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Abstract

We study the statistics of Hamiltonian cycles on various families of bicolored random planar maps (with 
the spherical topology). These families fall into two groups corresponding to two distinct universality 
classes with respective central charges c = −1 and c = −2. The first group includes generic p-regular
maps with vertices of fixed valency p ≥ 3, whereas the second group comprises maps with vertices of 
mixed valencies, and the so-called rigid case of 2q-regular maps (q ≥ 2) for which, at each vertex, the 
unvisited edges are equally distributed on both sides of the cycle. We predict for each class its universal 
configuration exponent γ , as well as a new universal critical exponent ν characterizing the number of long-
distance contacts along the Hamiltonian cycle. These exponents are theoretically obtained by using the 
Knizhnik, Polyakov and Zamolodchikov (KPZ) relations, with the appropriate values of the central charge, 
applied, in the case of ν, to the corresponding critical exponent on regular (hexagonal or square) lattices. 
These predictions are numerically confirmed by analyzing exact enumeration results for p-regular maps 
with p = 3, 4, . . . , 7, and for maps with mixed valencies (2, 3), (2, 4) and (3, 4).
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.

1. Introduction

A planar map is a connected graph embedded in the two-dimensional sphere without edge 
crossings, and considered up to homeomorphisms. A map is characterized by its vertices, its 
edges and its faces which all have the topology of the disk. In this paper, the size of a map 
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is defined as its number of vertices. A planar map is bicolored if its vertices are colored in 
black and white so that edges connect only vertices of different colors. A Hamiltonian cycle is a 
closed self-avoiding path drawn along the edges of the map that visits all the vertices of the map. 
This paper addresses the combinatorial problem of enumerating Hamiltonian cycles on various 
families of bicolored planar maps. Note that the length of a Hamiltonian cycle on a bicolored 
map is necessarily an even integer and we shall denote it by 2N , which is also the size of the 
underlying map.

For a given family of bicolored planar maps, we will denote by zN the number of configura-
tions of such maps with size 2N , equipped with a Hamiltonian cycle and with a marked visited 
edge. The quantity zN will be referred to as the partition function1 of the model at hand. At large 
N , we expect the asymptotic behavior

zN ∼
N→∞ �

μ2N

N2−γ
, (1)

where � and μ depend on the precise family of maps we are dealing with, while the configuration 
exponent γ has a more universal nature: as we shall see, only two possible values of γ will be 
encountered, and it is precisely the aim of this paper to understand when and why one or the 
other value is observed.

As was done in [1] in the case of bicubic maps (i.e., bicolored maps with only 3-valent ver-
tices), we shall argue in the next section that the asymptotic properties of our Hamiltonian cycles 
on planar bicolored maps may be captured by viewing the problem as the coupling to gravity 
of a particular critical statistical model described by a conformal field theory (CFT), whose cen-
tral charge c may itself be deduced from a height reformulation of the problem. More precisely, 
it is known from the celebrated Knizhnik Polyakov Zamolodchikov (KPZ) formulas [2–4] that 
the coupling to gravity of a CFT with central charge c ≤ 1 corresponds to a fixed size (rooted) 
partition function zN with asymptotics (1) where (in the planar case considered in this paper):

γ = γ (c) := 1

12

(
c − 1 − √

(1 − c)(25 − c)
)

. (2)

As it will appear, the various families of bicolored maps that we shall study fall into two 
categories: when equipped with Hamiltonian cycles, some families will correspond to a CFT 
with central charge c = −1 and therefore exhibit a configuration exponent γ = γ (−1) =
−(1 +√

13)/6, while the other families correspond to a CFT with central charge c = −2, leading 
to a configuration exponent γ = γ (−2) = −1.

In our discussion, it will prove useful to extend our Hamiltonian cycle problem to that, more 
general, of fully packed loops (FPL) on planar bicolored maps. A fully packed loop configuration 
on a given map is defined as a set of self- and mutually avoiding loops drawn on the edges of 
the map such that every vertex is visited by a loop. The lengths of all loops are again even, with 
total length equal to 2N , and we finally attach a weight n to each loop: this defines the so-called 
FPL(n) model on the family of bicolored maps at hand. The case of Hamiltonian cycles may be 
recovered from the n → 0 limit of the FPL(n) model.

Remark 1. The FPL(n) model itself may be viewed as a particular critical point of the two-
dimensional O(n) model. Recall that this latter model describes configurations of self- and 

1 This should more precisely be called a “rooted partition function” since we decided to mark an edge of the configu-
ration. This marking is convenient as it prevents configurations from having internal symmetries.
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mutually avoiding loops with a weight n per loop and a fugacity x per vertex visited by a loop. 
The FPL(n) model is thus recovered within the O(n) model framework by letting x → ∞ so that 
all vertices be visited by a loop. As we shall recall later, the FPL(n) model is intimately linked 
to the dense critical phase of the O(n) model.

Remark 2. Let us insist on the fact that all the maps that we consider in this paper are bicolored. 
As explained in [5,1], this coloring constraint is crucial when it comes to identifying the central 
charge of the associated CFT. We will comment on this in Remark 10 below.

We also address the question of long-distance contacts within Hamiltonian cycles on random 
planar maps. Marking two points at distance N along a cycle splits the latter into two equal 
parts, and defines a set of contact links, i.e., edges that are incident to both parts of the cycle; 
these contact links can be seen as connected by a dual contact cycle on the dual map. Their 
average number scales as Nν , with a new exponent ν depending on the underlying map family. 
The values of ν are predicted theoretically by using, for the proper value of the central charge c, 
the KPZ formula applied to a similar exponent on regular (hexagonal or square) lattices, which 
is (half) the Hausdorff dimension of contacts within a loop of the regular FPL(n → 0) model. As 
we shall see, in the scaling limit, a bicolored random planar map equipped with a Hamiltonian 
cycle is expected to converge to a Liouville quantum gravity (LQG) sphere [6], decorated by an 
independent (space-filling) whole-plane Schramm-Loewner evolution SLE8 [7], the dual contact 
cycle itself converging to a dual whole-plane SLE2. The LQG parameter is γL = 2/

√
1 − γ , 

with either γ = γ (c = −1) or γ = γ (c = −2), depending on the chosen map’s family. These 
predictions are in the same spirit as those made in Refs. [1,8,9].

The paper is organized as follows: Section 2 discusses Hamiltonian cycles on bicolored planar 
maps whose all vertices have the same valency and gives our prediction for the configuration 
exponent γ in this case. Section 3 deals on the contrary with the case of maps having several 
allowed vertex valencies, leading to another value of γ . The predictions of these two sections 
are verified numerically in Section 4 by analyzing exact enumeration results for maps of finite 
sizes. Section 5 introduces the notion of rigid Hamiltonian cycles and predicts a configuration 
exponent different from that of the non-rigid case. This result is confirmed by the derivation 
of exact expressions for zN for arbitrary N . Section 6 addresses the question of long-distance 
contacts within Hamiltonian cycles, whose average number scales as Nν with the exponent ν
depending on the underlying map family. Two possible values of ν are predicted theoretically 
and then checked numerically in Section 7. We conclude with a few remarks in Section 8.

2. The case of p-regular bicolored maps

Recall that a p-regular map is a map whose all vertices have valency p. This section is devoted 
to the enumeration of Hamiltonian cycles on p-regular bicolored planar maps for a fixed integer 
p ≥ 3. It includes in particular the case of bicubic maps (p = 3) studied in [1,5].

From now on, we therefore assume that p takes a fixed value and we start by considering 
the FPL(2) model on p-regular bicolored planar maps. Assigning the weight n = 2 per loop 
amounts equivalently to having unweighted oriented loops (the weight 2 arising then from the 
2 possible orientations for each loop). This allows us to define three types of edges (see Fig. 1): 
the unvisited edges, called A-edges, the edges visited by a loop whose orientation points toward 
their white incident vertex, which we call B-edges, and finally the edges visited by a loop whose 
orientation points toward their black incident vertex, which we call C-edges. The configuration 
3
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Fig. 1. Example of the edge environment of (a) a black vertex and (b) a white vertex. Each vertex is surrounded by a 
B-edge, a C-edge and a total of (p − 2) A-edges (here p = 7, m = 2 and m′ = 3).

Fig. 2. Top: rules for the variation in the height variable X when crossing an edge of the map. Bottom: making a 
complete turn counterclockwise (resp. clockwise) around a black (resp. white) vertex results in a height variation �X =
(p − 2)A + B + C which for consistency must be taken equal to 0.

of edges around a black vertex is then that of Fig. 1-(a) with an ingoing C-edge, an outgoing 
B-edge and a total of p − 2 unvisited A-edges which are distributed in all possible ways on both 
sides of the loop. Similarly, the configuration of edges around a white vertex is that of Fig. 1-(b) 
with now an ingoing B-edge, an outgoing C-edge and p − 2 unvisited A-edges.

We may now transform the FPL(2) model into a d-component height model by assigning a 
height X ∈Rd to each face of the map, whose variation �X between adjacent faces depends on 
the nature of the edge between them according to the rules of Fig. 2: we demand that �X = A

(resp. B , C) if the crossed edge is of type A (resp. B , C) and traversed with its incident white 
vertex on the right. To guarantee that the height is well defined across the whole map, we have 
to ensure that we recover the same value of X after making a complete turn around any vertex of 
the map. This requires (see Fig. 2) the necessary and sufficient condition:

(p − 2)A + B + C = 0 (3)

which, de facto, implies that X lives in the (B, C) two-dimensional plane. For definiteness, we 
choose d = 2 with B and C two unit vectors of R2 satisfying, say B · C = −1/2. In particular, 
the property |B| = |C| implies that (B − C) · (B + C) = 0 hence, if we define

b2 := B − C , (4)

we deduce from (3) that A · b2 = 0 and a natural convention consists in expressing our two-
component height variable X in the orthogonal basis (A, b2). In the continuous limit, we expect 
4



B. Duplantier, O. Golinelli and E. Guitter Nuclear Physics B 995 (2023) 116335
that the FPL(2) model is therefore described by the coupling to gravity of a two-dimensional 
CFT involving a two-component vector field � = ψ1A+ψ2b2 (i.e., with components both along 
A and along b2) measuring locally the “coarse grained” averaged value � = 〈X〉 and governed 
by a free field action for both ψ1 and ψ2, see [1]. We deduce the following:

Claim 3. The FPL(2) model on p-regular bicolored planar maps is described by the coupling to 
gravity of a CFT with central charge

c = 2 . (5)

We now wish to understand how this result is modified if we give an arbitrary weight n to each 
loop, hence consider the FPL(n) model on p-regular bicolored planar maps. The case p = 3 of 
bicubic maps was discussed in details in [1]. There, the underlying CFT is identified as that 
describing the FPL(n) model on the honeycomb, i.e., hexagonal lattice (which is 3-regular and 
can be bicolored canonically), a model well studied in [10–13] by Bethe Ansatz or Coulomb gas 
techniques. For this lattice model, the passage from n = 2 to an arbitrary n ∈ [−2, 2] modifies in 
the continuous limit the Gaussian free field action by adding a term which couples the component 
ψ2 of the two-component field � to the local intrinsic curvature of the underlying surface, while 
the action for the component ψ1 remains that of a free field. For n ∈ [−2, 2], the net result is a 
shift of the central charge from c = cfpl(2) = 2 to a lower value c = cfpl(n) [11] whose expression 
is recalled just below.

Since the FPL(2) model on p-regular bicolored planar maps has the same two-component 
field description for any arbitrary integer p ≥ 3, we expect that the passage from n = 2 to an 
arbitrary n ∈ [−2, 2] induces the very same lowering of the central charge. This leads us to 
express the following statement:

Claim 4. For −2 ≤ n ≤ 2, the FPL(n) model on p-regular bicolored planar maps is, for arbitrary 
p ≥ 3, described by the coupling to gravity of a CFT with central charge

c = cfpl(n) := 2 − 6
(1 − g)2

g
where n = −2 cos(π g) with 0 ≤ g ≤ 1 . (6)

In the n → 0 limit, we deduce in particular:

Corollary 5. The model of Hamiltonian cycles on p-regular bicolored planar maps is described 
by the coupling to gravity of a CFT with central charge

c = cfpl(0) = −1 . (7)

In particular, using KPZ (2), the partition function zN of Hamiltonian cycles on p-regular bicol-
ored planar maps of size 2N has the asymptotic behavior (1) with

γ = γ (−1) = −1 + √
13

6
. (8)

This extends the conjecture of [5] (see also [14,1]) for p = 3 to an arbitrary value of the 
integer p ≥ 3.

It is interesting to remark that for p = 4 we may arrive at the statements of Claim 4 and 
Corollary 5 by a different route as follows. For p = 4, each vertex is incident to exactly 2
5
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Fig. 3. An example of a 4-regular bicolored planar map equipped with a set of fully packed oriented loops (thick lines). 
The unvisited edges (thin lines) automatically form a complementary set of fully packed unoriented loops on the map.

unvisited edges: the unvisited edges thus naturally form loops visiting all the vertices of the 
bicolored map, see Fig. 3. We therefore have by construction two complementary systems of 
fully packed loops: the original fully packed loops which receive a weight n1 = n and the loops 
formed by the unvisited edges which receive the neutral weight n2 = 1. The FPL(n) model on 
4-regular bicolored planar maps may therefore be viewed as a particular instance of the coupling 
to gravity of the so-called FPL2(n1, n2) model, which involves two complementary fully packed 
loop systems with respective weights n1 and n2 on the square lattice (which is 4-regular and 
can be bicolored canonically). The FPL2(n1, n2) model on this lattice was studied in details in 
[15–18] by Coulomb gas and Bethe Ansatz techniques. Its central charge was found to equal 
cfpl2(n1, n2) = 3 − 6(1 − g1)

2/g1 − 6(1 − g2)
2/g2 where, for i = 1, 2, ni = −2 cos(π gi) with 

0 ≤ gi ≤ 1. Taking g1 = g as in (6) and g2 = 2/3 so that (n1, n2) = (n, 1), we recover the value 
cfpl2(n, 1) = 2 − 6(1 − g)2/g = cfpl(n) as in Claim 4 and Corollary 5.

Note that, for p ≥ 5, we can no longer rely on hypothetical results for a fully packed loop 
model on some regular lattice, since there exists no such bicolored regular lattice with p-valent 
vertices only.2 Moreover, for p ≥ 5, there is no canonical way to arrange the unvisited edges into 
loops, would it be only for a subset of these unvisited edges.

3. The case of bicolored maps with mixed valencies

In this section, we deal with planar maps whose vertices have valencies within the fixed set 
S = {p1, p2, . . . , pk} where k ≥ 2 and where the integers pi satisfy 2 ≤ p1 < p2 < · · · < pk . 
Such maps will be generically referred to as maps with mixed valencies. Again we are interested 
in evaluating the number of such bicolored maps equipped with a Hamiltonian cycle, or more 
generally a set of fully packed loops with a weight n per loop. Since the (self- and mutually-
avoiding) loops visit all the vertices, the underlying maps have by construction an even size 2N , 
with exactly N black and N white vertices. The statistical ensemble that we consider is that with 

2 For p = 6, a natural candidate with only 6-regular vertices is the triangular lattice but this lattice is not bicolorable.
6
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fixed N and with a weight wi ∈ R+ attached to each vertex with valency pi . We insist here on 
the fact that the numbers mi of vertices of valency pi are not fixed individually but that their 
sum m1 + m2 + · · · + mk = 2N is fixed. We call zN the associated partition function with, as 
before, a marked visited edge. The partition function zN depends implicitly on the set S and on 
the weights wi . Note that, since wi > 0 for all i ∈ {1, . . . , k}, we expect the average number of 
vertices 〈mi〉 = wi

∂
∂wi

LogzN to be of order N for all i’s, i.e., extensive for each valency pi .
As in the previous section, we start by studying the FPL(2) model on our bicolored maps with 

mixed valencies and fixed size 2N . As before, the weight 2 per loop can be realized by orienting 
the loops, and we may again describe alternatively the configurations by a d-component height 
variable X ∈ Rd defined from the loop content according to the rules of Fig. 2-top. Note that 
configurations where valencies belong only to a proper subset of S may appear. However, since 
all weights wi , i ∈ {1, 2, . . . , k} have been chosen to be strictly positive, the asymptotic behavior 
of the partition function zN is exponentially dominated by configurations where all valencies 
are macroscopically present. Considering two different valencies, say pi1 and pi2 , we must, 
in order to have a well defined uni-valued height, impose simultaneously the two conditions 
(pi1 −2)A+B +C = 0 (necessary around a vertex of valency pi1 ) and (pi2 −2)A+B +C = 0
(necessary around a vertex of valency pi2 ). Since we assumed pi1 
= pi2 , these two conditions 
imply

A = 0 and B + C = 0 . (9)

This now implies that X stays colinear to B, or equivalently to b2 := B − C = 2B . In the 
continuous limit, we expect that the FPL(2) model is now described by the coupling to gravity of 
a two-dimensional CFT involving a one-component field � = ψ2b2 (i.e., with a component along 
b2 only, so that we may in practice fix d = 1) measuring as before the “coarse grained” averaged 
value � = 〈X〉 and governed by a Gaussian free field action. This leads us to the following:

Claim 6. The FPL(2) model on bicolored planar maps with mixed valencies is described by the 
coupling to gravity of a CFT with central charge

c = 1 . (10)

As for the case of arbitrary n ∈ [−2, 2], the action of the associated continuous CFT is again 
obtained by adding to the free field action for ψ2 a term which couples it to the local intrinsic cur-
vature of the underlying surface. Since there is no component ψ1 anymore, the obtained central 
charge becomes equal to c = cdense(n) := cfpl(n) − 1. We arrive at:

Claim 7. For −2 ≤ n ≤ 2, the FPL(n) model on bicolored planar maps with mixed valencies is 
described by the coupling to gravity of a CFT with central charge

c = cdense(n) := 1 − 6
(1 − g)2

g
where n = −2 cos(π g) with 0 ≤ g ≤ 1 . (11)

In the n → 0 limit, we deduce in particular:

Corollary 8. The model of Hamiltonian cycles on bicolored planar maps with mixed valencies 
is described by the coupling to gravity of a CFT with central charge

c = cdense(0) = −2 . (12)
7
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Fig. 4. Representation of a Hamiltonian cycle (after opening its marked visited edge) as an infinite straight line with 
alternating black and white vertices, connected by non-crossing bicolored arches on both sides of the infinite line. Top: 
example in the p-regular case with p = 5. Bottom: example in the case of mixed valencies 3 and 4, i.e., k = 2 and 
S = {3, 4}.

In particular, using KPZ, the associated partition function zN has the asymptotic behavior (1)
with

γ = γ (−2) = −1 . (13)

Remark 9. The denomination “dense” refers to the fact that the value cdense(n) of the central 
charge is precisely that associated with the two-dimensional O(n) model in its dense critical 
phase, where the number of occupied vertices is macroscopic, with loops being no longer re-
quired to visit all the vertices (see Section 6.1 for a detailed discussion). Here we recover this 
value even though, in our problem, loops by definition visit all vertices. The randomness due to 
the multiple choice of valencies somehow erases the full-packing constraint, which corresponds 
to an unstable manifold in the parameter space of the O(n) model [11].

Remark 10. Note that a similar reduction in the central charge from cfpl(n) to cdense(n) =
cfpl(n) − 1 would be observed for p-regular maps in the absence of the bicoloring constraint. 
Indeed, in that case, it is no longer possible to distinguish the two sides of an A-edge (see Fig. 2-
top), which forces one to set A = 0 and thus B +C = 0 as in (9); see [1] for a detailed discussion 
in the 3-regular map case.

4. Numerical verification

In order to verify the claims of Corollaries 5 and 8, we performed a direct numerical enu-
meration of Hamiltonian cycles on various p-regular map families as well as on various families 
of maps with mixed valencies. In all cases, by cutting the Hamiltonian cycle at the level of its 
marked visited edge and opening it into a straight line, we obtain a configuration of the form of 
that in Fig. 4, with an infinite line carrying 2N alternating black and white vertices. A vertex 
of valency pi leads to a total number (pi − 2) of incident unvisited half-edges distributed in all 
possible ways on both sides of the infinite line. Finally, these half-edges are connected in pairs 
so as to form a set of bicolored non-crossing arches. To obtain the value of the number of pos-
sible configurations zN for a given map family, we use a transfer matrix approach, generalizing 
that of [1], in which the arch configurations are built from left to right along the straight line of 
8
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Fig. 5. Illustration of the transfer matrix method in the case of mixed valencies with S = {3, 4}. Here we display one of 
the possible outcomes for the action of the elementary transfer matrix T◦ at the crossing of a white vertex.

alternating black and white vertices. A transfer matrix state is described by the color sequence 
of those arches which have been opened but not yet closed, each arch inheriting the color of the 
vertex it originates from (see Fig. 5). The upper arch color sequence is read from bottom to top 
and the lower one from top to bottom. A sequence of s arches with colors a1, . . . , as (where we 
choose aj = 1 for black and 0 for white) is encoded by the integer 	 = 2s + ∑s

j=1 aj 2(j−1) so 
that a transfer matrix intermediate state is coded by two positive integers 	u (upper sequence) 
and 	d (lower sequence) and denoted as |	u, 	d〉. With these notations, the partition function zN

may be written as

zN = 〈1,1|(T◦T•)N |1,1〉 (14)

where |1, 1〉 correspond to the empty configuration (the vacuum state) while T• and T◦ are two 
elementary transfer matrices transferring the state respectively across a black and a white vertex. 
Note that, for N even, we may write

zN =
∑
	u,	d

〈1,1|(T◦T•)N/2|	u, 	d〉〈	u, 	d |(T◦T•)N/2|1,1〉

=
∑
	u,	d

(〈	u, 	d |(T◦T•)N/2|1,1〉)2
,

(15)

where the sum is over the finite number of reachable states after N steps (N/2 of each color). 
Here we used the symmetry of the problem under combined left-right reversal and black-white 
inversion of vertex colors. Similarly, for N odd, we have

zN =
∑
	u,	d

〈1,1|(T◦T•)(N−1)/2T◦|	u, 	d〉〈	u, 	d |T•(T◦T•)(N−1)/2|1,1〉

=
∑
	u,	d

(〈	u, 	d |T•(T◦T•)(N−1)/2|1,1〉)2
.

(16)

We therefore see that, for both parities and for a total size 2N of the map configuration, we only 
have to perform the action of N elementary transfer matrices.

From zN , we may obtain μ and γ in (1) as the limits of appropriate sequences: for instance 
the sequence

bN := N2 Log
zN+2zN

2 (17)

(zN+1)

9
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Table 1
Estimated values of the exponential growth factor μ2.

p-regular maps μ2 maps with mixed valencies μ2

3-regular 10.113 ± 0.001 {2,3} (w2 = w3 = 1) 16.204 ± 0.001
4-regular 41.60 ± 0.02 {2,4} (w2 = w4 = 1) 49.9 ± 0.1
5-regular 117.0 ± 0.2 {3,4} (w3 = w4 = 1) 86.02 ± 0.05
6-regular 265.5 ± 1. {3,4} (w3 = 1 , w4 = 2) 244.0 ± 0.2
7-regular 522.8 ± 2. {3,4} (w3 = 2 , w4 = 1) 151.0 ± 0.2

tends to 2 − γ for N → ∞. We may therefore get an estimate for γ from the value of bN for 
some finite, large enough, N . To get a better estimate, we also have recourse to series accelera-
tion methods, involving sequences constructed from bN by recursive use of the finite difference 
operator � (defined by (�f )N := fN+1 −fN ) and which converge faster to the same limit 2 −γ

as N → ∞. In practice, we use the two “accelerated” series b̃N and b̄N defined as3

b̃N := 1

3! (�
3 b̂)N with b̂N := N3bN ,

b̄N := bN+2 − 2
(�b)N+2(�b)N+1

(�2 b)N+1
.

(18)

Appendix B presents our numerical results for the enumeration of zN . More precisely, we deal 
with the following map families:

- p-regular bicolored planar maps for p = 3, 4, . . . , 7 (see Tables 3–5);
- bicolored planar maps with mixed valencies for S = {2, 3}, {2, 4} with weights w2 = w3 =

w4 = 1 (see Tables 6,7) and for S = {3, 4} with (w3, w4) = (1, 1) (see Table 8), (1, 2) and 
(2, 1).

From these values, we extract the estimates of μ2 listed in Table 1.
Figs. 6 and 7 present our estimates of 2 −γ for the p-regular bicolored planar maps with p = 3

and p = 4 to 7 respectively (for each p, we denote by b(p)
N the associated series (17)). These 

estimates are in perfect agreement with the expected value γ = −(1 + √
13)/6 of Corollary 5.

Fig. 8 presents our estimates of 2 −γ for bicolored planar maps with mixed valencies for S =
{2, 3} and {2, 4} (with all weights wi = 1) while Fig. 9 presents our estimates for bicolored planar 
maps with mixed valencies in S = {3, 4} with (w3, w4) = (1, 1), (1, 2) and (2, 1) respectively. 
The estimates now agree with the expected value γ = −1 of Corollary 8.

5. Rigid Hamiltonian cycles on 2q-regular bicolored planar maps

5.1. Definition and properties

Let us now discuss a restricted class of Hamiltonian cycles, or more generally of fully packed 
loops, which, as in [19], we call rigid. Those are defined as follows: a rigid fully packed loop 
(RFPL) configuration is a set of fully packed loops on a 2q-regular bicolored planar map, with 
q ≥ 2 a fixed integer, such that, at each vertex, the unvisited edges are equally distributed on both 

3 The two series are defined so that their N ’th element involves values of zM for M up to N + 5.
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Fig. 6. Estimates of 2 − γ for Hamiltonian cycles on 3-regular bicolored planar maps, as obtained from the associated 
accelerated series b̃(3)

N
and b̄(3)

N
defined in (17) and (18). These estimates confirm and extend the results of [5] and [1].

Fig. 7. Estimates of 2 − γ for Hamiltonian cycles on p-regular bicolored planar maps, as obtained from the associated 
accelerated series b̃(p)

N
and b̄(p)

N
for p = 4, 5, 6, and 7.

sides of the loop, i.e., with exactly (q −1) of them on each side, see Fig. 10. As before, each loop 
receives a weight n: this defines the RFPL(n) model on 2q-regular bicolored planar maps. Again 
the n → 0 limit selects configurations of rigid Hamiltonian cycles, i.e., configurations with a 
single self-avoiding loop visiting all the vertices of the map.

For 2q = 4, a rigid Hamiltonian cycle configuration is what was called a meandric system in 
[20,9]. Note that a 4-regular planar map equipped with a rigid Hamiltonian cycle is automatically 
bicolorable.

Let us again start with the RFPL(2) model, corresponding to (unweighted) oriented loops. 
As we did in Section 2, we may distinguish A- (unvisited), B- (visited oriented towards a white 
vertex) and C- (visited oriented towards a black vertex) edges, which allows us to assign a d-
component height X ∈ Rd to each face of the map, whose variation �X between adjacent faces 
depends on the nature of the edge between them according to the rules of Fig. 2. As before, this 
height is well-defined by requiring the necessary and sufficient condition (corresponding to (3)
for p = 2q):

2(q − 1)A + B + C = 0 (19)
B. Duplantier, O. Golinelli and E. Guitter Nuclear Physics B 995 (2023) 116335
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Fig. 8. Estimates of 2 − γ for Hamiltonian cycles on bicolored planar maps with mixed valencies in S = {2, 3} (acceler-

ated series b̃(23)
N

and b̄(23)
N

with w2 = w3 = 1) and in S = {2, 4} (accelerated series b̃(24)
N

and b̄(24)
N

with w2 = w4 = 1).

Fig. 9. Estimates of 2 − γ for Hamiltonian cycles on bicolored planar maps with mixed valencies in S = {3, 4} with 
(w3, w4) = (1, 1), (1, 2) and (2, 1) respectively.

Fig. 10. Example of the edge environment of a black and of a white vertex in the RFPL model. Each vertex is traversed 
by a loop (thick edges) in such a way that there are exactly q − 1 unvisited edges (thin edges) on each side of the loop 
(here q = 4).
12
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which, de facto, fixes d = 2, with X living in the (B, C)-plane with B and C two unit vectors 
with, say B ·C = −1/2. As before, it is convenient to express X in the orthogonal basis (A, b2), 
with b2 := B −C and, as in Section 2, write the associated coarse grained average value � = 〈X〉
as a two-component vector field � = ψ1A + ψ2b2 with components both along A and along b2. 
Reproducing the arguments of Section 2, it would be tempting to infer that the results of Claims 3
and 4 hold, i.e., that the RFPL(n) model is the coupling to gravity of a CFT of central charge 
cfpl(n). We will now argue that this conclusion is actually incorrect and that the RFPL(n) model 
is the coupling to gravity of a CFT of central charge cdense(n) = cfpl(n) − 1. Indeed, even though 
we may define the coordinate ψ1 in the A direction, the value of this coordinate is in practice 
frozen, equal to a fixed value (which we may take equal to 0) on the entire map. We thus state:

Proposition 11. The two-component vector field � varies only via its coordinate ψ2 along the 
b2 direction, which makes it in practice a one-component vector field.

This de facto reduces the central charge by 1, hence we arrive at:

Claim 12. For −2 ≤ n ≤ 2, the RFPL(n) model on 2q-regular bicolored planar maps is de-
scribed by the coupling to gravity of a CFT with central charge

c = cdense(n) = 1 − 6
(1 − g)2

g
where n = −2 cos(π g) with 0 ≤ g ≤ 1 . (20)

In the n → 0 limit, we deduce in particular:

Corollary 13. The model of rigid Hamiltonian cycles on 2q-regular bicolored planar maps is 
described by the coupling to gravity of a CFT with central charge

c = cdense(0) = −2 . (21)

In particular, using KPZ (2), the associated partition function zN has the asymptotic behavior 
(1) with

γ = γ (−2) = −1. (22)

5.2. Proof of Proposition 11

Proof. The following argument is a generalization to arbitrary q of that given in [14, Sect. 11.3]
for the case q = 2. The first remark is that the set of faces of a bicolored p-regular planar map 
is naturally split into p subsets as follows4: pick a reference face f0 and label each face f of 
the map by 	(f ) = (L(f ) mod p) + 1 where L(f ) is the number of crossed edges of any path 
connecting f0 to f and traversing only edges with their white vertex on the right (or equiva-
lently turning clockwise around white vertices and counterclockwise around black ones). It is 
easily seen that L(f ) is indeed independent on the chosen path. This splits the set of faces 
into p-subsets which we denote by F1, F2, . . . , Fp where Fj is the set of faces labeled j . 
Moreover, it is easily seen that, by construction, the cyclic order of the labels is (1, 2, . . . , p)

4 The reader might be more familiar with the dual picture: bicolored p-regular planar maps are dual to planar Eulerian 
p-angulations (with bicolored black and white faces all of valency p), a particular instance of p-constellations [21].
13
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Fig. 11. The splitting of the face set into subsets F1, F2, F3, F1̂, F2̂, F3̂ for a 6-regular bicolored planar map. The order 
of appearance of the faces is (1, 2, 3, ̂1, ̂2, ̂3) clockwise around white vertices and counterclockwise around black vertices 
(as shown the upper right corner) and, in the presence of rigid fully packed loops, we may choose the numbering so that 
the loops always separate faces labeled 1 from faces labeled 3̂ and faces labeled 1̂ from faces labeled 3.

both clockwise around white vertices and counterclockwise around black ones. For p = 2q , 
we may instead use labels 	 ∈ {1, 2, . . . , q, ̂1, ̂2, . . . , q̂} so that the subsets are now denoted by 
F1, F2, . . . , Fq, F1̂, F2̂, . . . , Fq̂ and the cyclic order of the labels is (1, 2, . . . , p, ̂1, ̂2, . . . , q̂). In 
the presence of rigid fully packed oriented loops, we may finally choose the face f0 so that the 
loops always separate faces in F1 from faces in Fq̂ and faces in F1̂ from faces in Fq (it is enough 
to impose this property at one vertex and, since the loops are rigid, it automatically propagates5

to all the vertices), see Fig. 11 for an example in the case q = 3.
Focusing now on the subset F1 ∪ F1̂, we observe that, as shown in Fig. 12, the change of 

height �X1→1̂ when going from of the face with label 1 to that with label 1̂ at a given vertex is 
always given by

�X1→1̂ = ±1

2
(B − C) = ±1

2
b2 , (23)

with a sign depending on the orientation of the loop. Note finally that, at any given vertex, the 
change of height �X

	→	̂
when going from the incident face with label 	 to that with label 	̂ is in 

practice independent of 	: all in all, the coarse grained height � (whatever its precise definition) 
has only variations in the b2 direction. �

5.3. Exact enumeration

The fact that γ = γ (−2) = −1 for rigid Hamiltonian cycles on 2q-regular bicolored planar 
maps may be checked by an exact enumeration of the allowed configurations. By embedding 

5 Note that the set F1 ∪ F1̂ needs not be connected. Still, one can check that the property propagates from one con-
nected component to the other. This is because the edges separating Fj from Fj−1 and F

ĵ
from F̂

j−1
for any given 

j ∈ {2, . . . q} also form a set of rigid fully packed loops.
14
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Fig. 12. The change of height �X1→1̂ at a given vertex when going from the face with label 1 to that, opposite, with 
label 1̂ is given by �X1→1̂ = (q − 1)A+B or �X1→1̂ = (q − 1)A+C depending on the orientation of the loop. From 
the relation (19), �X1→1̂ is therefore equal to ± 1

2 (B − C) = ± 1
2 b2, with no component along the A direction.

the map on the Riemann sphere, i.e., opening the cycle into a straight line of alternating black 
and white vertices, we immediately see that the rigidity constraint (imposing that the number of 
unvisited edges incident to any vertex is (q − 1) on each side of the straight line) allows us to 
write by symmetry

zN = c2
N , (24)

where cN enumerates configurations of non-crossing bicolored arches connecting the black and 
white vertices on one side of the straight line only, each vertex being incident to exactly (q − 1)

arches, see Fig. 13-top for an illustration.
As for cN , it is easily evaluated from the following argument: start by splitting each vertex 

into (q − 1) copies of the same color, with one arch incident to each copy, the choice of the 
arch to be connected being entirely dictated by the non-crossing constraint of the arches. We 
now have a sequence made of N groups of (q − 1) successive black vertices alternating with N
groups of (q − 1) successive white vertices. In a given monocolor group of size (q − 1), we may 
label the vertices from 1 to (q − 1) from left to right: the non-crossing constraint imposes that 
a black vertex with label j is necessarily connected to a white vertex with label (q − j) for any 
j ∈ {1, . . . , q − 1}, see Fig. 13-middle.

Looking now at the (q − 1) first black vertices on the left, denoted by u1, . . . , uq−1 (so that 
uj has the abovementioned label j ) and calling vq−j the white vertex to which uj is connected 
(so that vq−j has the abovementioned label (q − j)), these latter vertices split the remaining 
2(q−1)(N −1) vertices into subsequences respectively between uq−1 and v1, between v1 and v2, 
. . ., between vq−2 and vq−1, and finally to the right of vq−1. This yields a total of q subsequences 
of non negative integer lengths 2(q − 1)m1, . . . , 2(q − 1)mq respectively with mj ≥ 0 for j =
1, . . . , q . Due to the presence of the (q −1) first arches, each of these q subsequences is separated 
from the others: in particular, the pairing by arches of the vertices takes place independently 
within each subsequence. Moreover, at the price of a cyclic permutation of its vertices, the j -
th subsequence is made of mj groups of (q − 1) successive black vertices alternating with mj

groups of (q − 1) successive white vertices, see Fig. 13-bottom. The number of possible arch 
configurations for the j -th subsequence is therefore given by cmj

(independently of the required 
cyclic permutation). We arrive at the recursion relation
15
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Fig. 13. Top: an example of rigid Hamiltonian cycle on a 2q-valent bicolored planar map (here with q = 3), after opening 
it into a straight line of alternating black and white vertices. The upper and lower parts are independent arch systems, both 
enumerated by cN . Middle: alternative representation of the upper arch system after splitting each vertex into (q − 1)

successive copies of the same color. A black (resp. white) vertex labeled j is connected to a white (resp. black) one 
labeled q − j (here with q = 3 and j = 1, 2). Bottom: schematic picture of the decomposition of an arch configuration 
enumerated by c(x) (with a weight x per group of q arches) into q sequences of arch configurations, each of them 
also enumerated by c(x). Note that the order of colors within different subsequences is always the same, up to a cyclic 
permutation.

cN =
∑

m1,...,mq≥0
m1+···+mq=(N−1)

q∏
j=1

cmj
, N ≥ 1 (25)

with the convention c0 = 1. Introducing the generating function c(x) := ∑
N≥0 cN xN , we de-

duce that

c(x) = 1 + x (c(x))q , (26)

where we recognize the equation determining the generating function c(x) of the q-th generalized 
Fuss-Catalan numbers [22]

cN = 1

(q − 1)N + 1

(
q N

N

)
, N ≥ 0 . (27)

In particular, when q = 2, we recover the celebrated Catalan numbers. As a consequence of (27), 
we get

zN =
(

1

(q − 1)N + 1

(
q N

N

))2

∼
N→∞

q

2π(q − 1)3

(
qq

(q−1)q−1

)2N

N3 . (28)

As expected, zN has the asymptotic behavior (1) with

γ = γ (−2) = −1 , μ = qq

q−1 and � = q

3 . (29)

(q − 1) 2π(q − 1)
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6. Long-distance contacts within Hamiltonian cycles

6.1. Scaling limits of the O(n) and FPL(n) models on regular lattices

It is widely believed that the scaling limit of critical paths in the O(n) model on two di-
mensional regular (e.g., hexagonal or square) lattices is described by the celebrated Schramm-
Loewner evolution SLEκ [7,23], and its collection of critical loops by the so-called conformal 
loop ensemble CLEκ [24]. This conformally invariant random process depends on a single pa-
rameter κ ≥ 0, which in the O(n) model case is κ = 4/g [24–27] so that:

n = −2 cos(4π/κ), κ ∈ [8/3,4] for the dilute critical point,

κ ∈ (4,8] for the dense critical phase.
(30)

For n ∈ (0, 2], one has κ ∈ (8/3, 8), i.e., the range for which CLEκ is defined, whereas the SLEκ

process is actually defined for κ ∈ [0, ∞). Note that for n → 0, in the dilute case, the limit of 
CLEκ as κ ↘ 8/3 is SLE8/3 and, in the dense case, the limit of CLEκ as κ ↗ 8 is space-filling 
SLE8 [24]. The full critical O(n) model range n ∈ [−2, 2] corresponds to κ ∈ [2, ∞) SLEκ

paths, which are always non self-crossing, are simple, i.e., non-intersecting when κ ∈ [0, 4], and 
non-simple when κ ∈ (4, ∞) [23].

This scaling limit has been rigorously established in several cases: the uniform spanning 
tree for which n = 0, g = 1/2, κ = 8 [28]; the loop-erased random walk for which (formally) 
n = −2, g = 2, κ = 2 [28,29]; the contour lines of the discrete Gaussian free field, for which 
n = 2, g = 1, κ = 4 [30]; critical site percolation on the triangular lattice [31,32], for which 
n = 1, g = 2/3, κ = 6; the critical Ising model and its associated Fortuin-Kasteleyn random 
cluster model on the square lattice [33,34] for which, respectively, n = 1, g = 4/3, κ = 3 and 
n = √

2, g = 3/4, κ = 16/3.
The associated SLEκ central charge is then

c = csle(κ) := 1

4
(6 − κ)

(
6 − 16

κ

)
∈ (−∞,1] for κ > 0 . (31)

Notice the invariance of the central charge (31) under the SLEκ duality [35,25,26,36,37],

κ ↔ 16/κ =: κ̃ . (32)

The geometrical interpretation of this duality is as follows. In the scaling limit, loops in the dense 
O(n) model are non-simple paths of Hausdorff dimension [38,39] D = 1 + (2g)−1 = 1 + κ/8 >
3/2 for g ∈ [1/2, 1), κ ∈ (4, 8]; their external perimeters are simple critical paths of Hausdorff 
dimension [35] D̃ = 1 + g/2 = 1 + κ̃/8 < 3/2. These Hausdorff dimensions thus satisfy the 
universal duality relation

(D − 1)(D̃ − 1) = 1

4
, (33)

which has been directly established for critical percolation [40]. Non-simple SLEκ paths for 
κ ∈ (4, 8] have indeed been proven to have for outer boundaries dual simple SLEκ̃ paths, with 
κ̃ = 16/κ ∈ [2, 4) [36,37].

The so-called watermelon exponents (conformal weights) corresponding to the merging of a 
number 	 of conformally invariant SLEκ paths [26], in particular of 	 critical lines in the (dense 
or dilute) O(n) model with n as in (30) are given by [38,39,41–47]
17
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h
(κ)
	 = 1

16κ

[
4	2 − (4 − κ)2

]
, 	 ∈ Z+. (34)

As anticipated above, the Hausdorff dimension of SLEκ is [48]

D = inf{2(1 − h
(κ)
2 ),2} = inf{1 + κ/8,2} . (35)

The fully-packed FPL(n) model on the hexagonal lattice [11–13] or on the square lattice 
[15,16] is related to the corresponding dense O(n) model via a shift of its central charge by one 
unit as in (6) and (11). The watermelon exponents for an even number of paths are the same in 
FPL(n) and dense O(n) models, and in particular the 2-leg exponent which gives the Hausdorff 
dimension of the paths, whereas those for a odd number of paths differ both on the hexagonal 
(�) [11–13], and on the square (�) [15,16] lattices,

h
fpl(n)

2k = h
(κ)
2k ,

h
fpl(n)

2k−1 = h
(κ)
2k−1 + 3

4κ
(�),

h
fpl(n)

2k−1 = h
(κ)
2k−1 + 1

6 + κ
(�), k ∈Z+.

(36)

Even in the presence of the mismatch of central charges (6) and (11), one is thus led to conjecture 
[1,8,9] that the scaling limit of the fully-packed FPL(n) loop model itself on the honeycomb or 
square lattices is described by a conformal loop ensemble CLEκ , with κ corresponding to the 
dense O(n) model phase [10–13,15,16],

κ = 4π

arccos(−n/2)
∈ (4,8] for n ∈ [0,2) . (37)

6.2. Scaling limit for Hamiltonian cycles

Let us now consider the FPL(n = 0) case of a single Hamiltonian cycle C with 2N vertices, 
drawn on the regular bicolored hexagonal (or square) lattice, with the sphere topology. Marking 
two points at distance N along C splits this cycle into two equal parts Ci , i = 1, 2 such that 
C = C1 ∪ C2. They are separated by a single closed path C̃ drawn on the dual triangular lattice, 
that crosses the whole set of contacts links, i.e., edges incident to a vertex in C1 and to one in C2. 
We write C̃ = C1 ∩ C2 by a slight abuse of notation. In the spherical topology, this dual path can 
be viewed as the common external perimeter shared by each of the two halves Ci, i = 1, 2 of C
(see Fig. 14).

In the scaling limit, one has g = 1/2, κ = 8, so the cycle C should converge to a conformally 
invariant SLE8 path drawn on the Riemann sphere, which is a Peano curve, i.e., a space-filling 
curve with Hausdorff dimension D = 2. By duality (32) (33), the path C̃ should then converge to 
a (two-sided) whole-plane SLE2 curve with Hausdorff dimension D̃ = 5/4.

This can be directly checked by observing that a contact point on C̃ can be viewed as the 
origin of 	 = 4 fully-packed n = 0 lines, i.e., in the scaling limit, that of 	 = 4 space-filling SLE8
paths, as well as the origin of 	 = 2 SLE2 dual paths, with identical conformal weights (34)

h1∩2 := h
fpl(0)

	=4 = h
(κ=8)
	=4 = h

(̃κ=2)
	=2 = 3

8
. (38)

The expected number |C̃| = |C1 ∩ C2| of contact links between the two halves of Hamiltonian 
cycle C, in a large domain D of area A = |D| on the regular bicolored lattice, is then given, in 
the scaling limit, by
18
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Fig. 14. On the hexagonal lattice with the spherical topology, the two (red and green) halves C1 and C2 of a Hamiltonian 
cycle C = C1 ∪ C2 are separated by a (dotted) dual loop ̃C = C1 ∩ C2 on the dual lattice that crosses the whole set of their 
contact links. This separatrix can be seen as the external perimeter of each half of C. A point along that dual loop can 
be viewed as the origin of either 	 = 4 compact O(n = 0) half-lines, or of 	 = 2 dual half-lines. In the scaling limit, the 
fully-packed loop C converges to space-filling SLEκ=8 with Hausdorff dimension D = 2, and its fractal contact set ̃C to 
whole-plane SLEκ̃=2, with Hausdorff dimension D̃ = 5/4.

E |C1 ∩ C2| � AD̃/2 = A1−h1∩2 , h1∩2 = 3/8, A → ∞ , (39)

where the asymptotic equivalence � means that the ratio of logarithms tends to 1.

6.3. Coupling to quantum gravity

Random planar maps, as weighted by the partition functions of critical statistical models, are 
widely believed to have for scaling limits Liouville quantum gravity (LQG) coupled to the con-
formal field theory describing these critical models [2–4], or, equivalently, to the corresponding 
SLE processes [49–51,6]. The continuum description of the random planar map area involves a 
(regularized) Liouville quantum measure d2x : eγLϕL(x): in terms of a Gaussian free field (GFF) 
ϕL [52], possibly weighted as in the Liouville action [2–4]. For the coupling to gravity of a CFT 
with central charge c, the Liouville parameter γL is [2–4,6,49–51]

γL = γL(c) := 1√
6

(√
25 − c − √

1 − c
)

∈ (0,2] for c ∈ (−∞,1] . (40)

An Euclidean fractal measure associated with a set of Hausdorff dimension D = 2(1 − h) is 
transformed in LQG into a quantum fractal measure, via a local multiplicative factor of the form 
: eαϕL : with α := γL(1 − �), where the quantum scaling exponent � is the analogue of the 
Euclidean scaling exponent h [3,4,51]. It is given by the celebrated KPZ relation [2],

� = �(h, c) :=
√

1 − c + 24h − √
1 − c√

25 − c − √
1 − c

, (41)

in terms of the original scaling exponent h (e.g., conformal weight) of the CFT of central charge 
c. Eq. (41) can be inverted with the help of the Liouville parameter (40) as the simple quadratic 
formula,
19
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h(�) = γ 2
L

4
�2 +

(
1 − γ 2

L

4

)
� . (42)

Its rigorous proof [52–55] rests on the assumption that the GFF or Liouville field ϕL and (any) 
random fractal curve (possibly described by a CFT) are independently sampled.

The other KPZ result (2) for γ (c), the configuration or “string susceptibility exponent”

γ = 1 − 4/γ 2
L , (43)

or equivalently (40) for γL(c), gives the precise coupling between the LQG and CFT or SLE pa-
rameters. By substituting the SLE central charge c = csle(κ) (31), one indeed obtains the simple 
expressions

γ = 1 − sup{4/κ, κ/4}, γL = inf{√κ,
√

16/κ} . (44)

This has been rigorously established in the probabilistic approach by coupling the Gaussian 
free field in LQG with SLE martingales [49,51]. In the scaling limit, random cluster models on 
random planar maps can then be shown to converge (in the so-called peanosphere topology of 
the mating of trees perspective) to LQG-SLE [6,56].

This matching property (44) of γ , γL and κ applies to the scaling limit of the critical, dense 
or dilute, O(n) model on a random planar map, as well as to the fully-packed FPL(n) model 
on random (non bicolored) cubic maps [1]. In the case of the fully-packed model on random 
bicolored maps, this also holds in the case of mixed valencies (Claim (7)), or in the rigid case of 
2q-regular maps (Claim (12)), with

c = cdense(n) = csle(κ) . (45)

However, for random bicubic planar maps, as seen in Ref. [1], and for the general non-rigid case 
of p-regular bicolored planar maps (Claim (4)), the correspondence (44) no longer holds, and 
one then has a mismatch [8,9], with (45) replaced in (2), (40) and (41) by

c = cfpl(n) = 1 + csle(κ) , (46)

with κ still given by (37). Note that the constraint c ≤ 1 in the KPZ relations restricts the loop 
fugacity of the FPL(n) model on a bicubic map to the range n ∈ [0, 1] with κ ∈ [6, 8], while the 
complementary range n ∈ (1, 2) with κ ∈ (4, 6) is likely to correspond to random tree statistics.

A coupling between LQG and SLE with such mismatched parameters has yet to be described 
rigorously. Following [1], we can simply conjecture here that for n ∈ [0, 1] the scaling limit of 
the FPL(n) model on a bicolored p-regular planar map with no rigid condition, will be given by 
CLEκ [6], with κ ∈ [6, 8] as in (37), on a γL-LQG sphere with Liouville parameter

γL = 1√
12

(√
3

(
κ + 16

κ

)
+ 22 −

√
3

(
κ + 16

κ

)
− 26

)
, (47)

in agreement with conjectures proposed in [8,9].

6.4. Hamiltonian cycles and LQG

The FPL(n = 0) model on a random planar map converges to space-filling SLEκ=8 coupled 
to Liouville quantum gravity, the scaling limit of a Hamiltonian cycle in the spherical topology 
being SLE8 decorating an independent γL-LQG sphere (for a proper definition, see [6,57,58]), 
20
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Fig. 15. On a random bicubic planar map with the spherical topology, the two (red and green) halves C1 and C2 of a 
Hamiltonian cycle C = C1 ∪C2 are separated by a (dotted) dual loop ̃C = C1 ∩C2 on the dual map that crosses the whole 
set of their nearest neighbor contact links. In the scaling limit, the random map, the fully-packed loop C and the separatrix 
C̃ converge (in the peanosphere topology [6]) to a γL-LQG sphere decorated by a space-filling SLE8 and a whole-plane 
SLE2. In the case of this (p = 3)-regular bicolored map, c = −1 and γL = 1√

3

(√
13 − 1

)
.

with a Liouville parameter and a central charge depending on the choice of the map’s vertex 
statistics. In the case of generic (i.e., non-bicolored) cubic maps [1], of bicolored maps with 
vertices of mixed valencies (Corollary (8)), and of 2q-regular bicolored maps with a local rigidity 
condition (Corollary (13)), we have from (44) and (45) for κ = 8,

γL = √
2, γ = −1, c = −2 . (48)

In the case of bicubic maps [1] or, more generally, of p-regular bicolored maps (Corollary (5)) 
we have from (46) and (47) for κ = 8,

γL = 1√
3

(√
13 − 1

)
, γ = −1 + √

13

6
, c = −1 . (49)

Let us consider the set C̃ = C1 ∩ C2 of contact points between the two halves of the Hamil-
tonian cycle C = C1 ∪ C2, on a bicolored random planar map of fixed size 2N (see Fig. 15). In 
the thermodynamic limit N → ∞, and after rescaling, this set converges (in the peanosphere 
topology [6]) to the intersection of the two halves of an infinite SLE8 path, i.e., a whole-plane 
SLE2, decorating a quantum sphere of fixed γL-LQG area A [6,57,58]. An SLEκ=2 quantum 
length measure [51,6] based on the SLE natural parametrization [59] is associated in the scaling 
limit with the cardinal |C̃| = |C1 ∩ C2|. Its expectation scales as

ELQG|C1 ∩ C2| � Aν := A1−�1∩2 , (50)

an expression entirely similar to the scaling form (39), but now with a quantum exponent �1∩2 :=
�(h1∩2, c) given by the KPZ relation (41) in terms of h1∩2 = 3/8 (38). Its value thus crucially 
depends on the central charge c, i.e., on the choice of vertex statistics on the bicolored map. For 
case (48), we find

�1∩2 = �(3/8, c = −2) = 1/2 ,

ν = 1 − � = 1/2 ; (51)

1∩2
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whereas in case (49) we predict

�1∩2 = �(3/8, c = −1) =
√

11 − √
2√

26 − √
2

,

ν = 1 − �1∩2 =
√

26 − √
11√

26 − √
2

= 0.483715 · · · .

(52)

These two predictions for ν will now be tested numerically using extrapolations from exact 
enumerations.

7. Numerics for long-distance contacts

Our Hamiltonian cycles have a marked visited edge e. We may thus label all the vertices by 
their natural order along a cycle C, starting from the black vertex incident to e (labeled 1) and 
ending at the white vertex incident to e (labeled 2N if the map has size 2N ). This allows us to 
canonically define the two half-cycles C1 and C2 as the parts of C containing the vertices 1 to N , 
and N + 1 to 2N respectively. Let us denote by kN the average number of contact links between 
these two halves of C, see Fig. 15. We have

kN = yN

zN

(53)

where yN denotes the partition function of Hamiltonian cycles (with a marked visited edge) of 
length 2N weighted by the number of contact links between their two halves. In the representation 
of Fig. 4, this number of contacts is nothing but the number of (up or down) arches which have 
been opened along the first half of the straight line and are closed only in its second half. In the 
transfer matrix formalism, this number is given by the integer parts⌊

log2(	u)
⌋ + ⌊

log2(	d)
⌋

(54)

where, as in (15), |	u, 	d〉 denotes the “middle” state (i.e., that obtained after the action of N
elementary transfer matrices T◦ or T•). For N even, we may therefore write

yN =
∑
	u,	d

〈1,1|(T◦T•)N/2|	u, 	d〉( ⌊
log2(	u)

⌋ + ⌊
log2(	d)

⌋ )〈	u, 	d |(T◦T•)N/2|1,1〉

=
∑
	u,	d

⌊
log2(	u)

⌋ (〈	u, 	d |(T◦T•)N/2|1,1〉)2

+
∑
	u,	d

⌊
log2(	d)

⌋ (〈	u, 	d |(T◦T•)N/2|1,1〉)2

= 2
∑
	u,	d

⌊
log2(	u)

⌋ (〈	u, 	d |(T◦T•)N/2|1,1〉)2
,

(55)

where we used the symmetry of the problem under combined left-right reversal and black-white 
inversion of colors to go from the first to the second line, as well as its up-down symmetry to go 
from the second to the third line. For N odd, we have instead

yN = 2
∑
	u,	d

⌊
log2(	u)

⌋ (〈	u, 	d |T•(T◦T•)(N−1)/2|1,1〉)2
. (56)

At large N , we expect the asymptotic behavior
22
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kN ∼
N→∞ 
 Nν (57)

with 
 depending on the bicolored map family at hand and with ν as in (51) or (52). We expect 
however that the corrections to this leading behavior depend on the parity of N . This is confirmed 
by our numerical data: to properly estimate ν from the sequence (kN)N≥1, we now have to split 
this sequence into two subsequences, an “even” one (k2M)M≥1 and an “odd” one (k2M−1)M≥1. 
This leads us to define the following two independent accelerating series (ν̃2M(s))M≥1 and 
(ν̃2M−1(s))M≥1:

ν̃2M(s) = 1

3! (�
3 ν̂)M with ν̂M := M3

(
M × Log

k2M+2 + 2s

k2M + 2s

)
(58)

and

ν̃2M−1(s) = 1

3! (�
3 ν̌)M with ν̌M := M3

(
M × Log

k2M+1 + 2s

k2M−1 + 2s

)
. (59)

Here we introduced for future convenience an arbitrary shift parameter s. Both series tend to ν

at large M independently of the shift s. The value of s will eventually be fixed numerically for 
each series so as to optimize the acceleration of the convergence (see below).

It is instructive to start our analysis with the rigid 4-regular case, for which we can write 
explicit expressions for kN . We indeed have in this case (see Appendix A)

k2M + 2s = 2
(2M

M

)2
1

2M+1

(4M
2M

) + 2(s − 1) ,

k2M−1 + 2s = 2
(2M

M

)(2M−2
M−1

)
1

2M

(4M−2
2M−1

) + 2(s − 1) .

(60)

It is easily checked from these exact expressions that the “even” and “odd” accelerated series 
(ν̃2M(s))M≥1 and (ν̃2M−1(s))M≥1 do converge to ν = 1/2 as expected, since, at large N , kN +
2s ∼ 4

√
N/π at large N for any fixed s. In order for (58) (resp. (59)) to define a series which 

is effectively accelerated, i.e., for which the convergence towards ν is fast, it is mandatory that 
ν̂M (resp. ν̌M ) have only corrections of the form M3−i for integers i ≥ 1 so that the first 3 such 
corrections (i = 1, 2, 3) are killed by the 3 iterative finite difference operators �. It is easily 
checked from (60) that, in the present case, this holds only if we choose s = 1: for s 
= 1, ν̂M

(resp. ν̌M ) also have corrections involving half-integer powers of M , which are not killed by 
the finite difference operators �, leading to a much slower convergence. Otherwise stated, the 
convergence to ν = 1/2 of (ν̃2M(s))M≥1 (resp. (ν̃2M−1(s))M≥1) is fast and reliable only if we 
choose s = 1.

Suppose now that we do not know the exact expressions (60) and have access only to the 
first values of ν̃2M(s) (resp. ν̃2M−1(s)) up to some finite value Nmax = 2Mmax (resp. Nmax =
2Mmax − 1). We may estimate numerically the best value s∗ of s by demanding that our estimate 
be stabilized at Nmax, namely that

ν̃Nmax(s
∗) = ν̃Nmax−2(s

∗) . (61)

As displayed in Fig. 16, using as input the “even” accelerated series for (60) with N up to 
Nmax = 26, we obtain numerically the values

s∗ = 1.000 , ν = ν̃Nmax(s
∗) = 0.5000 , (62)
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Fig. 16. Inset: determination of the shift s∗ from the condition ν̃Nmax (s∗) = ν̃Nmax−2(s∗) for rigid Hamiltonian cycles 
on 4-regular bicolored maps (here with Nmax = 26). We displayed the sequence (ν̃2M(s))1≤M≤Nmax/2 for 5 different 
values of s. From top to bottom: s = s∗ − 0.4, s = s∗ − 0.2, s = s∗ (red), s = s∗ + 0.2 and s = s∗ + 0.4. The value of ν
is finally estimated from ν̃Nmax (s∗) with s∗ = 1.000 , ν = ν̃Nmax (s∗) = 0.5000.

in perfect agreement with the values of s∗ and ν coming from the above analysis based on the 
exact asymptotic formulas. This therefore validates a posteriori our numerical recipe (61) for the 
choice s∗ of the shift s.

We have repeated this analysis separately with the “even” data and with the “odd” data for 
Hamiltonian cycles on various families of bicolored planar maps. For instance, Fig. 17 displays 
our results for 3-regular bicolored maps: we get the estimates

s∗ = 1.161 , ν = ν̃Nmax(s
∗) = 0.4837 , (63)

hence a value of ν very close to the predicted value (52). Fig. 18 displays similar results for 
maps with mixed valencies 2 and 3 (and w2 = w3 = 1), giving now s∗ = 0.965 and ν = 0.4997
very close to the predicted value 1/2 of (51). Table 2 gives a summary of our estimates for ν for 
Hamiltonian cycles on six different bicolored map families and for the two parities of N . All the 
results are in perfect agreement with the expected values.

8. Conclusion

In this paper, we studied the statistics of Hamiltonian cycles, and more generally of fully 
packed loops, on various families of bicolored random planar maps and found that the corre-
sponding models fall into two distinct universality classes. The first, most common universality 
class corresponds to the coupling to gravity of a CFT with central charge cdense(n) as defined 
in (11). This universality class is found for fully packed loops on bicolored maps with mixed 
valencies, for rigid fully packed loops on 2q-regular bicolored maps, but also for fully packed 
loops on non-bicolored maps (see Remark 10). It would also be found for non-rigid or rigid 
24
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Fig. 17. Determination of the shift s∗ and the exponent ν for Hamiltonian cycles on 3-regular bicolored maps (with 
Nmax = 26). See caption of Fig. 16 for details.

Fig. 18. Determination of the shift s∗ and the exponent ν for Hamiltonian cycles on bicolored maps with mixed valencies 
2 and 3 (with Nmax = 22). See caption of Fig. 16 for details.

dense loops (i.e., O(n) loops in their dense critical phase) on either bicolored or non-bicolored 
maps. The common feature of all these models is that they can be described by a single height 
field � = ψ2b2. The associated CFT on a regular lattice is that describing the dense phase of the 
O(n) model, with conformal dimensions which can be computed indifferently on any (hexagonal 
[39], square [46] or Manhattan [45,60]) regular lattice. For instance, the watermelon exponent 
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Table 2
Estimated values of the exponent ν. The value s∗ of the shift is determined numerically by the condi-
tion ν̃Nmax (s∗) = ν̃Nmax−2(s∗). In the cases of mixed valencies, we set w2 = w3 = 1 (respectively 
w3 = w4 = 1). †[For rigid Hamiltonian cycles on 4-regular maps, our explicit expressions (60) al-
low us to take Nmax arbitrarily large. The value 26 (resp. 25) was chosen for a better comparison 
with the 3-regular case.]

map family parity of N Nmax s∗ measured ν = ν̃Nmax (s∗) predicted ν

3-regular even 26 1.161 0.4837 0.483715 · · ·
odd 25 1.185 0.4829

4-regular even 10 1.008 0.4844 0.483715 · · ·
odd 11 1.054 0.4828

rigid 4-regular even 26† 1.000 0.5000 0.5
odd 25† 1.000 0.5000

rigid 6-regular even 22 0.817 0.5000 0.5
odd 21 0.825 0.4999

mixed valencies even 22 0.965 0.4997 0.5
2 and 3 odd 21 0.975 0.4992
mixed valencies even 8 0.815 0.4962 0.5
3 and 4 odd 7 0.855 0.4987

h
(κ)
	 is given by (34) for any (even or odd) 	, with κ as in (37) and its gravitational counterpart 

[61–63,26] by

�
(
h

(κ)
	 , csle(κ)

) = 	

4
+ 1

8
(4 − κ) . (64)

More interesting is the second universality class, corresponding to the coupling to gravity of a 
CFT with central charge cfpl(n) = 1 + cdense(n) as defined in (6). This universality class is found 
for fully packed loops on p-regular bicolored maps for any p ≥ 3, and corresponds to models 
which may now be described by a two-component height field � = ψ1A + ψ2b2. In particular, 
we may cook up observables corresponding to (magnetic) defects (i.e., height dislocations) with 
a component along the A direction: this is the case for instance for watermelon configurations 
with an odd number 	 of lines.

As already noticed in Section 6, such observables are special in the sense that their conformal 
weights are different if we compute them on the (naturally bicolored) square and hexagonal 
regular lattices, see (36). In this sense, universality is not as strong for the second class (with 
c = cfpl(n)) as it is for the first class and only the spectrum of those observables which do not 
involve the A direction seems to be fully universal: this is in particular the case for the 2- or 4-line 
observables involved in (38) and associated with the exponent ν that we considered in this paper. 
As for the special observables (involving the A-direction), which seem to retain in the scaling 
limit a memory of the original lattice, one may wonder about their proper continuous description 
within the SLEκ formalism.

When considering the watermelon configurations with an odd number of lines on p-regular 
bicolored random maps, the fact that there are two possible values for the fully packed conformal 
weight h = h

fpl(n)

2k−1 in (36) casts some doubt on the naive use of the KPZ formula (41) to get the 
analogue of the dense formula (64). Even when some choice seems “natural” (like for instance 
that of the hexagonal lattice value in (36) when dealing with 3-regular bicolored maps), it was 
observed in [1] that the associated gravitational exponent � is no-longer directly related to h via 
the KPZ formula (41) and that some prior “renormalization” of the conformal weight is required.
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A subsidiary question about Hamiltonian paths on p-regular bicolored maps is therefore 
whether such special exponents depend on p, just like they do on regular lattices with p = 3
and p = 4, hence lead to a weaker notion of universality. We leave this issue for a future work.
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Appendix A. Rigid Hamiltonian cycles on 4-regular bicolored maps: exact enumeration 
formulas

The case of rigid Hamiltonian cycles on 4-regular bicolored maps (also called meandric sys-
tems in [20,9]) is particularly simple as we may get exact expressions for zN and yN , hence for 
kN in (53). As already mentioned in Section 5.3, opening the rigid cycle into a straight line of 
alternating black and white vertices totally decouples the upper and lower parts, implying that

zN = c2
N , (65)

where cN enumerates non-crossing arch configurations connecting 2N vertices along a line on 
one side only. Note that the fact that arches connect vertices of different colors is automatic for 
non-crossing arch configurations, hence we may forget about the colors in this particular case. 
As it is well known, cN is nothing but the celebrated Catalan number

cN = 1

N + 1

(
2N

N

)
, (66)

in agreement with (27) for q = 2.
Let us now discuss the quantity yN . The decoupling of the upper and lower parts (together 

with the up-down symmetry) implies that

yN = 2gNcN (67)

where gN enumerates arch configurations A connecting 2N vertices along a line on one side 
only, weighted by the number g(A) of arches passing above the middle point of the straight line 
(i.e., the middle point of the edge connecting the N -th to the (N + 1)-th vertex), see Fig. 19. 
Let us first assume that N is even and write N = 2M . This implies that g(A) is even too. More 
precisely, for 0 ≤ p ≤ M , those arch configurations A for which g(A) = 2p are enumerated by6

6 In the Dyck path representation of non-crossing arch systems [64], these configurations correspond to pairs made of 
(i) a path of length 2M from height 0 to height 2p (hence with M + p up-steps) and (ii) a complementary path of length 
2M from height 2p to height 0 (hence with M + p down steps), both paths having only non-negative heights.
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Fig. 19. An arch configuration A contributing to gN (here with N = 12) and the number g(A) of arches passing above 
the middle point (here g(A)=2), whose parity is the same as that of N .((

2M

M + p

)
−

(
2M

M + p + 1

))2

=
(

2p + 1

M + p + 1

(
2M

M + p

))2

. (68)

This yields

gN =
M∑

p=0

(
2p + 1

M + p + 1

(
2M

M + p

))2

(2p)

=
M∑

p=0

(
2p + 1

M + p + 1

(
2M

M + p

))2

(2p + s) − s cN ,

(69)

where we used the sum rule 
M∑

p=0

(
2p+1

M+p+1

( 2M
M+p

))2 = cN for the total number of arch configura-

tions. Noting that(
2p + 1

M + p + 1

(
2M

M + p

))2

(2p + 1) = �p

(
− (M + 2p2)

M

(
2M

M + p

)2
)

(70)

where �p is the forward finite difference operator in p, we see that the sum in the second line of 
(69) is telescopic for the choice s = 1.

We eventually end up with

gN =
(

2M

M

)2

− cN for N = 2M , (71)

and

kN = yN

zN

= 2gN

cN

= 2
(2M

M

)2
1

2M+1

(4M
2M

) − 2 for N = 2M . (72)

If we now assume that N is odd, a similar calculation leads to

kN = 2
(2M

M

)(2M−2
M−1

)
1

2M

(4M−2
2M−1

) − 2 for N = 2M − 1 . (73)

Eqs. (72) and (73) lead to the desired formulas (60).

Appendix B. Numerical data

As already seen in Section 5 (Eqs. (24) (27)) and in Appendix A when q = 2, using the 
arch representation such as that of Fig. 4 in the case of rigid Hamiltonian cycles on 2q-regular 
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Table 3
Values of zN (sequence A116456 in OEIS [65]) and yN for Hamiltonian cycles on bicolored 
3-regular planar maps.

N zN yN/2

1 2 1
2 8 4
3 40 28
4 228 182
5 1424 1376
6 9520 10256
7 67064 82256
8 492292 657258
9 3735112 5483168
10 29114128 45720644
11 232077344 392225248
12 1885195276 3367237302
13 15562235264 29496561288
14 130263211680 258689070208
15 1103650297320 2303183835424
16 9450760284100 20532423715862
17 81696139565864 185194267822952
18 712188311673280 1672505538588120
19 6255662512111248 15246126785026456
20 55324571848957688 139146249302900840
21 492328039660580784 1279654964632731016
22 4406003100524940624 11781309072368013800
23 39635193868649858744 109156077594746888256
24 358245485706959890508 1012371771569816836390
25 3252243000921333423544 9439721149094472748640
26 29644552626822516031040 88100169337671128409824
27 271230872346635464906816 826012547472307809557896
28 2490299924154166673782584 7751024033279177862804200
29 22939294579586403144527440 73022459752163336202562352
30 211949268051816569236796848 688468559155925660846596544
31 1963919128426791258770276024 6513579576440364032532422976
32 18246482008315207478524287044 61667572983605062268400200798
33 169953210523325203868381657400 585630198026539853341680121888
34 1586759491069775179474823509344 5565011094981145493511752402704

bicolored planar maps for arbitrary q ≥ 2 leads to a complete decoupling between the upper 
and lower arch configurations. This implies the following the two identities (extending (65) and 
(67)):

zN = c2
N with cN = 1

(q − 1)N + 1

(
q N

N

)
(74)

and

yN = 2gNcN , (75)

where gN enumerates arch configurations on one side only, weighted by the number of arches 
passing above the middle point of the straight line, see Fig. 19 when q = 2. We have no exact 
expression for gN for arbitrary q ≥ 3 (which would generalize (71)). Table 9 gives the first values 
of gN in the case q = 3, from which we can get yN via (75) .
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Table 4
Values of zN and yN for Hamiltonian cycles on bicolored 4-regular planar maps.

N zN yN/2

1 3 3
2 34 34
3 583 797
4 12370 18962
5 299310 541218
6 7914962 15658990
7 223112249 492077299
8 6599227954 15610597634
9 202656932134 519177791710
10 6413548643796 17387351622688
11 208040580206216 600403799410348
12 6888733433298402 20842604582620710
13 232117149975205154 739230697828101014
14 7939206408814949506 26327452538168278582
15 275098365065617821621 952653521434740072227
16 9641385973628938712306 34586535913246138331782
17 341313811643888153301006 1271131209796113395573406
18 12191280053256623302185704 46844535638524226902706228
19 438954593201892408379178942 1743184882186466069552567270

Table 5
Values of zN for Hamiltonian cycles on bicolored 5-regular, 6-regular and 7-regular planar maps.

N 5-regular 6-regular 7-regular

1 4 5 6
2 104 259 560
3 4640 25094 104024
4 266084 3192155 25715048
5 17669760 474183765 7462790096
6 1292292432 77907665840 2401948332096
7 101201942512 13740308705438 831180015105160
8 8340015146964 2554205527336363 303462839364701128
9 714995787362600 494475099243189329 115462177891927344416
10 63259444105430512 98867302126812855515
11 5742719613679409832 20294465583102673352590
12 532599319939460085760
13 50295898068432583524224
14 4823733144104904305892304
B. Duplantier, O. Golinelli and E. Guitter Nuclear Physics B 995 (2023) 116335
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Table 6
Values of zN and yN for Hamiltonian cycles on bicolored planar maps with mixed valencies 2 and 
3 (with w2 = w3 = 1).

N zN yN/2

1 3 1
2 17 6
3 125 67
4 1077 676
5 10335 8047
6 107151 93898
7 1176999 1184387
8 13518677 14869772
9 160872323 195389839
10 1970329025 2566924518
11 24715305741 34751956495
12 316322082895 471076136766
13 4118646279649 6523535179149
14 54428554176853 90491263299716
15 728662270487961 1275474547319661
16 9866887839946229 18009066127518820
17 134967673222112567 257454410282564295
18 1862969746410518745 3686602712849035850
19 25924506623086706277 53316166797618448047
20 363415643231059957421 772238458092154850980
21 5128518034166712107763 11276238109326334073237
22 72814980427431398768943 164883291621449041519854
23 1039603583945087464438759 2427283275342458095362671
24 14918925552410770296750503 35777211288494249743148062
25 215108422239328159518817305 530360761101151938386907819
26 3115114976238433506239203399 7870933845679033785904203612
27 45295058700528813260672278919 117382878931669305354337886003
28 661097024940535265310437647345 1752373351490083766149516091464
29 9682937008170057158267261746831 26271697196196181749006295843637
30 142290916972981046011294091297071 394231951670046541461277392969298
31 2097420196208084754056265923088015 5937785334543529526068890061788573

Table 7
Values of zN for Hamiltonian cycles on bicolored planar maps with 
mixed valencies 2 and 4 (with w2 = w4 = 1).

N zN N zN

1 4 10 24584694155437
2 47 11 930530200722914
3 872 12 36039351335158162
4 20579 13 1423250588260168692
5 562346 14 57153474076536198864
6 16959202 15 2328611379453123805998
7 549029380 16 96085895789053111221723
8 18750074923 17 4009433404474389044318028
9 667653126308 18 168976691280496979237329801
31
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Table 8
Values of zN and yN for Hamiltonian cycles on bicolored planar maps with mixed 
valencies 3 and 4 (with w3 = w4 = 1).

N zN yN/2

1 5 4
2 98 80
3 3089 3572
4 124622 163552
5 5844034 9159648
6 303138220 522941716
7 16901630655 32699927584
8 994850903414 2071909682642
9 61080867353216 138275419169022
10 3878907227559258 9315849112395598
11 253224873797465540 649064156160267680
12 16915976848381443504 45541980819371884184
13 1152241256370476649482 3271499179479967664002
14 79806203708523623827632 236287877905404626333174
15 5608021949255349143950993 17365297252695426225180534
16 399095475044872817013511142 1281725711268335772862571494

Table 9
Values of gN (such that yN = 2gNcN with cN as in (74)) for 
rigid Hamiltonian cycles on 6-regular bicolored planar maps 
(i.e., q = 3).

N gN N gN

1 2 16 429765359266
2 6 17 2747996363358
3 32 18 17558452105246
4 162 19 112880676289328
5 930 20 725294746632006
6 5260 21 4683479629941570
7 31432 22 30229921171815208
8 186606 23 195925602453080976
9 1142582 24 1269396826660493508
10 6971466 25 8252873289420323592
11 43385904 26 53640502233395278680
12 269429292 27 349671835181599650032
13 1696338360 28 2278921678933838458548
14 10665144516 29 14890267787292439785072
15 67735129000 30 97273104239590589753820
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