Alejandro I Maass
email: alejandro.maass@unimelb.edu.au

Wei Wang

Dragan Nešić

Ying Tan
email: yingt@unimelb.edu.au

Romain Postoyan
email: romain.postoyan@univ-lorraine.fr

A multi-processor implementation for networked control systems

Keywords: Multiple processors, Networked control systems, Hybrid systems, Averaging. I

We study nonlinear networked control systems (NCS), where the controller is implemented over multiple processors via an emulation-based approach. We start with a stable and centralised NCS commonly considered in the literature. Then, we show how to implement the centralised controller over multiple processors inspired by parallel computing techniques, so that stability is preserved (semi-globally and practically) under sufficiently fast computations. An example is given to illustrate the main results.

the multi-processor structure in NCS is crucial for maximising the benefits of this type of hardware. The main question in NCS is how the parallel control/estimation algorithm interacts with the plant dynamics. Hence, translation to multi-processor technology poses an interesting question of implementing existing (single processor) control algorithms on multiple processors. This problem is very relevant as numerous hours may have been invested into the development and tuning of the existing algorithms to satisfy stringent performance objectives (on a single processor) and their implementation on multiple processors should be done with minimum performance loss.

Most literature on (nonlinear) NCS design concentrates on a monolithic view of the system, by adopting single processor implementations only, see e.g., [START_REF] Nešić | Input-output stability properties of networked control systems[END_REF]- [START_REF] Hertneck | Reverse average dwell time constraintsenable arbitrary maximum allowabletransmission intervals[END_REF]. For linear NCS, most works on distributed controller computation consider architectures where the controllers are often far apart and the topology might change while the system is operating, see [START_REF] Ge | Distributed networked control systems: A brief overview[END_REF]- [START_REF] Zhang | Distributed control of large-scale networked control systems with communication constraints and topology switching[END_REF]. We emphasise that this approach, although very important, is different to parallel computing systems, where the various processors are located within a small distance of each other. In this context, the work [START_REF] Wu | Composite resource scheduling for networked control systems[END_REF] studied scheduling of computational tasks with the aim of optimising the usage of network and computing resources under end-to-end deadline constraints. An approach for decentralised implementation of centralised controllers for linear interconnected systems was proposed in [START_REF] Lavaei | Decentralized implementation of centralized controllers for interconnected systems[END_REF]. Specifically, given a centralised linear timeinvariant (LTI) controller and a strongly connected plant, a decentralised controller was proposed, so that the state and input of the system under the decentralised controller can become arbitrarily close to those of the system under the centralised controller. Similarly, given a centralised LTI controller, the work [START_REF] Deshmukh | Decentralized implementation of a class of centralized LTI controllers for two-channel systems using periodic control[END_REF] showed that a (high-frequency) periodic decentralised implementation is internally stabilising if the centralised LTI controller is stable, minimum-phase, and satisfies some relative degree conditions. We are not aware of any work along these lines for general nonlinear systems.

In this paper, we develop an alternative decentralised design methodology inspired by wave relaxation methods [START_REF] Bertsekas | Parallel and Distributed Computation: Numerical Methods[END_REF] for general nonlinear NCS, which are very much related to Picard's successive approximation method [START_REF] Picard | Sur l'application des méthodes d'approximations successives à l'étude de certaines équations différentielles ordinaires[END_REF]. The goal is to "emulate" a centralised controller on multiple processors that satisfy certain requirements on computational speed and accuracy. This enables us to obtain provable guarantees of stability for nonlinear systems by adapting the single processor hybrid modelling framework [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF], [START_REF] Heijmans | An average allowable transmission interval condition for the stability of networked control systems[END_REF], [START_REF] Hertneck | Reverse average dwell time constraintsenable arbitrary maximum allowabletransmission intervals[END_REF] to this new scenario. We consider an NCS scenario where the plant and controller communicate via a network, and the control signals are generated by multiple processors. As in parallel computing systems [START_REF] Bertsekas | Parallel and Distributed Computation: Numerical Methods[END_REF], processors are assumed to be located within a small distance of each other, and communications between them are reliable. To generate the control signal, we schedule all processing nodes to take turn in computing components of the controller state.

We illustrate that this underlying behaviour can be captured by fast switching flow dynamics in the processors' state. We then apply the hybrid averaging tools from [START_REF] Teel | Averaging for a class of hybrid systems[END_REF] to obtain an averaged model for the multi-processor NCS. To study stability, we use an emulation-based approach. That is, we assume the availability of a centralised controller that stabilises the NCS in absence of the multi-processing structure. Then, we implement such controller over multiple processors, and use the tools in [START_REF] Teel | Averaging for a class of hybrid systems[END_REF] to show that stability of the centralised NCS ensures semi-global practical stability of the multi-processor NCS, for sufficiently small maximum allowable computation interval (MACI). This is a newly introduced design parameter to cope with the multi-processor implementation, in addition to the commonly used maximum allowable transmission interval (MATI), that typically ensures stability of centralised NCS.

Our main contributions can be summarised as follows. 1) We use hybrid systems to model the interconnection between parallel computing techniques, controller design, and communication networks; leading to a multi-processor model structure often ignored in the NCS literature.

2) We show that stability of the centralised controller can be preserved (in an appropriate sense) for the multi-processor NCS. Compared to existing nonlinear and centralised NCS literature, our results are tailored for multi-processor implementations that arise in IIoT applications such as [START_REF] Macher | Automotive embedded software: Migration challenges to multi-core computing platforms[END_REF]- [START_REF] Li | Synchronous and asynchronous parallel computation for large-scale optimal control of connected vehicles[END_REF].

3) Most decentralisation of centralised controllers focus on linear systems only [START_REF] Wu | Composite resource scheduling for networked control systems[END_REF]- [START_REF] Deshmukh | Decentralized implementation of a class of centralized LTI controllers for two-channel systems using periodic control[END_REF]. We propose a different approach based on relaxation methods, which leads to design by hybrid averaging. The use of hybrid averaging for parallelisation of controllers has yet to be explored in the control literature, and it allows us to obtain results for general nonlinear systems.

II. NCS FORMULATION

We consider the controller design problem for the NCS architecture depicted in Fig. 1(a), where the controller adopts a multi-processor architecture to stabilise the plant. To address this problem, we will follow an emulation-based approach. Particularly, given a stabilising single processor controller associated with the NCS of Fig. 1(b), we aim to provide conditions on the multi-processing structure under which the original stability property of the centralised controller can be preserved for the multi-processor NCS in Fig. 1(a).

A. Centralised NCS

We first describe the elements of the centralised NCS in Fig. 1(b). We consider the same (centralised) NCS model as commonly used in previous work such as e.g., [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF], [START_REF] Heijmans | An average allowable transmission interval condition for the stability of networked control systems[END_REF], [START_REF] Hertneck | Reverse average dwell time constraintsenable arbitrary maximum allowabletransmission intervals[END_REF]. The dynamics of the plant and controller are

ẋp = f p (x p , û), y = g p (x p), (1) ẋc
= f c (x c , ŷ), u = g c (x c), (2)
Multi-processor NCS. (b) Single processor NCS. where x p ∈ R np and x c ∈ R nc denote the plant and controller states, y ∈ R ny is the plant output, u ∈ R nu is the control input, and (ŷ, û) ∈ R ny × R nu are the most recently received values of (y, u) from the network. The functions f p , f c , ∂gp ∂xp and ∂gc ∂xc are assumed to be locally Lipschitz, and g p and g c are continuously differentiable. We note in Fig. 1(b) that a single processor P computes the whole state x c .

Let {t j } j∈Z ≥0 be a monotonically increasing sequence of transmission instants, where Z ≥0 := {0, 1, 2, . . . }. The network is composed of a set of nodes N := {1, . . . , N }, whose access to the network is governed by an underlying protocol. A node consists of several sensors and/or actuators with their corresponding data being transmitted at the same t j . Right after transmission, (ŷ, û) are updated as ŷ(t + j) = y(t j) + h y (j, e(t j)), û(t + j) = u(t j) + h u (j, e(t j)),

where the functions h y and h u model the scheduling protocol, see e.g., [START_REF] Nešić | Input-output stability properties of networked control systems[END_REF], and e denotes the network-induced error, defined as e := (e y , e u) ∈ R ne , with e y := ŷ -y, e u := û -u, and n e := n y + n u . As per the N network nodes, we can write e = (e 1 , . . . , e N), after re-ordering (if necessary). Typically, h y and h u are such that e ℓ (t + j) = 0, ℓ ∈ N , if the ℓ-th node gets access to the network at t j . We also have that ẏ = 0 and u = 0 for any t ∈ [t j , t j+1] (zero-order hold behaviour).

We assume τ MIATI ≤ t j+1 -t j ≤ τ MATI , for all j ∈ Z ≥0 . The parameter τ MATI ∈ R >0 is the so-called maximum allowable transmission interval, as proposed in e.g., [START_REF] Nešić | Input-output stability properties of networked control systems[END_REF]; and τ MIATI ∈ R >0 is the minimal allowable transmission interval, see e.g., [START_REF] Heijmans | Computing minimal and maximal allowable transmission intervals for networked control systems using the hybrid systems approach[END_REF]. Due to hardware limitations, MIATI always exists. In earlier works such as [START_REF] Nešić | Input-output stability properties of networked control systems[END_REF], [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF], the MIATI was always set to be (essentially) zero, and MATI was the only parameter that played a role for stability. Later on, it was shown in [START_REF] Heijmans | Computing minimal and maximal allowable transmission intervals for networked control systems using the hybrid systems approach[END_REF] that exploiting the knowledge on MIATI can lead to less conservative stability results. Recently, [START_REF] Heijmans | An average allowable transmission interval condition for the stability of networked control systems[END_REF] and [START_REF] Hertneck | Reverse average dwell time constraintsenable arbitrary maximum allowabletransmission intervals[END_REF] illustrated why focusing solely on the MATI as a worst case bound for stability can be unnecessarily conservative. In fact, the worst case t j+1 -t j = τ MATI may occur only seldom, whilst the average time between successive transmissions could be significantly smaller. As a consequence, [START_REF] Heijmans | An average allowable transmission interval condition for the stability of networked control systems[END_REF], [START_REF] Hertneck | Reverse average dwell time constraintsenable arbitrary maximum allowabletransmission intervals[END_REF] adopted a reverse average dwell time (RADT) condition to enforce that, on average, at least one jump occurs every τ * r-dt > τ MIATI time units. The RADT condition is given by

j -i ≥ [(t -t) -τ MATI] /τ * r-dt , (4)
where j -i is, loosely speaking, related to the number of "jumps" of the solution of the underlying hybrid model between t and t, with (t, j) ⪰ (t, i). Including information about average transmission intervals helps to enlarge the values of MATI while still guaranteeing stability, see e.g., [START_REF] Hertneck | Reverse average dwell time constraintsenable arbitrary maximum allowabletransmission intervals[END_REF]. So far, the NCS literature has focused on single processor implementations as in [START_REF] Hegde | High-density platooning in cellular vehicle-to-everything systems: On the importance of communication-aware networked control design[END_REF]; where τ MATI , τ MIATI and τ * r-dt determine the stability of the NCS. In this paper, we go one step further by implementing the controller over multiple processors. In this new scenario, not only τ MATI , τ MIATI , and τ * r-dt play an important role for stability of the NCS in Fig. 1(a), but also the so-called maximum allowable computational interval (MACI), as described further below.

B. Multi-processor implementation

We now implement the single processor NCS from the previous section over multiple processors as per Fig. 1(a). Particularly, we consider a common parallel computing scenario with shared memory architecture, as described in [START_REF] Bertsekas | Parallel and Distributed Computation: Numerical Methods[END_REF]Chapter 1]; where multiple processing nodes P 1 , . . . , P M are located within a small distance of each other, and the communication between them is reliable and done over a shared memory bus. Each processing node P i may be a group of individual processors that execute computational tasks in parallel. The time it takes for a computation task to be completed by any processing node P i , i ∈ M := {1, . . . , M }, is denoted by 1 ε ∈ R >0 . We call activation instants the times at which some P i becomes active to execute such computation task. Formally, let a k denote the k-th activation instant, k ∈ Z ≥0 . We note that each computation interval [a k , a k+1] has length a k+1 -a k = ε, where ε satisfies 0 < ε ≤ τ MACI . Parameter τ MACI denotes the maximum allowable computational interval, and it is a design parameter to deal with the multi-processor structure.

The main task of P 1 , . . . , P M is to implement the centralised controller (2). To that end, they adopt a parallelisation technique highly inspired by wave relaxation methods [START_REF] Bertsekas | Parallel and Distributed Computation: Numerical Methods[END_REF]. That is, each of the M nodes will be assigned to update a different group of components of f c in (2). The way each component of f c depends on the individual components of x c determines the parallelisation strategy. For instance, if a component of f c depends on every element of x c , then only one component of f c can be updated at a time [START_REF] Bertsekas | Parallel and Distributed Computation: Numerical Methods[END_REF]. If the dependency is sparse, then certain updates can be performed in parallel. To model this, we let x c be decomposed as

x c = (x c,1 , . . . , x c,M), where x c,i ∈ R nc,i , i ∈ M , M ≤ n c
, and M i=1 n c,i = n c . Here, x c,i denotes the i-th block component of x c , which contains all the individual components of x c (after re-ordering, if necessary) that are meant to be computed in parallel by the i-th group of processors. This way, the single processor controller (2) is decomposed into M subsystems of the form ẋc,i = f c,i (x c,1 , . . . , x c,M , ŷ), where f c,i denotes the i-th (block) component of the function f c 1 Future work will consider that computation tasks might be completed at different times for each processing node, i.e., ε i for each i ∈ M . in [START_REF] Hegde | High-density platooning in cellular vehicle-to-everything systems: On the importance of communication-aware networked control design[END_REF]. There is freedom in choosing the order in which the block components x c,i are to be updated, leading to different scheduling algorithms for computation [START_REF] Bertsekas | Parallel and Distributed Computation: Numerical Methods[END_REF]. We focus on a Round-Robin strategy in this work.

Let x c,i be the state of P i , and µ ∈ (0, 1) a design parameter. For any t ∈ [a k , a k+1], there is an active processing node P i , i ∈ M , and idle nodes P n , n ∈ M \{i}, such that

ẋc,i = (1/µ)f c,i (x c,1 , . . . , x c,M , ŷ), (5) ẋc,n = 0. (6)
That is, whenever a computing node is active, its state x c,i will evolve according to [START_REF] Khaled | Fast multi-core cosimulation of cyber-physical systems: Application to internal combustion engines[END_REF], and when it is idle, it will buffer its most recent value of the state according to [START_REF] Li | Synchronous and asynchronous parallel computation for large-scale optimal control of connected vehicles[END_REF]. We note that µ in (5) is used to scale the vector fields in order to generate-on average-the dynamics (2) that are generated by a single processor. We design µ in Section IV. The Round-Robin schedule determines which processing node is active in every computation interval of length ε. Particularly, it assigns computing tasks2 to the M processing nodes in a circular manner so that (5) holds whenever i = (k -1) mod M + 1, and (6) otherwise. Lastly, we note that the control input for this multi-processor scheme results in u = g c (x c), with x c := (x c,1 , . . . , x c,M), see Fig. 1(a); as opposed to the single processor case where u = g c (x c).

III. HYBRID SYSTEM MODEL

In this section, we derive a hybrid model for the multiprocessor NCS from Fig. 1(a) based on the system description in Section II. Let τ s ∈ R ≥0 be a clock to keep track of intertransmission times; τ r ∈ R be an additional clock to store the value of τ s at the last transmission time; and κ s ∈ Z ≥0 be a counter for network transmissions. As per [START_REF] Heijmans | An average allowable transmission interval condition for the stability of networked control systems[END_REF], [START_REF] Hertneck | Reverse average dwell time constraintsenable arbitrary maximum allowabletransmission intervals[END_REF], the RADT condition (4), which covers he cases in e.g., [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF] as special cases, can be modelled by

τs = 1 τr = 0 τ s ∈ [0, τ MATI], τ + s = max{0, τ s -τ * r-dt } τ + r = max{0, τ s -τ * r-dt } τ s ∈ [τ r + τ MIATI , τ MATI], (7)
with τ r (0, 0) ≤ τ MATI -τ MIATI and τ r ∈ [0, τ MATI]. To model the multi-processing behaviour, we introduce the rapidly varying clock τ ∈ R ≥0 . Therefore, by using (1), (3), (5), (6), [START_REF] Svennebring | Embedded multicore: An introduction[END_REF], and the definition of e, we write, for

(x p , x c , e, τ, τ s , τ r , κ s) ∈ R np × R nc × R ne × R ≥0 × [0, τ MATI] × [0, τ MATI] × K (i.e., during flows), with K ⊂ Z ≥0 a compact set, ẋp = f p (x p , e u + g c (x c)), (8a) ẋc = (1/µ)∆(τ)f c (x c , e y + g p (x p)), (8b) ė = g(x p , x c , e, τ), (8c) τ = 1/ε, (8d) τs = 1, τr = 0, (8e) κs = 0, (8f)
where ∆(τ) := diag{δ 1 (τ), . . . , δ M (τ)}, with δ i (τ) = 1 when i = ⌊τ ⌋ mod M + 1 and 0 otherwise, and g(x p , x c , e, τ) := -∂gp ∂xp f p (x p , g c (x c) + e u), -∂gc ∂xc 1 µ ∆(τ)f c (x c , e y + g p (x p)) . The matrix ∆ is used to model the Round-Robin activation of processors, as per the description surrounding (5)- [START_REF] Li | Synchronous and asynchronous parallel computation for large-scale optimal control of connected vehicles[END_REF]. That is, ∆ is a periodic time-varying matrix such that, in each εlong computation period, some δ i will be equal to 1, meaning P i is activated to compute x c,i , and all other processors are idle (i.e., ẋc,n = 0) since δ n = 0 for all n ∈ M \{i}. We highlight that, contrary to prior work on single processor NCS such as [START_REF] Nešić | Input-output stability properties of networked control systems[END_REF]- [START_REF] Heemels | Networked control systems with communication constraints: Tradeoffs between transmission intervals, delays and performance[END_REF], [START_REF] Hertneck | Reverse average dwell time constraintsenable arbitrary maximum allowabletransmission intervals[END_REF], the implementation of the control law via multiple processors naturally introduces rapidly changing flow dynamics when ε > 0 is small, see (8b) and (8d).

Similarly, whenever

(x p , x c , e, τ, τ s , τ r , κ s) ∈ R np × R nc × R ne × R ≥0 × [τ r + τ MIATI , τ MATI] × [0, τ MATI] × K (i.
e., at jumps),

x + p = x p , x + c = x c , e + = h(κ s , e), τ + = τ, τ + s = max{0, τ s -τ * r-dt }, τ + r = max{0, τ s -τ * r-dt }, κ + s = G s (κ s , τ s), (9)
where h := (h y , h u) as per (3), and G s : K × [0, τ MATI] → K models the discrete dynamics of the counter κ s . For analysis purposes, we assume κ s takes values in the compact set K.

We note that jumps in (9) represent network transmissions only, as processors have continuous access to a shared memory bus (i.e. shared memory architecture [START_REF] Bertsekas | Parallel and Distributed Computation: Numerical Methods[END_REF]) and there is no discrete communication between them. Different parallel computing architectures may lead to additional jumps. For instance, message passing architectures [19, Chapter 1], where there is an interconnection network between processors, may lead to extra jumps to represent this communication among processors; these are left for future work.

We now write the hybrid model (8)-(9) in a compact form that is more amenable for the forthcoming analysis. Let q := ((x p , x c , e), (τ s , τ r , κ s)) ∈ X × T, with X := R np × R nc × R ne and T := [0, τ MATI]×[0, τ MATI]×K. Then, the hybrid system (8)-(9) can be written as

q = F(q, τ) τ = 1/ε (q, τ) ∈ C × R ≥0 , q + = G(q) τ + = τ (q, τ) ∈ D × R ≥0 , (10)
where the flow and jump sets are given by

C := X × [0, τ MATI] × [0, τ MATI] × K, D := X × [τ r + τ MIATI , τ MATI] × [0, τ MATI] × K. (11
)
The mapping F in [START_REF] Heemels | Networked control systems with communication constraints: Tradeoffs between transmission intervals, delays and performance[END_REF], for (q, τ) ∈ C × R ≥0 , is defined as F(q, τ) := f p (x p , e u + g c (x c)), 1 µ ∆(τ)f c (x c , e y + g p (x p)), g(x p , x c , e, τ), 1, 0, 0 . The mapping G in [START_REF] Heemels | Networked control systems with communication constraints: Tradeoffs between transmission intervals, delays and performance[END_REF], for (q, τ) ∈ D × R ≥0 , is defined as G(q) := x p , x c , h(κ s , e), max{0, τ s -τ * r-dt }, max{0, τ sτ * r-dt }, G s (κ s , τ s) . Hereafter, and for clarity, we introduce the following definitions. Let

x := (x p , x c) ∈ R nx , n x := n p + n c , F p (x, e) := f p (x p , e u + g c (x c)), F c (x, e) :=
f c (x c , e y + g p (x p)), F x (x, e) := (F p (x, e), F c (x, e)), and F e (x, e) := -∂gp ∂xp F p (x, e), -∂gc ∂xc F c (x, e) . In [START_REF] Heemels | Networked control systems with communication constraints: Tradeoffs between transmission intervals, delays and performance[END_REF], we can see that τ changes faster compared to the rest of the state q, because of the parallel computing implementation of the controller via (5)-(6). This is a significant difference compared to centralised implementations of NCS [START_REF] Nešić | Input-output stability properties of networked control systems[END_REF]- [START_REF] Heemels | Networked control systems with communication constraints: Tradeoffs between transmission intervals, delays and performance[END_REF]. Exploiting this inherited structure to show stability of [START_REF] Heemels | Networked control systems with communication constraints: Tradeoffs between transmission intervals, delays and performance[END_REF] is the main objective of the following section.

IV. STABILITY ANALYSIS

Since the implementation of the centralised controller (2) over multiple processors leads to fast switching flow dynamics when ε > 0 is small; our stability analysis for system (10) will be based on averaging. We impose conditions on an average (approximated) system to conclude stability of the original system [START_REF] Heemels | Networked control systems with communication constraints: Tradeoffs between transmission intervals, delays and performance[END_REF]. To do so, we will apply the averaging tools for hybrid systems proposed in [START_REF] Teel | Averaging for a class of hybrid systems[END_REF].

A. Average system

The first step is to derive the average system. For that purpose, we need the following two preliminary lemmas, whose proofs are given in the appendix.

Lemma 1: The following holds for F in [START_REF] Heemels | Networked control systems with communication constraints: Tradeoffs between transmission intervals, delays and performance[END_REF].

(i) For each compact set K ⊂ R nq , there exists R > 0 such that |F(q, τ)| ≤ R for all (q, τ) ∈ (K ∩ C) × R ≥0 . (ii) There exists T ∈ R >0 such that F(q, τ + T) = F(q, τ)
for all (q, τ) ∈ C × R ≥0 . □ Lemma 1(i) ensures the boundedness of F on compact sets, and (ii) states that F is periodic with respect to τ . Before stating the next lemma, we define for each (q, τ) ∈ C × R ≥0 ,

F av (q) := 1 T T 0 F(q, s)ds, (12)
σ(q, τ) :

= τ 0 [F(q, s) -F av (q)] ds, (13)
with T as per Lemma 1(ii). We highlight that (12) will determine the average system, and (13) helps to quantify the difference between the multi-processor and average systems. Lemma 2: The following holds. 12) is given by F av (q) = (F x (x, e), F e (x, e), 1, 0, 0), where F x and F e are defined after [START_REF] Heijmans | An average allowable transmission interval condition for the stability of networked control systems[END_REF]. (ii) For each compact set K ⊂ R nq , there exists L > 0 such that σ in (13) satisfies

(i) If µ = 1/M in (8b), then F av in (
|σ(q, t)| ≤ L , (14) |σ
(q, t) -σ(w, s)| ≤ L(|q -w| + |t -s|) , (15)
for all (q, t), (w, s) ∈ (K ∩ C) × R ≥0 . □ Lemma 2(i) designs µ so that the average of the rapidly timevarying function 1 µ ∆(τ)F c (x, e), coming from the multiple processor architecture, is given by the centralised controller function F c (x, e), when µ = 1/M . Lemma 2(ii) shows some regularity properties for σ in [START_REF] Ge | Distributed networked control systems: A brief overview[END_REF], that are useful to state the main stability result. These conditions were adopted as assumptions in previous literature for generic rapidly-varying hybrid systems [START_REF] Teel | Averaging for a class of hybrid systems[END_REF]Assumption 4], and Lemma 2 shows that these are verified for our class of multi-processor NCS.

We can now introduce the average hybrid system for the rapidly time-varying system [START_REF] Heemels | Networked control systems with communication constraints: Tradeoffs between transmission intervals, delays and performance[END_REF], which is given by q = F av (q), q ∈ C,

q + = G(q), q ∈ D, (16)
with F av as per Lemma 2(i), and C, D, G exactly as in [START_REF] Heemels | Networked control systems with communication constraints: Tradeoffs between transmission intervals, delays and performance[END_REF]. It is important to note that the average system actually coincides with the hybrid system that models the single processor NCS in Fig. 1(b), see e.g., [START_REF] Heijmans | An average allowable transmission interval condition for the stability of networked control systems[END_REF], [START_REF] Hertneck | Reverse average dwell time constraintsenable arbitrary maximum allowabletransmission intervals[END_REF]. In the sequel, we show that stability of the centralised NCS in Fig. 1(b), i.e., the average system [START_REF] Wu | Composite resource scheduling for networked control systems[END_REF], can be preserved in a semi-global and practical sense, for the multi-processor NCS [START_REF] Heemels | Networked control systems with communication constraints: Tradeoffs between transmission intervals, delays and performance[END_REF].

B. Stability of the multi-processor NCS

We present the main result of the paper below, whose proof can be found in the appendix.

Theorem 1: Suppose the set A := {((x, e), (τ s , τ r , κ s)) ∈ X × T : x = 0, e = 0} is uniformly globally asymptotically stable 3 for the average system [START_REF] Wu | Composite resource scheduling for networked control systems[END_REF]. Then, for the multiprocessor NCS [START_REF] Heemels | Networked control systems with communication constraints: Tradeoffs between transmission intervals, delays and performance[END_REF] with µ = 1/M , the set A is semi-globally practically asymptotically stable as ε → 0 + [START_REF] Teel | Averaging for a class of hybrid systems[END_REF]. That is, there exists β ∈ KL such that for any compact set K ⊂ R nq and any ν > 0, there exist ε * > 0 and δ > 0 such that any ε ∈ (0, τ MACI], with τ MACI ∈ (0, min{δ/(2L(R + 1)), ε * }), implies any solution to [START_REF] Heemels | Networked control systems with communication constraints: Tradeoffs between transmission intervals, delays and performance[END_REF]

initialised in K satisfies |q(t, j)| A ≤ β(|q(0, 0)| A , t + j) + ν, (17)
for all (t, j) ∈ dom q, where R and L are as per Lemmas 1 and 2, respectively. □ Theorem 1 shows that, provided set A is UGAS for the average system [START_REF] Wu | Composite resource scheduling for networked control systems[END_REF], then stability is preserved in a semiglobal practical sense for the multi-processor NCS [START_REF] Heemels | Networked control systems with communication constraints: Tradeoffs between transmission intervals, delays and performance[END_REF], under sufficiently fast computations. A large difference between the multi-processor and average systems, quantified by the bound L in [START_REF] Pajic | The wireless control network: A new approach for control over networks[END_REF], leads to faster computations for stability. Ensuring stability of the average system can be done through existing results in the literature on nonlinear NCS. Particularly, the average system (16) coincides with the centralised NCS models adopted in e.g., [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF], [START_REF] Heijmans | An average allowable transmission interval condition for the stability of networked control systems[END_REF], [START_REF] Hertneck | Reverse average dwell time constraintsenable arbitrary maximum allowabletransmission intervals[END_REF]. Therefore, stability of (16) can be ensured by the results in [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF], [START_REF] Heijmans | An average allowable transmission interval condition for the stability of networked control systems[END_REF], [START_REF] Hertneck | Reverse average dwell time constraintsenable arbitrary maximum allowabletransmission intervals[END_REF].

V. NUMERICAL EXAMPLE

We consider a single-link flexible joint robot as in [START_REF] Ekramian | Observer-based controller for lipschitz nonlinear systems[END_REF]. The system dynamics are nonlinear and can be described as ẋp = Ax p + Bu + Φ(x p) and y = Cx p , with B ⊤ = (0, 21.6, 0, 0), C = (1, 0, 0, 0), Φ(x p) ⊤ = (0, 0, 0, -7.93 sin(x p,3)), and A = . To stabilise the plant, we consider the observer-based centralised controller from [START_REF] Ekramian | Observer-based controller for lipschitz nonlinear systems[END_REF], which has the form ẋc = Ax c + Bu + Φ(x c) -L(y -Cx c) and u = F x c , with gains L ⊤ = (6.057, 9.609, 5.918, 5.300) and F = (6.528, 2.637, 0.861, 3.889). Only the plant output y is 3 The set A is UGAS for system [START_REF] Wu | Composite resource scheduling for networked control systems[END_REF] if there exists β ∈ KL such that any solution ξ to (16) satisfies |ξ(t, j)| A ≤ β(|ξ(0, 0)|, t + j), ∀(t, j) ∈ dom ξ. sent over the network (i.e., e = ŷ -y) with τ MATI = 0.005 and τ MIATI = 0.001. The norm of x = (x p , x c) for the centralised NCS described above is plotted in Fig. 2 (solid blue), with x(0, 0) = (-1, 1, -1, 1, 0, 0, 0, 0). We now implement the centralised controller over four processors with the parallel computing method described in Section II-B. That is, processor P 1 computes ẋc,1 = (1/4)(x c,2 + 6.057(x p,1 -x c,1 + e)), P 2 computes x c,2 = (1/4)(-58.2x c,1 -1.25x c,2 + 48.6x c,3 + 21.6u + 9.609(x p,1 + e)), P 3 computes ẋc,3 = (1/4)(x c,4 + 5.918(x p,1 -x c,1 + e)), and P 4 computes ẋc,4 = (1/4)(14.2x c,1 -19.5x c,3 -7.93 sin(x c,3) + 5.3(x p,1 + e)) in a Round-Robin fashion. We plot |x(•)| for the multi-processor NCS in Fig. 2 for three different values of computation interval ε. We can see that, as ε is reduced, the behaviour of the centralised NCS (average system) is preserved for the multi-processor implementation. Also, larger ε leads to instability.

VI. CONCLUSIONS AND FUTURE WORK

We showed how to implement a centralised nonlinear controller in a decentralised manner that preserves stability under the context of NCS and parallel computing. We assumed the communication between processors is reliable and accessible through a shared memory bus. Future work will consider the so-called message-passing architectures, where each processor has its own local memory and communicates through an interconnection network. This will open the door for fully distributed control scenarios, where processors may be far from each other, and may communicate asynchronously. Finding explicit bounds on MACI in these settings is of great interest, particularly for linear systems. Lastly, studying optimisationbased networked control in the context of parallel/distributed computing is also part of our future work.

APPENDIX

Proof of Lemma 1: (i) This item follows from continuity of the maps F p , F c , ∂gp ∂xp , ∂gc ∂xc and the fact that |∆(τ)| ≤ 1, ∀τ ∈ R ≥0 . (ii) The only τ -dependent component of F(q, τ) in (10) corresponds to 1 µ ∆(τ)F c (x, e). By definition, we know that ∆(τ +M) = ∆(τ) for any τ ∈ R ≥0 . Therefore, F(q, τ +T) = F(q, τ) for all (q, τ) ∈ C × R ≥0 , with T = M . ■ Proof of Lemma 2: (i) Let µ = 1/M and (q, τ) ∈ C × R ≥0 , and we recall that F(q, τ) = F p (x, e), 1 µ ∆(τ)F c (x, e), g(x p , x c , τ), 1, 0, 0 , where

g(x p , x c , τ) = - ∂gp ∂xp F p (x, e), -∂gc ∂xc (1/µ)∆(τ)F c (x, e) .
Then, it suffices to compute 1 T T 0 1 µ ∆(s)F c (x, e)ds, as all the other terms are independent of τ . We proceed component-wise. Let F c = (F c,1 , . . . , F c,M), then

1 T T 0 1 µ δ i (s)F c,i (x, e)ds = 1 µT F c,i (x, e
), by definition of δ i and since T = M . Consequently, since µ = 1/M , F av (q) = F p (x, e), F c (x, e), -∂gp ∂xp F p (x, e), -∂gc ∂xc F c (x, e), 1, 0, 0 , completing the proof of item (i). (ii) Let K ⊂ R nq be a compact set and (q, t), (w, s) ∈ (K ∩ C) × R ≥0 . We first prove [START_REF] Pajic | The wireless control network: A new approach for control over networks[END_REF]. By item (i) above, we can write, for any (q, τ) ∈ C × R ≥0 , F(q, τ) -F av (q) = 0, M ∆(τ)F c (x, e) -F c (x, e), 0,

-(∂g c /∂x c) [M ∆(τ)F c (x, e) -F c (x, e)] 0, 0, 0 . (18)
We focus on the term M ∆(τ)F c (x, e) -F c (x, e) and define σ(q, t) := t 0 [M ∆(n)F c (x, e) -F c (x, e)] dn, for any (q, t) ∈ C × R ≥0 . Given t ∈ R ≥0 , let κ ∈ Z ≥0 and T ∈ [0, T) satisfying t = κT + T . We proceed elementwise, that is, for any i ∈ M , σi (q, t)

= t 0 J i (n)dn = T 0 J i (n)dn + 2T T J i (n)dn + • • • + κT + T κT J i (n)dn
, where J i (n) := M δ i (n)F c,i (x, e) -F c,i (x, e). Note that σi (q, κM) = 0 for each κ ∈ Z ≥0 . Therefore, |σ i (q, t)| = κT + T κT [M δ i (n)F c,i (x, e) -F c,i (x, e)] dn ≤ (M -T)c K,i , where c K,i := max q∈K |F c,i (x, e)|; noting that T < M . Then, from [START_REF] Deshmukh | Decentralized implementation of a class of centralized LTI controllers for two-channel systems using periodic control[END_REF] we get |σ(q, t)| ≤ L A , with L A := (1 + b K)M c K , b K := max q∈K ∂gc ∂xc (x c) and c K := M i=1 c K,i . We now focus on [START_REF] Zhang | Distributed control of large-scale networked control systems with communication constraints and topology switching[END_REF]. Similarly to above, we first consider σ, and assume s ≤ t without loss of generality. To save space, we will also use the slight abuse of notation F c (q) = F c (x, e). Like before, we let s = κT + Ts , with Ts ∈ [0, T). By definition of σ, we can write σi (q, t) -σi (w, s) = t 0 [M δ i (m) -1]F c,i (q)dm -s 0 [M δ i (m) -1]F c,i (w)dm = (F c,i (q)-F c,i (w)) s 0 [M δ i (m)-1]dm+F c,i (q) t s [M δ i (m)-1]dm ≤ |F c,i (q) -F c,i (w)| |M -Ts |+|F c,i (q)||M -1||t-s|, where, in the last term, we used the fact that δ i (m) ≤ 1 for any m ∈ R ≥0 . Thus, |σ i (q, t) -σi (w, s)| ≤ M L Fc,i |q -w| + c K,i |M -1||t -s| ≤ Li (|q -w| + |t -s|), where Li := max{M L Fc,i , c K,i |M -1|} and L Fc,i denotes the Lipschitz constant of F c,i . Naturally, |σ(q, t) -σ(w, s)| ≤ L(|q -w| + |t -s|), with L := M i=1 Li . From [START_REF] Deshmukh | Decentralized implementation of a class of centralized LTI controllers for two-channel systems using periodic control[END_REF], we can see that it remains to find ∂gc ∂xc (w)σ(w, s) -∂gc ∂xc (q)σ(q, t) = ∂gc ∂xc (q) [σ(w, s) -σ(q, t)] + ∂gc ∂xc (w) -∂gc ∂xc (q) σ(w, s) ≤ b K L (|w -q| + |t -s|) + L g |w -q|M c K ≤ L (|w -q| + |t -s|), where L := max{b K L+L g M c K , b K L} and L g denotes the Lipschitz constant for (∂g c /∂x c) for the given compact set K. Then, |σ(q, t) -σ(w, s)| ≤ (L + L)(|q -w| + |t -s|), and thus (14) and (15) are satisfied with L = max{L A , L + L}. ■ Proof of Theorem 1: The proof follows from Lemmas 1 and 2, together with [START_REF] Teel | Averaging for a class of hybrid systems[END_REF]Theorem 2]. We first note that the resulting multi-processor NCS [START_REF] Heemels | Networked control systems with communication constraints: Tradeoffs between transmission intervals, delays and performance[END_REF] fits the class of rapidly varying hybrid systems considered in [START_REF] Teel | Averaging for a class of hybrid systems[END_REF]. Moreover, the assumptions of [21, Theorem 2] (namely Assumptions 2-4) are verified for [START_REF] Heemels | Networked control systems with communication constraints: Tradeoffs between transmission intervals, delays and performance[END_REF] in view of Lemmas 1 and 2, as A is compact. The proof is thus complete. ■

Fig. 1 :

 1 Fig. 1: Considered NCS architectures.

Fig. 2 :

 2 Fig. 2: Comparison between centralised NCS and multiprocessor NCS for three values of computation interval ε.

Here, a computational task translates into a processor updating its state according to[START_REF] Khaled | Fast multi-core cosimulation of cyber-physical systems: Application to internal combustion engines[END_REF], over a computation period of length ε. We neglect any integration errors coming from computing (5), as we want to concentrate on processor scheduling effects rather than numerical discretisation.

*This work was supported by the Australian Research Council under the Discovery Project DP200101303, the France-Australia collaboration project IRP-ARS CNRS, and the grant HANDY ANR-18-CE40-0010.