeneity. For example, the low 

genetic diversity of populations of Aphidius ervi (Aphididae) within a 700 km latitude gradient in Chile, 

precludes local adaptations [34]. In the host-parasitoid system including Pleistodontes imperialis 

(Agaonidae) and its -Sycoscapter sp. (Pteromalidae) parasitoids, distinct populations of hosts were 

evidenced along a latitudinal gradient of 2000 km in Australia, whereas their parasitoids formed one single 

population [35]. Finally, Microclimate does matter. The metabolic rate of the parasitoid Leptopilina 

heterotoma (Figitidae) differs among geographic populations, however the patterns could not be linked to 

local mean climatic conditions. The differences may be explained by microclimatic variations, e.g., orchard 

landscapes [36].  
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Indirect effects of geographic gradients on parasitoids 

At the community level, the latitudinal diversity gradient describes the general pattern of increasing 

species richness, abundance, and evenness with decreasing elevation [37] and latitudes [38]. This was 

observed in several host-parasitoid systems and gall-inducing cynipid parasitoids (Chalcidoidea) over an 

altitudinal gradient of 1000m in Mexico [39]. These results suggest that the diversity of parasitoids is mainly 

determined by the availability of their hosts [40, 41], diversity and abundance of which decrease with 

elevation and high latitudes [42]. 

These changes at the community level affect parasitism rates, which in turn decrease at increasing 

altitude and seems to be strongly dependent on climatic conditions. For example, at high altitude, cold and 

dry winters negatively affect the abundances of the pine processionary moth parasitoids. The probability of 

occurrence of the two most abundant parasitoid species (Ooencyrtus pityocampae and Baryscapus 

servadeii) declined with increasing elevation while the number of host eggs (Thaumetopoea pityocampa) 

increased, leading to a decreased parasitism rate [42].  

With global change, the distribution areas of hosts and plants tend to extend from low to high 

latitudes [43], which gives the opportunity for parasitoids to conquer new lands, even though they have to 

adapt to new conditions. This can only happen if parasitoid, host and plant phenologies match. 

Temperature change can alter interactions within a community by changing the relative phenologies of 

interacting species [39, 29]. These desynchronizations can lead either to an increased or a decreased risk of 

pest-outbreak [5]. Nonetheless, phenological mismatch has been poorly studied along geographical 

gradients.  

Gradient studies may not explain indirect effects on parasitoids mostly because considering the 

whole trophic network is difficult. For example, the degree of parasitoid specialization [44] or their 

interactions with other predatory taxa in top-down regulation may also explain the lack of significant 

relationships between parasitoid diversity or their impact as natural enemies [45, 46]. Hódar et al. (2021) 

[42] showed that increasing tree diversity at the pine processionary moth (Thaumetopoea pityocampa) 

expansion areas may favor the establishment of parasitoids. This could contribute to synchronizing host-
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parasitoid interactions and minimize the risk of pine processionary moth outbreaks [42]. At the community 

level, one major gap in knowledge is on the effects of geographic gradients on hyperparasitoids, which 

apply a major influence on the parasitoid community and the parasitism rate [47]. 

 

Discussion 

Among the methods for studying the impact of climate change on host-parasitoid relationships, the 

use of geographic gradients, whether altitudinal, latitudinal or longitudinal, is still infrequent and concerns 

mostly altitudinal and latitudinal gradients (Tab 1, Fig. 2). Some studies have highlighted trait variations on 

altitudinal and latitudinal gradients. This concerns the vast majority of trait types, including physiological, 

life history and population fitness traits, with some patterns at the community level. By consequence, it 

allows to develop predictive studies about the impact of different aspects of climate change on parasitoid 

ecology (Table 2, Fig. 1, Fig. 2). Understanding the link between species traits and geographic gradients is 

important for understanding the evolutionary processes responsible for observed functional diversity and 

for predicting community responses to climate change [23]. Indeed, this allows to   connect ecological and 

evolutionary studies. Plastic responses, which precede evolutionary ones, are often insufficient by 

themselves to allow individuals to survive to climate change in the long term. However, plasticity can help 

populations to sustain themselves over a sufficient number of generations to allow genetic adaptation. 

Therefore, it facilitates evolutionary adaptation by providing more time for genetic changes [2]. This 

integrative approach (ecological and evolutionary) will make it possible to take into account both responses 

(plastic and evolutionary) to climate change [23]. 

Another general question in the use of gradients to study the impact of climate change, is the spatial 

scale used. Indeed, the relevant gradients for a system may depend on research questions and on the 

dispersal capacity of the organisms studied (both parasitoids and their hosts). Among geographic gradients, 

longitudinal ones are almost never studied in insects (Fig. 2A), although they are of major interest to study 

the effect of climatic factors independently of other abiotic factors. For example, diapause, which is 

induced by both photoperiod and temperature, is largely affected by climate change, leading to an 

Jo
ur

na
l P

re
-p

ro
of



8 
  

alteration of host-parasitoid interactions and large differences in parasitism efficiency along longitudinal 

gradients [48].  

The advantage of using geographic gradients is to include multiple climatic factors such as 

temperature and precipitation as well as interactions between species that can be useful to predict changes 

in community structure and ecosystem functioning. These parameters are incompletely taken into account 

in theoretical climate models. Modelling has been proven useful to predict longer-term and larger-scale 

processes from short-term and small-scale empirical data from climatic gradients [43]. Therefore the 

concomitant use of both theoretical and empirical approaches is meaningful to obtain realistic predictions 

regarding the impact of future climate change on parasitoid guilds and their associated community.  

 

Conclusions and perspectives 

As main findings, we showed that geographic gradients are often correlated to several life-history 

traits of parasitoids, which allows to predict the consequence of climate change through studies of 

variations in these traits at a large spatial scale.. Altitudinal and latitudinal gradients can help simulating the 

effects of an increase of the mean temperature whereas longitudinal gradients are well correlated to 

winter warming and summer heat waves. 

As perspectives, although geographical gradients make it possible to study variations in average 

temperatures, one of the major impacts of climate change on interacting species such as parasitoids and 

their hosts comes from the increase in extreme events [1]. The Climate Extremes Hypothesis predicts that 

rare extreme events are a key selective agent in the evolution of thermal tolerance [23, 49]. Moreover, 

studies showed that the selection pressures generated by these stressful temperatures are stronger than 

those generated by variable but recurring temperatures [50, 51, 52], for both plastic and evolutionary 

responses [3, 53]. This effect can be detected both at the molecular level [53] or at the levels of life history 

traits such as diapause and phenology. By extracting extreme thermal stresses relevant for particular 

networks of hosts and their parasitoids from meteorological data, we could map gradients of extreme 
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temperature events. They may differ from mean temperature geographic gradients, but could better 

predict the impact of climate change. Another solution to use the gradient studies in cases of large inter-

annual variations could be to work using year-locality points as data point, as developed by Alfaro Tapia et 

al. (2022) [25]. Indeed, for the same locality, it is possible to observe strong temperature variations 

between years, and to study the impacts of temperatures along geographical gradients, it is necessary to 

take these variations into account. 
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FIGURES & TABLES 

 

Figure legends 

Figure 1. A conceptual diagram characterizing the variations in monthly mean temperature and in day 

length across different geographic gradients. (a) Latitudinal gradient: temperature mean decreases but 

temperature variation increases with latitude. This leads to higher mean but smaller variation of 

temperature in low latitudes whereas lower mean but larger variation of temperature in high latitudes. The 

variation in day length (grey lines) increases with latitude. (b) Altitudinal gradient: temperature mean 

decreases with altitude while temperature variation remains relatively stable. The day length stays 

unchanged for a given location. (c) Longitudinal gradient: temperature mean varies relatively little while 

temperature variation increases with the distance from seacoast, according to the characteristics of 

continental versus marine climates. The day length remains constant across different longitudes. (d) A 

summary of the differences in temperature means and variations and in day length among the three 

patterns of geographic gradient. 

 

Figure 2. Pie charts summarizing studies on the effect of geographic gradients on parasitoids. On the left, 

the types of geographical gradients, on the right the types of traits studied. Physiology traits include 

thermotolerance and metabolism; Life history traits include longevity, reproduction, lifespan, body size or 

body mass; Population traits include diapause and voltinism. 
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Figure 1 

 

 

Figure 2 

 

Table 1: References used for the Figure 2 and in the main text. Types and scales of the gradients. 

 

References 
Geographic gra-
dients Range Countries 

Environ-
mental fac-
tors 

Trait ca-
tegory Specific traits 
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Santos & 
Quicke, 
2011 

Latitudinal 0-66.7 global Temperature Life histo-
ry 

Body size 

Alfaro-
Tapia et al., 
2022 

Latitudinal 70~72°W, 
34~38°S 

Chile Temperature Life histo-
ry 

Body size, re-
production, 
body mass 

Scotta et 
al., 2021 

Latitudi-
nal/Longitudinal 

43.56~48.46°N
, 2.49~7.19°E 

France Temperature Physiology Thermotole-
rance 

Alfaro-
Tapia et al., 
2022 

Latitudinal 70~72°W, 
34~38°S 

Chile Temperature Physiology Thermotole-
rance 

Buellesbach 
et al., 2021 

Latitudinal 42~65°N, 
6.2~23°E 

Europe Temperature Physiology Proportion 
cuticle 

Ellers et al., 
1998 

Latitudinal 37-52°N Europe Temperature Life histo-
ry 

Lifespan and 
reproduction 

Moiroux et 
al., 2010 

Latitudinal 35.5~37.1°N, 
53~55.2°E 

Iran Humidity Life histo-
ry 

Longevity, re-
production and 
dry mass 

Vuarin et 
al., 2012 

Latitudinal  43.95-46.5°N, 
4.87-4.74°E 

France Not specific Physiology Metabolic rate 

Paolucci et 
al., 2013 

Latitudinal 42~65°N, 
6.2~23°E 

Europe Photoperiod Popula-
tion 

Diapause 

Zhang et 
al., 2017 

Latitudinal 32~44°N, 
120~128°E 

China Temperature Popula-
tion 

Diapause 

Abarca & 
Lill, 2019 

Latitudinal 28~44°N, -82~-
89°E 

USA Temperature Popula-
tion 

Diapause 

Régnière et 
al., 2021 

Latitudinal  46~48°N, -
66~-70°E, 

Canada Temperature Popula-
tion 

Voltinism 

Abarca et 
al., 2019 

Latitudinal 28.66~44.33°N
, 82.29~-
89.22°W 

USA Temperature Communi-
ty 

Host phenology 

Burington 
et al., 2018 

Latitudinal 39.21~-4.09°N, 
-
76.91~79,13°
W 

North & Cen-
tral America 

Temperature Communi-
ty 

Parasitoid 
specialisation 
degree 

Corcos et 
al., 2018 

Altitudinal 50 – 2000m Italy Temperature 
& Habitat 
diversity 

Communi-
ty 

Species diversi-
ty, richness, 
abundance, and 
evenness 

Hódar et 
al., 2021 

Altitudinal 190 – 2000m North Ameri-
ca 

Temperature Communi-
ty 

Parasitism rates 

Chia-Hua et 
al., 2018 

Latitudinal 43.48~25.32°N
, 
71.64~80.29°
W 

North Ameri-
ca 

Temperature 
& Precipita-
tions 

Communi-
ty 

Species diversi-
ty, richness, 
abundance, and 
evenness 
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Philbin et 
al., 2021 

Altitudinal 1600 – 2600m North Ameri-
ca 

Habitat di-
versity 

Communi-
ty 

Host abun-
dances 

Serrano-
Munoz et 
al., 2022 

Altitudinal 1000m Mexico  Not specific Communi-
ty 

Species diversi-
ty, richness, 
abundance, and 
evenness 

Wermel-
inger et al., 
2021 

Altitudinal 900 – 1500m Switherland & 
Italy 

Temperature Communi-
ty 

Top-down regu-
lation 

Zvereva et 
al., 2020 

Latitudinal 60~69°N Russia Temperature Communi-
ty 

Top-down regu-
lation 

Audusseau 
et al., 2020 

Latitudinal 500km latitu-
dinal gradient 

Sweden Not specific Communi-
ty 

Repartition 
area of hosts 

Tougeron 
et al. 2022 

Longitudinal 650 km 
(48.11~50.70°
N, -
1.70~4.61E) 

France/Belgiu
m 

Temperature Communi-
ty 

Abundances, 
Activity-density 

 

 
 

Table 2: Main questions on parasitoid ecology (arising from Fig. 1 and Table 1) that can be addressed with 

the study of geographical gradients, and  pros and cons of using each type of gradients (latitudinal, 

altitudinal and longitudinal)  

Study subjects Latitudinal Altitudinal Longitudinal 

Study the effects of mean and variability of temperature 

increase 

+ - - 

Focus on the effect of mean temperature increase as it is 

the only factor of variation 

- + - 

Impact of the photoperiod and the variability of 

temperatures 

+ - - 

Dissociate the effects of photoperiod and temperature for 

diapause induction 

- - + 
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Understanding the evolutionary processes responsible for 

observed functional diversity  

+ + + 

Predicting community responses to climate change + + + 

 

Graphical abstract 
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Highlights 

 Temperature affects directly life history traits of parasitoids and indirectly communities 

 Longitudinal gradients are understudied but well correlated to winter warming 

 Latitudinal and altitudinal gradients allow simulating mean temperature increase 

 Extreme temperature events will be determinant for host-parasitoid interactions 
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