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Artificial intelligence and Machine learning (ML) are increasingly applied for 
study of patients with renal cell carcinoma (RCC) [1]. Advanced techniques, such as 
neural networks or random forests can analyze vast amount of clinical data to uncover 
specific prognostic features that may not be detectable with traditional statistical 
methods. However, despite some promising results, recent studies showcase that 
benefits of ML are not ubiquitous, especially when deployed on imperfect and non-
granular datasets[2]. 
 
In this issue of BJUI, Boulenger de Hauteclocque employ data from the French multi-
institutional kidney cancer database UroCCR (ClinicalTrials.gov Identifier: 
NCT03293563), to investigate the ability of seven ML algorithms at predicting pT3a 
upstaging in a cohort of patients who underwent surgery for cT1/cT2a RCC. Using 
supervised ML algorithms, they reported a  prediction accuracy (measured by the area 
under the receiver operating curve) of 0.77 for their best model [3]. While the results 
are intriguing, the design of the study raises questions that should be considered by 
clinicians when interpreting the results. 
 
First, the accuracy of the model is heavily dependent on the fidelity and granularity of 
the dataset used for training. For instance, missing data have a significant noxious 
impact on the performance of the model. For their study, Boulenger et al. worked with 
a database with a high rate (205) of missing observations in the variables used to 
construct the prognostic model, such as the R.E.N.A.L. nephrometry score. Thus, 
limitations of the presented models stemmed, at least in part, from the nature and 
handicap of the dataset.  Indeed, deep neural network approach is particularly effective 
when deployed for analyzing large, complex, and high-dimensional datasets, such as 
cross-sectional imaging, that are highly granular and are of high fidelity [4]. 
 
Second, ML algorithms have several adjustable hyperparameters. Hyperparameters 
can be compared to knobs of an amplifier that allow to fine-tune the bass and treble 
of an audio track. They are usually set before the training process begins. A search 
for optimal hyperparameters must be done using the training set to achieve a high 
performance (there are usually two strategies for hyperparameter tuning: 
GridSearchCV or RandomizedSearchCV). A detailed description of the 
hyperparameters tuning process is lacking and would strengthen this report [5].  
Similarly, decision curve analysis is also missing. While the authors do report receiver 
operating characteristic curves and calibration measurements of the models, details 
of decision curve analysis are important since they provide a probability of certainty 
for the decisions that can be made in daily practice based on the results of the 
algorithm [6].  
 
Third, ML approaches have a “shadow zone”, referred to as a “black box”, which results 
in challenges of understanding the model estimates. Boulenger de Hauteclocque and 
colleagues acknowledge this limitation and use the shapley additive explanations 
(SHAP) values to explain each patient’s probability of being upstaged. SHAP is a 



popular method used to understand how ML models make predictions, but it has 
limitations. One issue is that SHAP assumes the included variables are independent 
from one another, while in reality, there may be interdependencies among the 
variables. In that case, the approximations made by SHAP can be skewed (for instance 
tumor size and RENAL score, both of which are used in the ML model, are intimately 
linked) [7].  
 
The Standardized Reporting of Machine Learning Applications in Urology (STREAM-
URO) framework was developed to provide a set of recommendations to standardize 
the way ML studies are reported [8]. It includes providing a detailed report of the model, 
along with the code, especially in case of complex ML systems. The authors of the 
study largely adhered to the STREAM-URO guidelines. However, the manuscript omits 
the models themselves, which prohibits the readers from utilizing them to predict 
outcomes on new populations and to validate the model with external data. 
 
Finally, from a clinical and surgical standpoint, the ability to predict pT3a upstaging 
among patients with localized renal masses who are candidates for elective surgery is 
not always actionable. On one hand, decision-making in these patients is complex and 
nuanced; as such, beyond tumor-related characteristics, the treatment decisions 
should also rely on careful assessment of patient-, kidney- and provider-related factors 
[9]. On the other hand, PN and RN appear to achieve similar cancer control even if the 
final histology shows unexpected pT3a RCC upstaging [10]. In addition, in a recent 
systematic review, age, tumor size and RENAL score were the three predictors of 
upstaging [11]. In this regard, the added value of ML methods as compared to 
conventional logistic regression models for prediction of pathological features of RCC 
is unclear.  Indeed, several reports indicate that logistic regression is at least as good 
as ML techniques in predict such outcomes [12]. Of note, an AUC of 0.77 (as reported 
in the study by Boulenger de Hauteclocque et al) is close to halfway between a random 
coin flip (AUC of 0.5) and a perfect prediction (AUC of 1.0), being comparable to 
previously reported “standard” modes [13].  
 
In conclusion, the report by the authors is novel and noteworthy; however, the available 
evidence does not entirely support the claim that prediction models obtained using ML 
algorithms on standard clinical datasets are superior and more clinically useful when 
compared to conventional predictive tools. While ML techniques harbor new 
opportunities in the field of RCC prognostication, it is imperative to standardize and 
improve the quality of reporting of these novel AI algorithms, as well as to thoroughly 
validate them before integration into shared decision-making in daily clinical practice. 
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