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This work presents the macroscopic behavior of skeletal muscles seen from a system theoretic standpoint. Then, according to the data available in the literature, we propose a first Evaluation model for the muscle isometric (constant muscle length) force generation depending on the muscle length and neuronal excitation frequency. Such a model is instrumental in providing a more physics-inspired model of such an isometric force by exploiting a nonlinear spring description with controllable characteristics, such as stiffness and rest length. To conclude, we propose a hybrid dynamical filter model to describe the components of the sensory system. This is in charge of feeding back to the Central Nervous System the measurements of muscle length and its rate of change.

Introduction

Skeletal muscles, or simply muscles, are organs of the muscular system whose cells have the characteristic to produce force and movements when electrically stimulated. They are mostly attached to the bones of the skeleton by tendons, and thanks to their contractile and elastic properties they allow the relative motion of the bones of the involved articulations.

Each skeletal muscle consists of thousands of muscle fibers wrapped together by connective tissue sheaths, see any human anatomy book, e.g. [1][Ch.9]. The individual bundles of muscle fibers in a skeletal muscle are known as fasciculi. Each muscle fiber is comprised of several myofibrils containing many myofilaments. When bundled together, all the myofibrils get arranged in a unique striated pattern forming sarcomeres which are the fundamental contractile unit of a skeletal muscle. The two most significant myofilaments are actin and myosin filaments which are arranged distinctively to form various bands on the skeletal muscle [START_REF] Lieber | Skeletal muscle structure, function, and plasticity[END_REF][Ch.1], [START_REF] Frontera | Skeletal muscle: a brief review of structure and function[END_REF] and [START_REF] Sweeney | Muscle contraction[END_REF]. Skeletal muscles show up with neuronal innervations from the sensory-motor system. A set of neurons, the α-motoneurons, constitutes the neuromuscular junction. They are responsible, via their excitation frequency here labeled as α (measured in pulses per second), for the sarcomeres contractions, and hence they allow the generation of the muscle active force. On the other hand, another set of neurons, constituting the proprioceptive receptors, carries sensorial information from the muscle to the Central Nervous System. In particular, the transferred signals are the values of muscle length and rate of change (Spindles -Ia and -II), and the measurement of the force value at the Email address: spirito.mario@gmail.com (Mario Spirito) tendon level (Ib-Spindle or Golgi Tendon Organs (GTO)). We can see the muscle structure, from a system theoretic standpoint, as a multi-input multi-output system with the actuator (α-motoneurons), the plant (the muscles cells, whose contraction produces the exerted force on the joint), and the sensors (Spindles -Ia and -II, and GTO), and the CNS as a feedback controller. A schematic of the involved neurological connections is available in [START_REF] Boyd | The isolated mammalian muscle spindle[END_REF]. terior horn of the grey matter of the spinal cord.

For about half its length the intrafusal muscle bundle is contained within a thick connective tissue capsule which expands in its central 2 mm to form the fluid space organ. Tendon organs lie 'in series' wi extrafusal muscle and, consequently, di charge during a twitch of the muscle.

If the sensory terminals within the spi dle are to send information about musc length to the brain continuously durin The modeling of how muscles exert force started with the work of [START_REF] Hill | The heat of shortening and the dynamic constants of muscle[END_REF] in which the muscle description via a spring-like behavior is presented. In particular, the relationship takes into account a contractile element that produces muscle force and it is put in series to a passive elastic element representing the tendon model between the muscle fibers and the connected bones or tissues. This model has then been exploited to generate more detailed models [START_REF] Huxley | Muscle structure and theories of contraction[END_REF] and [START_REF] Gordon | The variation in isometric tension with sarcomere length in vertebrate muscle fibres[END_REF] in which the authors describe the microscopic behavior of contraction behavior generated by the effects of sarcomeres and cross-bridges. In [START_REF] Mcruer | A neuromuscular actuation system model[END_REF], Hill's model has been enriched with a 'damping element'. In [START_REF] Winters | Analysis of fundamental human movement patterns through the use of in-depth antagonistic muscle models[END_REF], [START_REF] Winters | An improved muscle-reflex actuator for use in large-scale neuromusculoskeletal models[END_REF], and [START_REF] Brown | Measured and modeled properties of mammalian skeletal muscle. ii. the effectsof stimulus frequency on forcelength and force-velocity relationships[END_REF], experimental data has been exploited to construct an analytic expression of the total force generated by the muscles. In these works, the total force has been split into a length-dependent force F L and a velocity-dependent force F V , both depending on the α-motoneuron excitation frequency. The F L term is then split, similarly to Hill's model, into an active plus passive term. The active force describes the part of fibers contraction when excited and produces movements, while the passive force only refers to the elastic mechanical behavior of the muscle fibers.

Experimental data and models of isometric (fixed muscle length) and isokinetic (fixed muscle velocity) forces are available and presented in [START_REF] Winters | Analysis of fundamental human movement patterns through the use of in-depth antagonistic muscle models[END_REF], [START_REF] Winters | An improved muscle-reflex actuator for use in large-scale neuromusculoskeletal models[END_REF], [START_REF] Brown | Measured and modeled properties of mammalian skeletal muscle. ii. the effectsof stimulus frequency on forcelength and force-velocity relationships[END_REF], [START_REF] Joyce | The mechanical properties of cat soleus muscle during controlled lengthening and shortening movements[END_REF], and [START_REF] Rack | The effects of length and stimulus rate on tension in the isometric cat soleus muscle[END_REF]. A system theoretic perspective of the neuromuscular system has been presented in [START_REF] Mcruer | A neuromuscular actuation system model[END_REF][START_REF] Winters | Hill-based muscle models: a systems engineering perspective[END_REF][START_REF] Van Der Helm | Musculoskeletal systems with intrinsic and proprioceptive feedback[END_REF] in which they give a controloriented interpretation of the involved parts. In [START_REF] Hogan | Adaptive control of mechanical impedance by coactivation of antagonist muscles[END_REF], instead, they consider the optimal co-activation problem while minimizing the mechanical impedance of an antagonist-actuated biological joint (e.g. an elbow).

In recent years, with the development of the contraction theory in the control field, the contractile properties of the neuromuscular system (involving Hill's model equations) have been studied in [START_REF] Mcintyre | Does the brain make waves to improve stability?[END_REF]. In [START_REF] Wakeling | A muscle's force depends on the recruitment patterns of its fibers[END_REF] an analytic model of complete and incomplete tetanus contraction has been proposed, and, according to the authors' knowledge, it gives the closest to-reality dynamical model of the muscle behavior. The sensory part involved in the muscle system is related to the measurement of the plant variables, such as force at the tendon level (GTO), and muscle/fibers length and velocity (Spindles -Ia and -II). They have been studied in depth [START_REF] Boyd | The isolated mammalian muscle spindle[END_REF] and [START_REF] Boyd | Analysis of primary and secondary afferent responses to stretch during activation of the dynamic bag 1 fibre or the static bag 2 fibre in cat muscle spindles[END_REF] and the many works have been collected in [START_REF] Boyd | The muscle spindle[END_REF], see [START_REF] Windhorst | Muscle proprioceptive feedback and spinal networks[END_REF] for a more recent review on the topic. From a system engineering perspective, the GTOs dynamical model has been proposed in [START_REF] Mileusnic | Mathematical models of proprioceptors. ii. structure and function of the golgi tendon organ[END_REF] by exploiting a proper transfer function between the force exerted on the tendons and the GTO neurons' firing frequency. For Spindles -Ia and -II, in [START_REF] Maltenfort | Spindle model responsive to mixed fusimotor inputs and testable predictions of β feedback effects[END_REF], a static model has been proposed to describe the relationship among the muscle/fibers length, velocity, and the γ-motoneurons excitation to the spindles firing rate. Such γ-motoneurons are in charge of modulating the firing responses of the connected Spindle system.

To the best of the authors' knowledge, there is no dynamic model of the Spindles organs available in the literature.

The sensory part plays an important role in the movement control architecture. In particular, the presence of internal loops between the muscles and the spinal cord allows the possibility to actuate the reflexes [START_REF] Van Der Helm | Musculoskeletal systems with intrinsic and proprioceptive feedback[END_REF], [START_REF] Schomburg | Spinal sensorimotor systems and their supraspinal control[END_REF], and [START_REF] Matthews | The human stretch reflex and the motor cortex[END_REF], such as stretch re-flexes, reciprocal inhibition, and others. Finally, another relative element is the spinal cord. It connects the CNS and αmotoneurons via the interneurons and it is unavoidably involved in movement control [START_REF] Jankowska | A neuronal system of movement control via muscle spindle secondaries[END_REF][START_REF] Gassel | A critical review of evidence concerning long-loop reflexes excited by muscle afferents in man[END_REF][START_REF] Eccles | Supraspinal control of interneurones mediating spinal reflexes[END_REF].

The paper is organized as follows. We conclude the introduction with some motivations for the work, then in Section 2 we give some authors' considerations about the available data, and in Section 3 we describe models available in the literature that has been obtained exploiting these data. While in Section 4 we describe the developed models for the isometric muscle force. In Section 5 we provide a hybrid modeling of the sensory system available in the muscles. We then provide an application of muscle modeling here proposed to the description of the oculomotor system, in Section 6 and describe the challenges related to it. Section 7 concludes the work by summarizing the results and describing possible future works and advances.

Motivations

This work aims to describe neuromuscular behavior in a control theory paradigm. In particular, we would like to better understand the purposes of the neuromuscular loops and how they are exploited in controlling limbs movements, see for example [START_REF] Iqbal | Stabilizing pid controllers for a single-link biomechanical model with position, velocity, and force feedback[END_REF] for the application of a stabilizing PID action on a single-link biomechanical model or [START_REF] Kistemaker | Control of position and movement is simplified by combined muscle spindle and golgi tendon organ feedback[END_REF] to see how this available measurement feedback can be exploited in position and movement control. The reader can furthermore see [START_REF] Mcintyre | Does the brain make waves to improve stability?[END_REF] to have an insight into how waveform signals can be used to control delayed closed-loop systems, thus mimicking the spiking behavior of biological nervous systems. We strongly believe that this modeling idea would be a good starting point to eventually deeply comprehend the purposes of the brain parts involved in learning and control of dexterous movements, see for example [START_REF] Mtui | Fitzgerald's Clinical Neuroanatomy and Neuroscience E-Book[END_REF], [START_REF] Nolte | The human brain[END_REF], [START_REF] Wolpert | Internal models in the cerebellum[END_REF], [START_REF] Barak | neurophysiological basis of movement. human kinetics, champaign[END_REF], [START_REF] Kiernan | Barr's the human nervous system: an anatomical viewpoint[END_REF], and [START_REF] Patestas | A textbook of neuroanatomy[END_REF], and thus, e.g., describe and simulate pathologies effects affecting movements control. The final objective will then be to have a complete picture and understanding of the structure used by the brain in controlling human dexterous movements and thus mimic such a strategy in the field of nonlinear control systems such as nonlinear output regulation as in [START_REF] Huang | Internal models in control, biology and neuroscience[END_REF]. The study interleaves with the concept of inverse and forward models introduced in neuroscience in the works [START_REF] Wolpert | Multiple paired forward and inverse models for motor control[END_REF], [START_REF] Kawato | Internal models for motor control and trajectory planning[END_REF]. See also [START_REF] Mischiati | Internal models direct dragonfly interception steering[END_REF] for another application of these models. Thus an intermediate step of the study will be to better understand how these models are necessarily formed, trained, and updated in the brain and how are they involved in the control strategy.

Preliminaries on available experimental data in literature

In the muscle force, we can distinguish among three main components: a passive force F p that is always present due to the natural behavior of tissues and only depends on the muscle length, then we have the active static (isometric) force F L only depending on the muscle contraction (length L) and an active dynamic (eccentric and concentric) force F V also depending on the rate of change of muscle contraction L. The last two components are active terms and indeed they depend on the activation frequency α of the α-motoneuron.

Data of isometric force available in the literature are mainly those in the figures of [START_REF] Winters | An improved muscle-reflex actuator for use in large-scale neuromusculoskeletal models[END_REF], [START_REF] Brown | Measured and modeled properties of mammalian skeletal muscle. ii. the effectsof stimulus frequency on forcelength and force-velocity relationships[END_REF], and [START_REF] Hogan | Adaptive control of mechanical impedance by coactivation of antagonist muscles[END_REF], reported in this section for completeness. It is worth noticing that such data only Figure 3: Isometric Force. Relationship between the static Force and the muscle length at different activation frequencies. This plot is half useful due to the unknown length, but we can notice that there are different rest lengths (length at which the force is null) depending on the activation frequency. Plot taken from [START_REF] Hogan | Adaptive control of mechanical impedance by coactivation of antagonist muscles[END_REF].

span the activation frequency in the interval [0, 120] pps (pulse per second), because 120 pps is the maximum excitation frequency the α-motoneuron can 'apply' on the muscle fiber.

At α = 120pps the active force F L (i.e. the total force without passive F p and dynamics F V terms) has a maximum value indexed in literature by the symbol F o . This maximum value F o is associated with a specific length value L o (which is not the maximum length value, but the length L corresponding to the maximum force value F o at the maximum excitation frequency α = 120pps). Almost all available data and proposed models in the literature are normalized with respect to these two values. Indeed we find force and length data of the form F/F o and L/L o , respectively. Due to this fact, we also consider a normalized model for such normalized values.

A crucial point in our model development is the presence in the force characteristic of rest length values (i.e. values of L for which the exerted force is null) that depends on excitation rates Figure 4: Normalized Isometric Force model with correction term given by a negative passive force in [START_REF] Winters | An improved muscle-reflex actuator for use in large-scale neuromusculoskeletal models[END_REF]. Here the activation frequency is normalized with respect to its maximum value α = 120 pps α, see Fig. 3. And this fact leads us to consider a rest length function L 0 (which is not L o as above) depending only on the excitation frequency α and this might be used to describe the contracting behavior of the muscle. A major problem is that most of the data available in the literature lack these rest-length data which is fundamental for our model development. We thus exploit the same technique introduced in [START_REF] Winters | An improved muscle-reflex actuator for use in large-scale neuromusculoskeletal models[END_REF]. In practice, they first consider a model without the presence of rest length (based on Gaussian terms, as it will be clearer at the end of section 3), and then they propose to add a negative passive term to compensate for the lack of rest lengths values in the model and obtain the rest lengths points saturating the force at zero. The approach is very clear in Fig. 4.

In the next section, we provide an overview of the two models available in the literature.

Literature models comparison

In our opinion, the most relevant and complete models in the literature are those available in [START_REF] Brown | Measured and modeled properties of mammalian skeletal muscle. ii. the effectsof stimulus frequency on forcelength and force-velocity relationships[END_REF] and [START_REF] Winters | An improved muscle-reflex actuator for use in large-scale neuromusculoskeletal models[END_REF]. Here we give a short description of such models for the sake of completeness.

Brown's et al model

In [START_REF] Brown | Measured and modeled properties of mammalian skeletal muscle. ii. the effectsof stimulus frequency on forcelength and force-velocity relationships[END_REF], as the Hill's model [START_REF] Hill | The heat of shortening and the dynamic constants of muscle[END_REF], the authors consider both the active isometric and the dynamic forces generators gathered inside a contractile element F CE along which passive term F PE describes the passive force (previously indicated as F p , but we decided to stay faithful to the original nomenclature). The resulting total force F T OT presents as

F T OT = F CE + F PE (1)
and F CE is expressed as

F CE (α, L, L) = R(α)A(α, L)F L (L)F V (L, L) (2) 
where R is a fiber recruitment percentage and describes the amount of fiber involved in the force generation depending on the activation frequency, A is the term relating the muscle activation to the excitation frequency α and it would have values between 0 and 1 (the same values range has been considered for R), F L and F V describe respectively the force-length relationship and the force-velocity, and their product provides the force expression of the muscle depending on the current length L, the velocity of contraction L, and excitation frequency α.

In their work, a simplified version of the force function is provided fixing R(α) = 1 and making assumptions of quasistatics (close to isometric) conditions during motion and of a starting length equal to the rest length, hence they move to a force expression of the type:

F CE (α, L, L) = A F (α, L) F L (L)F V (L, L) + F p (L) (3) 
where

A f (α, L) = 1 -exp - α 0.56N f (L) N f (L) = 2.11 + 4.16 1 L - 1 
F L (L) = exp - L 1.93 -1 1.03 1.87 F p (L) = -0.02e 13.8-18.7L F V (L, L) = -5.72- L -5.72+(1.38+2.09L) L , L ≤ 0 2.5+4.21L+2.67L 2 0.62+ L L, L > 0 (4) 
In this model, one can notice that the length F L and velocity F V dependent force terms are multiplied one each other. This might lead to the interpretation that the velocity terms F V are only acting as scaling functions on the 'supporting' isometric force F L . We rather prefer to split the isometric F L and dynamics F V terms to analyze their contribution individually in a spring-damper fashion. Moreover, notice that when L → 0 + in the equation we have F V 1, thus the model loses the continuity with the static isometric properties of the muscle after a lengthening phase.

Winters' Model

In [START_REF] Winters | An improved muscle-reflex actuator for use in large-scale neuromusculoskeletal models[END_REF], Winters's work goes deep inside the basic muscle elements. Indeed in its work, we can find a microscopic description of the muscle components such as intrafusal and extrafusal elements with their relative damping and stiffness terms, and these are connected in parallel and series fashion. Of their work, we only focus on the isometric force that has been modeled as

F ISO (α, L CE ) = F L (α, L CE ) + F p (L CE )
where, for the isometric force model, they exploit a Gaussian function with variable mean value

F L (α, L CE ) = αe - L CE L m0 -1.05-(1-α)0.2 0.4 2 ( 5 
)
where L m0 , in Winter's notation, is the optimal muscle length value L o (in this work notation),

L CE = L mt -L t0 -x SE (L m0 + L t0
) and x SE is the (dimensionless) extension of the extrafusal series of spring-element, L mt is the overall musculotendinous length and L t o is the tendon rest length. The value of α is normalized with respect to its maximum value. The passive force is instead given by the expression

F passive =          e 3 0.6 L CE L m0 -1 -1 e 3 -1 , L CE L m0 ≥ 1 -e 6 0.7 1- L CE L m0 -1 e 6 -1 , L CE L m0 < 1 (6) 
Notice that, as touched above, the passive force has a negative term for L CE L m0 < 1. We strongly believe that, for our study purposes, the functions exploited in the models presented in this section are very complicated to manipulate and use in control analysis. Moreover, the meaning of the parameters is very difficult to interpret from a physical point of view.

Proposed Models

Our main objective is to describe the isometric force (F L + F p ) as a nonlinear controlled spring with variable stiffness K and rest length L 0

F ISO (α, L) = K(α, L) (L -L 0 (α)) (7) 
where α is the α-motoneuron excitation frequency and L is the muscle length. In order to obtain such a final model, we first designed an intermediate/evaluation model following Winters' considerations. Indeed, we exploited the negative passive term introduced in [START_REF] Winters | An improved muscle-reflex actuator for use in large-scale neuromusculoskeletal models[END_REF] to obtain the rest length values for the different excitation frequencies. This step allows us to then construct and fit the parameters of the final/control model (7).

Evaluation Model

In order to construct the intermediate/evaluation model we consider the isometric force as divided in active F L and passive F p terms, as exploited in [START_REF] Winters | An improved muscle-reflex actuator for use in large-scale neuromusculoskeletal models[END_REF]:

F ISO (α, L) = F L (α, L) + F p (L).
Inspired, then, by the modeling approach in [START_REF] Brown | Measured and modeled properties of mammalian skeletal muscle. ii. the effectsof stimulus frequency on forcelength and force-velocity relationships[END_REF] we describe the active force curves as Gaussian functions with mean value µ and standard deviation σ and amplitude A as a function of the excitation frequency α, as shown in (4.1). By running a curve fitting algorithm we are able to fit the active isometric force with a very good order of approximation, i.e. the standard Euclidean norm of the residual vector is |r| 2 = 0.051, where r is the stack of the differences between 0.8 the available force data and the related value of the proposed model. In Fig. 5 we plotted the active force comparison between the available data from [START_REF] Brown | Measured and modeled properties of mammalian skeletal muscle. ii. the effectsof stimulus frequency on forcelength and force-velocity relationships[END_REF] and the intermediate model estimation. The identified coefficients are reported in Tab.1.

F active = Ae -   L -µ σ   2 A = c 11 α 2 + c 12 α + c 13
Exploiting the data available in [START_REF] Winters | An improved muscle-reflex actuator for use in large-scale neuromusculoskeletal models[END_REF] and their negative passive terms considerations we propose a unified continuous model of the passive force term exploiting a sigmoidal and exponential function

F p (L) = f 1 + f 2 -f 1 1 + 10 f 3 ( f 4 -L) + f 5 e f 6 L (8) 
were the coefficient values f i , for i = 0, . . . , 6, can be found in Tab.2. The sigmoidal behavior in the passive term, see Fig. 9, does not have an experimental data correspondence but provides a plausible description of the physical limit of every elastic material, i.e. beyond the 'boundary' length value the solicited fibers start to break. Then the total isometric force will result from the saturation at 0 of all negative terms, as in

F ISO (α, L) = F passive (L) + F L (α, L) 0, F Iso ≤ 0 (9)

Control Model

Due to the high complexity of the intermediate/evaluation model [START_REF] Mcruer | A neuromuscular actuation system model[END_REF], and in order to make the force relationship more in- tuitive from a physical standpoint, we exploited the intermediate model to find the rest length points and then the equivalent stiffness values. These data were fundamental to then fit the rest length L 0 (α) and stiffness K(α, L) functions' parameters in terms of the α and L, to construct the final/control model. Thus, the isometric force function is given by [START_REF] Huxley | Muscle structure and theories of contraction[END_REF], reported here for completeness,

Passive force

Available Data and Models Comparison

Passive data Evaluation Model Control Model

F ISO (α, L) = K(α, L) (L -L 0 (α)) (10) 
where both L 0 and K are taken as polynomial functions in α and

L L 0 (α) = 1 α 2 + 2 α + 3 K(α, L) = k 1 (L)α 3 + k 2 (L)α 2 + k 3 (L)α + k 4 (L) (11) 
where the k i (•), i = 1 . . . 4, a polynomial functions in α

k i (α) = k i1 α 6 + k i2 α 5 + k i3 α 4 + k i4 α 3 + k i5 α 2 + k i6 α + k i7 . ( 12 
)
The relative coefficient values are reported in Tables 3 and4, respectively. 6.794 • 10 -5 -0.01271 1

We also report in Fig. 7 a comparison between the stiffness surface K(α, L) and the constructed point from the evaluation model with respect to the α and L values. The model provides a good approximation of the Evaluation Model and, as a consequence, of the experimental data, as it is shown in Fig. 8. Moreover, the new model of the total force 

Sensors modelling

In this section, we talk about the dynamic modeling of the organs available as sensors. They measure the muscle length and velocity, along with the applied force at the tendon level. Respectively, these organs are spindle II and Ia, and Ib (also called Golgi Tendon Organs). For a model of the last ones, we refer the reader to the works [START_REF] Mileusnic | Mathematical models of proprioceptors. i. control and transduction in the muscle spindle[END_REF] and [START_REF] Mileusnic | Mathematical models of proprioceptors. ii. structure and function of the golgi tendon organ[END_REF].

Spindles Ia and II

Ia-and II-spindles' neuronal activities are correlated to the length and rate of change of the muscle fibers' contractions. Along with each of the Spindles, we find active elements, i.e. the γ-motoneurons whose excitation frequency modifies the spindles' characteristics. In particular, such modulation can be interpreted as an increase in sensing precision obtained by the Spindles, despite the noise amplification drawback. We can generally distinguish between static, γ s , and dynamic, γ d , γmotoneurons. In the modeling, we only consider the effects of To construct the model of the sensors, we first find the static behavior of the sensors' outputs, we make an analysis on the slopes as similarly done in [START_REF] Maltenfort | Spindle model responsive to mixed fusimotor inputs and testable predictions of β feedback effects[END_REF].

We now first show the hybrid dynamical model found for the Spindle-Ia and then the one of the Spindle-II.

Spindle-Ia

We considered an Hybrid dynamical model and is given by

C Ia :        ẋIa = p Ia K L Ia L -x Ia ṗIa = 0 KL Ia = 0 y Ia = sat 0 x Ia + K γ Ia γ Ia + K LIa L D Ia :        (∀X Ia ∈ D Ia1 ) K + L Ia = 0, p + Ia = pIa (∀X Ia ∈ D Ia2 ) K + L Ia = KL Ia , p + Ia = pIa (∀X Ia ∈ D Ia3 ) K + L Ia = 0, p + Ia = p Ia (∀X Ia ∈ D Ia ) x + Ia = x Ia , y + Ia = y Ia (13) 
where x Ia is the filter state, y Ia is its output, the function sat 0 is the function that saturates at zero negative values, p Ia is the filter pole, K L Ia , K V Ia and K γ Ia are the static gains for the muscle In Fig. 10 we compare the output of the dynamical system [START_REF] Joyce | The mechanical properties of cat soleus muscle during controlled lengthening and shortening movements[END_REF] with the available experimental data. The identified parameters are all gathered in Tab.5. where x II is the filter state, y II is system output, the function sat 0 is the function that saturates at zero any negative argument, p II is the filter pole, K L II , K V II and K γ II are the static gains for the muscle length, velocity and the excitation state of γ d -motoneuron; in this case, L, V and γ II are the muscle length, velocity and the excitation state of γ d -motoneuron and are considered as system inputs. Then X II is the vector collecting the state, inputs, and output of the system. The flow set

C II :            ẋII = p II ξ L II K L II L -x II ṗII = 0 ξL II = 0 y II = sat 0 x II + K γ II γ II + K LII L+ 1 -ξ L II K L II L -L D II :        (∀X II ∈ D II1 ) ξ + L II = 0, p + II = pII (∀X II ∈ D II2 ) ξ + L II = 1, p + II = pII (∀X II ∈ D II3 ) ξ + L II = 0, p + II = p II (∀X II ∈ D II ) x + II = x II , y + II = y II (14) 
C II = R 3 \D II while the jump set is D II = D II1 ∪ D II2 ∪ D II3
, where

D II1 = {X II : L < 0 & (ξ L II 0||p II pII )}, D II2 = {X II : L > 0 & (ξ L II 1||p II pII )}, D II3 = {X II : L = 0 & (ξ L II 0||p II p II )}.
In Fig. 11 we make a comparison between the output of the dynamical system [START_REF] Rack | The effects of length and stimulus rate on tension in the isometric cat soleus muscle[END_REF] with the experimental available. The identified parameters are all gathered in Tab.5. In this section, we provide an application of the proposed muscle modeling in the framework of the Oculomotor System. In particular, this application has been motivated by the work [START_REF] Broucke | Model of the oculomotor system based on adaptive internal models[END_REF], [START_REF] Broucke | Adaptive internal model theory of the oculomotor system and the cerebellum[END_REF], [START_REF] Battle | Adaptive internal models in the optokinetic system[END_REF], in which a description of the oculomotor system has been provided with the assumption that the actuation is not given by muscular torque but rather given directly as an acceleration, see equation (11b) in [START_REF] Battle | Adaptive internal models in the optokinetic system[END_REF] for example. This, in our opinion, oversimplifies the tackled problem implying that a more complex analysis must be pursued when considering an adaptive control description of the system.

We believe thus that a more insightful model has to take into account the skeletal muscle activation due to the firing rate of the α-neurons α i , i = 1, 2, and that their exert force then generates an equivalent torque on the eyeball. Thus, according to the labels in Fig. 12, we propose the following model for the horizontal motion of an eyeball θ = ω

J ω = -β ω + RK 1 (α 1 , L 1 ) L 1 -L 01 (α 1 ) -RK 2 (α 2 , L 2 ) L 2 -L 02 (α 2 ) ( 15 
)
where θ is the angular displacement with respect to the sagittal (or longitudinal) plane, ω is its rate of change, J is the eyeball inertia with respect to the vertical axis, R is its radius, and α i , K 1 , L i , L 0i , for i = 1, 2, are the α-motoneurons firing rates, the muscles variable stiffness, current and rest lengths, respectively. Moreover, the length of each muscle is related to the angle θ , by considering the following relationship, i = 1, 2,

L i = L i0 + (-1) i Rθ
where L i0 are the initial muscle length. And so the model can be written as a function of the system state variable θ = ω

J ω = -β ω + RK 1 (α 1 , L 10 -Rθ ) L 10 -Rθ -L 01 (α 1 ) -RK 2 (α 2 , L 20 + Rθ ) L 20 + Rθ -L 02 (α 2 ) (16)
With the proposed model, we show that such an assumption does not hold any more without additional assumptions on the muscle force generation, e.g., a part of the brain is involved in providing an inversion map between the desired acceleration torque. And it is worth to notice that such an inverse map is not possible to get because the forward mapping from the firing rates α 1 and α 2 to the torque τ

= RK 1 (α 1 , L 1 ) L 1 -L 01 (α 1 ) - RK 2 (α 2 , L 2 ) L 2 -L 02 (α 2 )
is not injective but only surjective. Indeed, in particular, one can exploit the additional degree of freedom to obtain a desired joint stiffness for example.

Moreover, the oculomotor system involves also the sensory part described in sec.5 (one for each muscle). In particular, assuming that L 10 = L 20 the scaled difference between L 2 and L 1 provides the angle θ , while the difference between L2 and L1 provides its rate of change. These signals can be obtained from the response of the spindle Ia and II, of each muscle. Moreover, this information is in synergy with that coming from the visual cortex, when, for example pursuing an object, we also have an additional error signal reconstructed by the visual cortex itself. However, the information provided to the brain-implemented controller is asynchronous, in the sense that the time delay affecting the feedback of these signals is not the same, in general, for the two types of information, i.e., that coming from the sensory system and that coming from the visual system.

The challenge is then to obtain a robust (to the uncertainties of the parameters) control strategy that reconstructs the system state from the Hybrid model of the Spindle Ia and II and guides the firing rates of the two muscles to achieve the desired behavior, such as object pursuing or gaze fixation to name two.

Conclusions and future works

In this work, we dealt with the modeling of muscle force considering the passive and active components of the isometric force. We first provided a brief overview of the model available in the literature and then show two models,i.e., an intermediate and a final one. The first one is more complex and precise than the second but it does not add much to the models available in the literature. On the other hand, it allowed us to construct a set of data that have been useful for the identification of the second model parameters. The latter (the spring model) is easier to handle, although less precise than the intermediate one, and gives a physical intuition about the muscle behavior. Indeed, it describes such muscular behavior as a controllable non-linear spring with controllable (variable) stiffness K and rest length L 0 . We furthermore provide a hybrid dynamical model formulation of the spindles organs that act as muscle length and velocity sensors for the Central Nervous System. We then provide an application to the case of the oculomotor system proposing its dynamic modeling, and describing the related challenges.

Future works may concern the development of a muscle force characteristic depending also on the rate of shortening and lengthening of the muscle fibers' length, to provide a more complete model. Such a model can then be analyzed in a control context involving (biological) joints with antagonist actuation. Moreover, a system theoretic description of the physiological reflexes, such as the stretch reflex, can be investigated by exploiting the proposed model.
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Fig. 1 .

 1 Fig. 1. The ingoing (afferent) and outgoing (efJerent) pathways connecting the muscle spindle and the spinal corThe pathways carrying information from muscle spindles from the spinal cord to the brain are not shown.

Figure 1 :

 1 Figure 1: Muscle and Central Nervous System schematics of the connections. Picture taken from [5].

Figure 2 :

 2 Figure 2: Normalized Isometric Force. Relationship between the static Force and the muscle length at different activation frequencies. Plot taken from [12].
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Figure 6 :

 6 Figure 6: Passive force comparisons among the available data in green, the Evaluation model in blue, and the control model in magenta. The residual values for the Evaluation model has norm |r EM | 2 = 0.0077 and for the Control model the norm is |r CM | 2 = 0.1706

Figure 7 :

 7 Figure 7: Fitting of the stiffness K(α, L) surface with respect to α and L

Figure 8 :

 8 Figure 8: Data comparison with Spring Model. r indicates the residuals vector.

Figure 9 :

 9 Figure 9: Comparison between the Evaluation and the Control Model for different excitation frequencies, i.e. α ∈ 0, 30, 60, 120 pps.

  (a) Spindle Ia simulation with hybrid dynamical system (b) Experimental Data of Spindle Ia from [21][Ch.19]

Figure 10 :

 10 Figure 10: Spindle Ia Model output with experimental data in [21][Ch.19] comparison

  (a) Spindle II simulation with hybrid dynamical system (b) Experimental Data of Spindle II in [21][Ch.19]

Figure 11 :

 11 Figure 11: Spindle II Model output with experimental data in [21][Ch.19] comparison

Figure 12 :

 12 Figure12: Schematic description of the oculomotor system in the horizontal plane evolution. The oculomotor system presents two antagonist muscles whose combined force produces a torque on the eyeball.

Table 1 :

 1 Parameters of Evaluation Model active force.

		Available Data -E.M. comparison: |r| 2 =0.050687
		1				
					Data15pps
		0.8			Data30pps
	Active force	0.4 0.6			Data40pps Data60pps Data120pps EM15pps EM30pps
					EM40pps
		0.2			EM60pps
					EM120pps
		0				
			1	1.2	1.4	1.6
				Length		
	i	c i1	c i2	c i3	c i4	c i5
	1	1.134	0.723	0.0504	11.3297 643.259
	2	0.574	-0.0211	0.8477	0.0008	n.a.
	3 0.4518 -0.01704 -0.1235 0.04898	n.a.

Figure 5: Data comparison between the available data in [12] and the evaluation/intermediate model. r indicates the residuals vector.

Table 2 :

 2 Parameters of Evaluation Model passive force.

	f 1	f 2	f 3	f 4	f 5	f 6
	0.00381 2.16582 8.16634 1.45388 -7.32 -7.4

Table 3 :

 3 Parameters of Control Model rest legth.

	1	2	3

Table 4 :

 4 Parameters of Control Model stiffness.

	i	k i1	k i2	k i3	k i4	k i5	k i6	k i7
	1 -0.00041 0.0025	-0.0061	0.00763	-0.0052	0.0018	-0.00026
	2	0.0586	-0.352	0.8444	-1.0277	0.6697	-0.2257	0.0319
	3 -1.67504	9.829	-22.692	25.896	-15.268	4.5087	-0.5351
	4	-40.977 244.666 -569.9335 664.1912 -405.645 120.853	-13.045

Table 5 :

 5 Parameters of spindle Ia model.

	pIa	p Ia	KL Ia K LIa	K γ Ia
	85 3.858 7.15 5.15 0.3514
	5.1.2. Spindle-II			
	Also for this sensing system a Hybrid dynamical model and
	is given, similarly, by		

Table 6 :

 6 Parameters of spindle II model.

	pII	p II	KL II	K LII	K γ II	L
	85 2.858 4.334 0.9184 0.343 2.5