
HAL Id: hal-04088329
https://hal.science/hal-04088329v2

Preprint submitted on 31 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Modeling of Isometric Muscle Properties via
Controllable Nonlinear Spring, and Hybrid Model of

Proprioceptive Receptors
Mario Spirito

To cite this version:
Mario Spirito. Modeling of Isometric Muscle Properties via Controllable Nonlinear Spring, and Hybrid
Model of Proprioceptive Receptors. 2023. �hal-04088329v2�

https://hal.science/hal-04088329v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Modeling of Isometric Muscle Properties via Controllable
Nonlinear Spring, and Hybrid Model of Proprioceptive Receptors

Mario Spiritoa,

a46 Boulevard Niels Bohr (LAGEPP - Bâtiment C.P.E.) - Université Claude Bernard Lyon-1, Villeurbanne, France

Abstract

This work presents the macroscopic behavior of skeletal muscles seen from a system theoretic standpoint. Then, according to
the data available in the literature, we propose a first Evaluation model for the muscle isometric (constant muscle length) force
generation depending on the muscle length and neuronal excitation frequency. Such a model is instrumental in providing a more
physics-inspired model of such an isometric force by exploiting a nonlinear spring description with controllable characteristics,
such as stiffness and rest length. To conclude, we propose a hybrid dynamical filter model to describe the components of the
sensory system. This is in charge of feeding back to the Central Nervous System the measurements of muscle length and its rate of
change.

Keywords: Skeletal muscles isometric force modeling, Nonlinear variable spring, Hybrid dynamical modeling, Spindle-Ia & -II,,
Oculomotor system.

1. Introduction

Skeletal muscles, or simply muscles, are organs of the mus-
cular system whose cells have the characteristic to produce force
and movements when electrically stimulated. They are mostly
attached to the bones of the skeleton by tendons, and thanks
to their contractile and elastic properties they allow the relative
motion of the bones of the involved articulations.

Each skeletal muscle consists of thousands of muscle fibers
wrapped together by connective tissue sheaths, see any human
anatomy book, e.g. [1][Ch.9]. The individual bundles of mus-
cle fibers in a skeletal muscle are known as fasciculi. Each mus-
cle fiber is comprised of several myofibrils containing many
myofilaments. When bundled together, all the myofibrils get
arranged in a unique striated pattern forming sarcomeres which
are the fundamental contractile unit of a skeletal muscle. The
two most significant myofilaments are actin and myosin fila-
ments which are arranged distinctively to form various bands
on the skeletal muscle [2][Ch.1], [3] and [4].
Skeletal muscles show up with neuronal innervations from the
sensory-motor system. A set of neurons, the α-motoneurons,
constitutes the neuromuscular junction. They are responsible,
via their excitation frequency here labeled as α (measured in
pulses per second), for the sarcomeres contractions, and hence
they allow the generation of the muscle active force. On the
other hand, another set of neurons, constituting the propriocep-
tive receptors, carries sensorial information from the muscle to
the Central Nervous System. In particular, the transferred sig-
nals are the values of muscle length and rate of change (Spin-
dles -Ia and -II), and the measurement of the force value at the
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tendon level (Ib-Spindle or Golgi Tendon Organs (GTO)). We
can see the muscle structure, from a system theoretic stand-
point, as a multi-input multi-output system with the actuator
(α-motoneurons), the plant (the muscles cells, whose contrac-
tion produces the exerted force on the joint), and the sensors
(Spindles -Ia and -II, and GTO), and the CNS as a feedback
controller. A schematic of the involved neurological connec-
tions is available in [5].
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Fig. 1. The ingoing (afferent) and outgoing (efJerent) pathways connecting the muscle spindle and the spinal cord. 
The pathways carrying information from muscle spindles from the spinal cord to the brain are not shown. 

terior horn of the grey mat ter  of the spinal 
cord. 

For about half its length the intrafusal 
muscle bundle is contained within a thick 
connective tissue capsule which expands in 
its central 2 mm to form the fluid space 
which gives rise to the fusiform appearance 
(Fig. 2 and Fig. 3c). The exact nature of  the 
jelly-like material in the fluid space is not 
known, but it bears some resemblance to 
the 'vitreous body' which fills the eyeball 
behind the lens. Indeed, spindles approach 
the eye in their complexity. The 'fluid' in 
the fluid space probably helps to lubricate 
the intrafusal muscle fibres so that they 
slide freely past each other. No doubt it has 
other functions since the capsule has prop- 
erties akin to the 'blood-brain barrier', 
which separates the blood vessels of  the 
brain from the nerve cells. The spindle cap- 
sule is richly supplied with blood vessels 
and their associated sympathetic innerva- 
tion, some of which terminates close to 
the intrafusal fibres themselves in some 
spindles. 

Since the spindles lie 'in parallel' with the 
extrafusal muscle fibres, contraction of the 
latter unloads the spindle and the intrafusal 
bundle becomes kinked 7 (Fig 3a and b), 
unless it contracts as a result of  activity in its 
own fusimotor axons. The consequent  
'silencing' of the afferent discharge during 
a twitch of the muscle is often used to dis- 
tinguish an afferent axon from a spindle, 
from one which arises in a Golgi tendon 

organ. Tendon organs lie 'in series' with 
extrafusal muscle and, consequently, dis- 
charge during a twitch of the muscle. 

If the sensory terminals within the spin- 
dle are to send information about muscle 
length to the brain continuously during 
contraction of the muscle, it is necessary for 
the intrafusal bundle to contract more than 
enough to compensate for the 'unloading 
effect'. This could be achieved by innervat- 
ing the spindle by branches of the same 
motor  axons which supply the extrafusal 
muscle, as indeed happens in reptiles and 
amphibia. Some such axons, termed fl 
axons, do exist in mammals ,  but most of the 
fusimotor axons are the smaller 3' axons, 
constituting a supply to the spindles quite 
separate from the c~ axons to extrafusal 
muscle. Thus,  the spindle is a very sophisti- 

coted sensory receptor with its own control 
from the central nervous system. It is a 
marvel of control engineering, incorporat- 
ing many of the features of an engineering 
'servo-control'  system. 

Structure and innervation of intrafusal 
muscle fibres 

Cat spindles contain two (occasionally 
three) large intrafusal fibres, termed 'nuc- 
lear bag fibres' because of the accumula- 
tion of nuclei which fill the fibres at the 
spindle equator. There may be 100 or more 
nuclei in each 'bag'  (Fig. 4f), and there are 
three or four nuclei in a transverse section 
of a nuclear bag fibre at the point where the 
fluid space is widest (Fig. 4b). In addition, 
there are usually three to five smaller 
intrafusal fibres, about half the length and 
diameter of the nuclear bag fibres (Fig. 2 
and Fig. 4c). These small fibres are called 
'nuclear chain fibres' because they have a 
single row of nuclei in the equatorial region 
(Fig. 40 ,  only one of which appears in a 
transverse section at this point (Fig. 4b). 
The nuclear bag fibres are themselves of 
two types which differ in their histochemis- 
try, ultrastructure and mechanical proper- 
ties. They were named 'bag1' and 'bag2' 
fibres on the basis of the histochemical dif- 
ferences TM and 'dynamic nuclear bag fibre' 
and 'static nuclear bag fibre' on the basis of 
the mechanical differences 6. In this review 
they are called 'dynamic bag1 fibres' and 
'static bag2 fibres' and there is one of each 
in most spindles. Human  muscle spindles 
contain the same three types of intrafusaI 
fibre, but  there tend to be more of each 
type so that there may be up to 12 
intrafusaI fibres in a human spindle. 

The innervation of a muscle spindle is 
very complex, the total number  of  axon 
branches which enter  one spindle varying 
from 8 to 25 (Fig. 4d). Each spindle has 
one primary sensory ending consisting of 
spiral terminations, each of which encircles 
the nuclear region of one intrafusal fibre 
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Fig. 2. The three types o f  intrafusal fibre in a typical cat muscle spindle. D B,, dynamic nuclear bag fibre. SB~, static 
nuclear bag fbre. C, nuclear chain fibres. The group la afferent nerve fibre arises in the primary sensory ending in 
the P region; the group H afferent nerve fibre arises in the secondary sensory ending in the $1 region. Fnsimotor 
innervation is from 'dynamic" and 'static" y efferent nerve fibres. 

Figure 1: Muscle and Central Nervous System schematics of the connections.
Picture taken from [5].
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The modeling of how muscles exert force started with the
work of [6] in which the muscle description via a spring-like
behavior is presented. In particular, the relationship takes into
account a contractile element that produces muscle force and it
is put in series to a passive elastic element representing the ten-
don model between the muscle fibers and the connected bones
or tissues. This model has then been exploited to generate more
detailed models [7] and [8] in which the authors describe the
microscopic behavior of contraction behavior generated by the
effects of sarcomeres and cross-bridges. In [9], Hill’s model has
been enriched with a ‘damping element’. In [10], [11], and [12],
experimental data has been exploited to construct an analytic
expression of the total force generated by the muscles. In these
works, the total force has been split into a length-dependent
force FL and a velocity-dependent force FV , both depending on
the α-motoneuron excitation frequency. The FL term is then
split, similarly to Hill’s model, into an active plus passive term.
The active force describes the part of fibers contraction when
excited and produces movements, while the passive force only
refers to the elastic mechanical behavior of the muscle fibers.

Experimental data and models of isometric (fixed muscle
length) and isokinetic (fixed muscle velocity) forces are avail-
able and presented in [10], [11],[12], [13], and [14].
A system theoretic perspective of the neuromuscular system
has been presented in [9, 15, 16] in which they give a control-
oriented interpretation of the involved parts. In [17], instead,
they consider the optimal co-activation problem while minimiz-
ing the mechanical impedance of an antagonist-actuated biolog-
ical joint (e.g. an elbow).

In recent years, with the development of the contraction the-
ory in the control field, the contractile properties of the neuro-
muscular system (involving Hill’s model equations) have been
studied in [18]. In [19] an analytic model of complete and in-
complete tetanus contraction has been proposed, and, according
to the authors’ knowledge, it gives the closest to-reality dynam-
ical model of the muscle behavior.
The sensory part involved in the muscle system is related to the
measurement of the plant variables, such as force at the tendon
level (GTO), and muscle/fibers length and velocity (Spindles -
Ia and -II). They have been studied in depth [5] and [20] and
the many works have been collected in [21], see [22] for a more
recent review on the topic. From a system engineering perspec-
tive, the GTOs dynamical model has been proposed in [23] by
exploiting a proper transfer function between the force exerted
on the tendons and the GTO neurons’ firing frequency. For
Spindles -Ia and -II, in [24], a static model has been proposed
to describe the relationship among the muscle/fibers length, ve-
locity, and the γ-motoneurons excitation to the spindles firing
rate. Such γ-motoneurons are in charge of modulating the fir-
ing responses of the connected Spindle system.

To the best of the authors’ knowledge, there is no dynamic
model of the Spindles organs available in the literature.

The sensory part plays an important role in the movement
control architecture. In particular, the presence of internal loops
between the muscles and the spinal cord allows the possibility
to actuate the reflexes [16], [25], and [26], such as stretch re-

flexes, reciprocal inhibition, and others. Finally, another rel-
ative element is the spinal cord. It connects the CNS and α-
motoneurons via the interneurons and it is unavoidably involved
in movement control [27, 28, 29].

The paper is organized as follows. We conclude the intro-
duction with some motivations for the work, then in Section 2
we give some authors’ considerations about the available data,
and in Section 3 we describe models available in the literature
that has been obtained exploiting these data. While in Section
4 we describe the developed models for the isometric muscle
force. In Section 5 we provide a hybrid modeling of the sen-
sory system available in the muscles. We then provide an appli-
cation of muscle modeling here proposed to the description of
the oculomotor system, in Section 6 and describe the challenges
related to it. Section 7 concludes the work by summarizing the
results and describing possible future works and advances.

1.1. Motivations

This work aims to describe neuromuscular behavior in a
control theory paradigm. In particular, we would like to better
understand the purposes of the neuromuscular loops and how
they are exploited in controlling limbs movements, see for ex-
ample [30] for the application of a stabilizing PID action on a
single-link biomechanical model or [31] to see how this avail-
able measurement feedback can be exploited in position and
movement control. The reader can furthermore see [18] to have
an insight into how waveform signals can be used to control
delayed closed-loop systems, thus mimicking the spiking be-
havior of biological nervous systems.
We strongly believe that this modeling idea would be a good
starting point to eventually deeply comprehend the purposes of
the brain parts involved in learning and control of dexterous
movements, see for example [32], [33], [34], [35], [36], and
[37], and thus, e.g., describe and simulate pathologies effects
affecting movements control.
The final objective will then be to have a complete picture and
understanding of the structure used by the brain in controlling
human dexterous movements and thus mimic such a strategy in
the field of nonlinear control systems such as nonlinear output
regulation as in [38]. The study interleaves with the concept
of inverse and forward models introduced in neuroscience in
the works [39], [40]. See also [41] for another application of
these models. Thus an intermediate step of the study will be
to better understand how these models are necessarily formed,
trained, and updated in the brain and how are they involved in
the control strategy.

2. Preliminaries on available experimental data in litera-
ture

In the muscle force, we can distinguish among three main
components: a passive force Fp that is always present due to
the natural behavior of tissues and only depends on the muscle
length, then we have the active static (isometric) force FL only
depending on the muscle contraction (length L) and an active
dynamic (eccentric and concentric) force FV also depending on
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the rate of change of muscle contraction L̇. The last two compo-
nents are active terms and indeed they depend on the activation
frequency α of the α-motoneuron.

Data of isometric force available in the literature are mainly
those in the figures of [11], [12], and [17], reported in this sec-
tion for completeness. It is worth noticing that such data only

Figure 2: Normalized Isometric Force. Relationship between the static Force
and the muscle length at different activation frequencies. Plot taken from [12].

Figure 3: Isometric Force. Relationship between the static Force and the muscle
length at different activation frequencies. This plot is half useful due to the
unknown length, but we can notice that there are different rest lengths (length
at which the force is null) depending on the activation frequency. Plot taken
from [17].

span the activation frequency in the interval [0,120]pps (pulse
per second), because 120pps is the maximum excitation fre-
quency the α-motoneuron can ‘apply’ on the muscle fiber.

At α = 120pps the active force FL (i.e. the total force with-
out passive Fp and dynamics FV terms) has a maximum value
indexed in literature by the symbol Fo. This maximum value Fo
is associated with a specific length value Lo (which is not the
maximum length value, but the length L corresponding to the
maximum force value Fo at the maximum excitation frequency
α = 120pps). Almost all available data and proposed models
in the literature are normalized with respect to these two val-
ues. Indeed we find force and length data of the form F/Fo and
L/Lo, respectively. Due to this fact, we also consider a normal-
ized model for such normalized values.

A crucial point in our model development is the presence in
the force characteristic of rest length values (i.e. values of L for
which the exerted force is null) that depends on excitation rates

Figure 4: Normalized Isometric Force model with correction term given by a
negative passive force in [11]. Here the activation frequency is normalized with
respect to its maximum value α = 120pps

α , see Fig.3. And this fact leads us to consider a rest length
function L0 (which is not Lo as above) depending only on the
excitation frequency α and this might be used to describe the
contracting behavior of the muscle. A major problem is that
most of the data available in the literature lack these rest-length
data which is fundamental for our model development. We thus
exploit the same technique introduced in [11]. In practice, they
first consider a model without the presence of rest length (based
on Gaussian terms, as it will be clearer at the end of section 3),
and then they propose to add a negative passive term to compen-
sate for the lack of rest lengths values in the model and obtain
the rest lengths points saturating the force at zero. The approach
is very clear in Fig. 4.

In the next section, we provide an overview of the two mod-
els available in the literature.

3. Literature models comparison

In our opinion, the most relevant and complete models in
the literature are those available in [12] and [11]. Here we give
a short description of such models for the sake of completeness.

3.1. Brown’s et al model
In [12], as the Hill’s model [6], the authors consider both

the active isometric and the dynamic forces generators gath-
ered inside a contractile element FCE along which passive term
FPE describes the passive force (previously indicated as Fp, but
we decided to stay faithful to the original nomenclature). The
resulting total force FTOT presents as

FTOT = FCE +FPE (1)

and FCE is expressed as

FCE(α,L, L̇) = R(α)A(α,L)FL(L)FV (L, L̇) (2)

where R is a fiber recruitment percentage and describes the
amount of fiber involved in the force generation depending on
the activation frequency, A is the term relating the muscle acti-
vation to the excitation frequency α and it would have values
between 0 and 1 (the same values range has been considered
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for R), FL and FV describe respectively the force-length rela-
tionship and the force-velocity, and their product provides the
force expression of the muscle depending on the current length
L, the velocity of contraction L̇, and excitation frequency α .

In their work, a simplified version of the force function is
provided fixing R(α) = 1 and making assumptions of quasi-
statics (close to isometric) conditions during motion and of a
starting length equal to the rest length, hence they move to a
force expression of the type:

FCE(α,L, L̇) = AF(α,L)
(

FL(L)FV (L, L̇)+Fp(L)
)

(3)

where

A f (α,L) = 1− exp
(
−
(

α

0.56N f (L)

))
N f (L) = 2.11+4.16

(1
L
−1
)

FL(L) = exp

(
−
∣∣∣∣L1.93−1

1.03

∣∣∣∣1.87
)

Fp(L) =−0.02e13.8−18.7L

FV (L, L̇) =

{ −5.72−L̇
−5.72+(1.38+2.09L)L̇ , L̇≤ 0
2.5+4.21L+2.67L2

0.62+L̇ L̇, L̇ > 0

(4)

In this model, one can notice that the length FL and velocity
FV dependent force terms are multiplied one each other. This
might lead to the interpretation that the velocity terms FV are
only acting as scaling functions on the ‘supporting’ isometric
force FL. We rather prefer to split the isometric FL and dy-
namics FV terms to analyze their contribution individually in a
spring-damper fashion. Moreover, notice that when L̇→ 0+ in
the equation we have FV , 1, thus the model loses the conti-
nuity with the static isometric properties of the muscle after a
lengthening phase.

3.2. Winters’ Model

In [11], Winters’s work goes deep inside the basic muscle
elements. Indeed in its work, we can find a microscopic de-
scription of the muscle components such as intrafusal and extra-
fusal elements with their relative damping and stiffness terms,
and these are connected in parallel and series fashion. Of their
work, we only focus on the isometric force that has been mod-
eled as

FISO(α,LCE) = FL(α,LCE)+Fp(LCE)

where, for the isometric force model, they exploit a Gaussian
function with variable mean value

FL(α,LCE) = αe
−

( LCE
Lm0

−1.05−(1−α)0.2

0.4

)2

(5)

where Lm0, in Winter’s notation, is the optimal muscle length
value Lo (in this work notation), LCE = Lmt −Lt0− xSE(Lm0 +
Lt0) and xSE is the (dimensionless) extension of the extrafusal
series of spring-element, Lmt is the overall musculotendinous

length and Lto is the tendon rest length. The value of α is nor-
malized with respect to its maximum value. The passive force
is instead given by the expression

Fpassive =


e

3
0.6

(
LCE
Lm0

−1

)
−1

e3−1 , LCE
Lm0
≥ 1

− e
6

0.7

(
1− LCE

Lm0

)
−1

e6−1 , LCE
Lm0

< 1

(6)

Notice that, as touched above, the passive force has a negative
term for LCE

Lm0
< 1.

We strongly believe that, for our study purposes, the func-
tions exploited in the models presented in this section are very
complicated to manipulate and use in control analysis. More-
over, the meaning of the parameters is very difficult to interpret
from a physical point of view.

4. Proposed Models

Our main objective is to describe the isometric force (FL +
Fp) as a nonlinear controlled spring with variable stiffness K
and rest length L0

FISO(α,L) = K(α,L)(L−L0(α)) (7)

where α is the α-motoneuron excitation frequency and L is the
muscle length. In order to obtain such a final model, we first
designed an intermediate/evaluation model following Winters’
considerations. Indeed, we exploited the negative passive term
introduced in [11] to obtain the rest length values for the differ-
ent excitation frequencies. This step allows us to then construct
and fit the parameters of the final/control model (7).

4.1. Evaluation Model
In order to construct the intermediate/evaluation model we

consider the isometric force as divided in active FL and passive
Fp terms, as exploited in [11]:

FISO(α,L) = FL(α,L)+Fp(L).

Inspired, then, by the modeling approach in [12] we describe
the active force curves as Gaussian functions with mean value
µ and standard deviation σ and amplitude A as a function of the
excitation frequency α , as shown in (4.1).

Factive = Ae
−

L−µ

σ

2

A =
c11α2 + c12α + c13

α2 + c14α + c15

µ = c21ec22α + c23ec24α

σ = c31 + c32 cos(c34α)+ c33 sin(c34α)

By running a curve fitting algorithm we are able to fit the
active isometric force with a very good order of approxima-
tion, i.e. the standard Euclidean norm of the residual vector is
|r|2 = 0.051, where r is the stack of the differences between
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Figure 5: Data comparison between the available data in [12] and the evalua-
tion/intermediate model. r indicates the residuals vector.

Table 1: Parameters of Evaluation Model active force.

i ci1 ci2 ci3 ci4 ci5

1 1.134 0.723 0.0504 11.3297 643.259
2 0.574 −0.0211 0.8477 0.0008 n.a.
3 0.4518 −0.01704 −0.1235 0.04898 n.a.

the available force data and the related value of the proposed
model. In Fig.5 we plotted the active force comparison between
the available data from [12] and the intermediate model estima-
tion. The identified coefficients are reported in Tab.1.

Exploiting the data available in [11] and their negative pas-
sive terms considerations we propose a unified continuous model
of the passive force term exploiting a sigmoidal and exponential
function

Fp(L) = f1 +
f2− f1

1+10 f3( f4−L)
+ f5e f6L (8)

were the coefficient values fi, for i = 0, . . . ,6, can be found in
Tab.2. The sigmoidal behavior in the passive term, see Fig.9,

Table 2: Parameters of Evaluation Model passive force.

f1 f2 f3 f4 f5 f6

0.00381 2.16582 8.16634 1.45388 −7.32 −7.4

does not have an experimental data correspondence but pro-
vides a plausible description of the physical limit of every elas-
tic material, i.e. beyond the ‘boundary’ length value the so-
licited fibers start to break. Then the total isometric force will
result from the saturation at 0 of all negative terms, as in

FISO(α,L) =

{
Fpassive(L)+FL(α,L)
0, FIso ≤ 0

(9)

4.2. Control Model
Due to the high complexity of the intermediate/evaluation

model (9), and in order to make the force relationship more in-
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Figure 6: Passive force comparisons among the available data in green, the
Evaluation model in blue, and the control model in magenta. The residual val-
ues for the Evaluation model has norm |rEM |2 = 0.0077 and for the Control
model the norm is |rCM |2 = 0.1706

tuitive from a physical standpoint, we exploited the intermedi-
ate model to find the rest length points and then the equivalent
stiffness values. These data were fundamental to then fit the
rest length L0(α) and stiffness K(α,L) functions’ parameters
in terms of the α and L, to construct the final/control model.
Thus, the isometric force function is given by (7), reported here
for completeness,

FISO(α,L) = K(α,L)(L−L0(α)) (10)

where both L0 and K are taken as polynomial functions in α

and L

L0(α) = `1α
2 + `2α + `3

K(α,L) = k1(L)α3 + k2(L)α2 + k3(L)α + k4(L)
(11)

where the ki(·), i = 1 . . .4, a polynomial functions in α

ki(α) = ki1α
6 + ki2α

5 + ki3α
4 + ki4α

3 + ki5α
2

+ ki6α + ki7.
(12)

The relative coefficient values are reported in Tables 3 and 4,
respectively.

Table 3: Parameters of Control Model rest legth.

`1 `2 `3

6.794 ·10−5 −0.01271 1

We also report in Fig.7 a comparison between the stiffness
surface K(α,L) and the constructed point from the evaluation
model with respect to the α and L values.
The model provides a good approximation of the Evaluation
Model and, as a consequence, of the experimental data, as it
is shown in Fig.8. Moreover, the new model of the total force
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Table 4: Parameters of Control Model stiffness.

i ki1 ki2 ki3 ki4 ki5 ki6 ki7

1 −0.00041 0.0025 −0.0061 0.00763 −0.0052 0.0018 −0.00026
2 0.0586 −0.352 0.8444 −1.0277 0.6697 −0.2257 0.0319
3 −1.67504 9.829 −22.692 25.896 −15.268 4.5087 −0.5351
4 −40.977 244.666 −569.9335 664.1912 −405.645 120.853 −13.045

Figure 7: Fitting of the stiffness K(α,L) surface with respect to α and L

gives a good approximation of the Evaluation one in the range
[0.4,1.5]Lo, see Fig.9. This model still provides a good level of
approximation of the available data. Indeed, the residual vector
norm is quite small |r|2 = 0.18, especially for L < 1.5. Since
higher length values are usually not admissible in standard mo-
tions due to the mechanical limitation of biological joints, one
can exploit the proposed control model in scenarios involving
such standard motions.

5. Sensors modelling

In this section, we talk about the dynamic modeling of the
organs available as sensors. They measure the muscle length
and velocity, along with the applied force at the tendon level.
Respectively, these organs are spindle II and Ia, and Ib (also
called Golgi Tendon Organs). For a model of the last ones, we
refer the reader to the works [42] and [23].

5.1. Spindles Ia and II

Ia- and II- spindles’ neuronal activities are correlated to
the length and rate of change of the muscle fibers’ contrac-
tions. Along with each of the Spindles, we find active elements,
i.e. the γ-motoneurons whose excitation frequency modifies the
spindles’ characteristics. In particular, such modulation can be
interpreted as an increase in sensing precision obtained by the
Spindles, despite the noise amplification drawback. We can
generally distinguish between static, γs, and dynamic, γd , γ-
motoneurons. In the modeling, we only consider the effects of
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Figure 8: Data comparison with Spring Model. r indicates the residuals vector.

the γd-motoneurons on the Spindles spiking frequency due to
the lack of available data.

It is worth noticing in Fig.10b that in Spindle-Ia during neg-
ative velocities transient the output of the sensor saturates at
zero while it is not clear what happens for Spindle-II due to
the end of γs-excitation during the same part of the trajectory
(negative velocities transients).

To construct the model of the sensors, we first find the static
behavior of the sensors’ outputs, we make an analysis on the
slopes as similarly done in [24].

We now first show the hybrid dynamical model found for
the Spindle-Ia and then the one of the Spindle-II.

5.1.1. Spindle-Ia
We considered an Hybrid dynamical model and is given by

CIa :


ẋIa = pIa

(
KLIaL− xIa

)
ṗIa = 0

K̇LIa = 0
yIa = sat0

(
xIa +KγIaγIa +KL̇Ia

L̇
)

DIa :


(∀XIa ∈ DIa1) K+

LIa
= 0, p+Ia = p̄Ia

(∀XIa ∈ DIa2) K+
LIa

= K̄LIa , p+Ia = p̄Ia

(∀XIa ∈ DIa3) K+
LIa

= 0, p+Ia = pIa
(∀XIa ∈ DIa) x+Ia = xIa, y+Ia = yIa

(13)

where xIa is the filter state, yIa is its output, the function sat0
is the function that saturates at zero negative values, pIa is the
filter pole, KLIa , KVIa and KγIa are the static gains for the muscle
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Figure 9: Comparison between the Evaluation and the Control Model for dif-
ferent excitation frequencies, i.e. α ∈ 0,30,60,120 pps.

length, velocity and the excitation state of the γd-motoneuron;
in this case, L, V and γIa are the muscle length, velocity and the
excitation state of γd-motoneuron and are considered as system
inputs. Then XIa is the vector collecting the state, inputs and
output of the system. The flow set CIa = R3\DIa while the
jump set is DIa = DIa1 ∪ DIa2 ∪ DIa3, where

DIa1 = {XIa : L̇ < 0&(KLIa , 0||pIa , p̄Ia)},

DIa2 = {XIa : L̇ > 0&(KLIa , K̄LIa
||pIa , p̄Ia)},

DIa3 = {XIa : L̇ = 0&(KLIa , 0||pIa , pIa)}.

In Fig.10 we compare the output of the dynamical system (13)
with the available experimental data. The identified parameters
are all gathered in Tab.5.

Table 5: Parameters of spindle Ia model.

p̄Ia pIa K̄LIa KL̇Ia
KγIa

85 3.858 7.15 5.15 0.3514

5.1.2. Spindle-II
Also for this sensing system a Hybrid dynamical model and

is given, similarly, by

CII :


ẋII = pII

(
ξLII KLII L− xII

)
ṗII = 0

ξ̇LII = 0
yII = sat0

[
xII +KγII γII +KL̇II

L̇+(
1−ξLII

)
KLII

(
L− L̄

)]
DII :


(∀XII ∈ DII1) ξ

+
LII

= 0, p+II = p̄II

(∀XII ∈ DII2) ξ
+
LII

= 1, p+II = p̄II

(∀XII ∈ DII3) ξ
+
LII

= 0, p+II = pII
(∀XII ∈ DII) x+II = xII , y+II = yII

(14)

(a) Spindle Ia simulation with hybrid dynamical system

(b) Experimental Data of Spindle Ia from [21][Ch.19]

Figure 10: Spindle Ia Model output with experimental data in [21][Ch.19] com-
parison

where xII is the filter state, yII is system output, the function
sat0 is the function that saturates at zero any negative argu-
ment, pII is the filter pole, KLII , KVII and KγII are the static
gains for the muscle length, velocity and the excitation state
of γd-motoneuron; in this case, L, V and γII are the muscle
length, velocity and the excitation state of γd-motoneuron and
are considered as system inputs. Then XII is the vector collect-
ing the state, inputs, and output of the system. The flow set
CII = R3\DII while the jump set is DII = DII1 ∪ DII2 ∪ DII3,
where

DII1 = {XII : L̇ < 0&(ξLII , 0||pII , p̄II)},

DII2 = {XII : L̇ > 0&(ξLII , 1||pII , p̄II)},

DII3 = {XII : L̇ = 0&(ξLII , 0||pII , pII)}.

In Fig.11 we make a comparison between the output of the dy-
namical system (14) with the experimental available. The iden-
tified parameters are all gathered in Tab.5.

Table 6: Parameters of spindle II model.

p̄II pII K̄LII KL̇II
KγII L̄

85 2.858 4.334 0.9184 0.343 2.5
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(a) Spindle II simulation with hybrid dynamical system

(b) Experimental Data of Spindle II in [21][Ch.19]

Figure 11: Spindle II Model output with experimental data in [21][Ch.19] com-
parison

6. Application Example: Oculomotor System

In this section, we provide an application of the proposed
muscle modeling in the framework of the Oculomotor System.
In particular, this application has been motivated by the work
[43], [44], [45], in which a description of the oculomotor sys-
tem has been provided with the assumption that the actuation
is not given by muscular torque but rather given directly as an
acceleration, see equation (11b) in [45] for example. This, in
our opinion, oversimplifies the tackled problem implying that a
more complex analysis must be pursued when considering an
adaptive control description of the system.

We believe thus that a more insightful model has to take
into account the skeletal muscle activation due to the firing rate
of the α-neurons αi, i = 1,2, and that their exert force then
generates an equivalent torque on the eyeball. Thus, according
to the labels in Fig.12, we propose the following model for the
horizontal motion of an eyeball

θ̇ = ω

Jω̇ =−βω +RK1 (α1,L1)
(
L1−L01(α1)

)
−RK2 (α2,L2)

(
L2−L02(α2)

) (15)

where θ is the angular displacement with respect to the sagittal

 

Figure 12: Schematic description of the oculomotor system in the horizon-
tal plane evolution. The oculomotor system presents two antagonist muscles
whose combined force produces a torque on the eyeball.

(or longitudinal) plane, ω is its rate of change, J is the eyeball
inertia with respect to the vertical axis, R is its radius, and αi,
K1, Li, L0i, for i = 1,2, are the α-motoneurons firing rates, the
muscles variable stiffness, current and rest lengths, respectively.
Moreover, the length of each muscle is related to the angle θ ,
by considering the following relationship, i = 1,2,

Li = Li0 +(−1)iRθ

where Li0 are the initial muscle length. And so the model can
be written as a function of the system state variable

θ̇ = ω

Jω̇ =−βω +RK1 (α1,L10−Rθ)
(
L10−Rθ −L01(α1)

)
−RK2 (α2,L20 +Rθ)

(
L20 +Rθ −L02(α2)

) (16)

With the proposed model, we show that such an assumption
does not hold any more without additional assumptions on the
muscle force generation, e.g., a part of the brain is involved
in providing an inversion map between the desired acceleration
torque. And it is worth to notice that such an inverse map is
not possible to get because the forward mapping from the firing
rates α1 and α2 to the torque τ = RK1 (α1,L1)

(
L1−L01(α1)

)
−

RK2 (α2,L2)
(
L2−L02(α2)

)
is not injective but only surjective.

Indeed, in particular, one can exploit the additional degree of
freedom to obtain a desired joint stiffness for example.

Moreover, the oculomotor system involves also the sensory
part described in sec.5 (one for each muscle). In particular, as-
suming that L10 = L20 the scaled difference between L2 and L1
provides the angle θ , while the difference between L̇2 and L̇1
provides its rate of change. These signals can be obtained from
the response of the spindle Ia and II, of each muscle. Moreover,
this information is in synergy with that coming from the visual
cortex, when, for example pursuing an object, we also have an
additional error signal reconstructed by the visual cortex itself.
However, the information provided to the brain-implemented
controller is asynchronous, in the sense that the time delay af-
fecting the feedback of these signals is not the same, in general,

8



for the two types of information, i.e., that coming from the sen-
sory system and that coming from the visual system.

The challenge is then to obtain a robust (to the uncertainties
of the parameters) control strategy that reconstructs the system
state from the Hybrid model of the Spindle Ia and II and guides
the firing rates of the two muscles to achieve the desired behav-
ior, such as object pursuing or gaze fixation to name two.

7. Conclusions and future works

In this work, we dealt with the modeling of muscle force
considering the passive and active components of the isometric
force. We first provided a brief overview of the model available
in the literature and then show two models,i.e., an intermediate
and a final one. The first one is more complex and precise than
the second but it does not add much to the models available in
the literature. On the other hand, it allowed us to construct a set
of data that have been useful for the identification of the sec-
ond model parameters. The latter (the spring model) is easier
to handle, although less precise than the intermediate one, and
gives a physical intuition about the muscle behavior. Indeed, it
describes such muscular behavior as a controllable non-linear
spring with controllable (variable) stiffness K and rest length
L0. We furthermore provide a hybrid dynamical model formu-
lation of the spindles organs that act as muscle length and ve-
locity sensors for the Central Nervous System. We then provide
an application to the case of the oculomotor system proposing
its dynamic modeling, and describing the related challenges.

Future works may concern the development of a muscle
force characteristic depending also on the rate of shortening and
lengthening of the muscle fibers’ length, to provide a more com-
plete model. Such a model can then be analyzed in a control
context involving (biological) joints with antagonist actuation.
Moreover, a system theoretic description of the physiological
reflexes, such as the stretch reflex, can be investigated by ex-
ploiting the proposed model.

References

[1] E. N. Marieb, K. Hoehn, Human anatomy & physiology, Pearson educa-
tion, 2007.

[2] R. L. Lieber, Skeletal muscle structure, function, and plasticity, Lippincott
Williams & Wilkins, 2002.

[3] W. R. Frontera, J. Ochala, Skeletal muscle: a brief review of structure and
function, Calcified tissue international 96 (3) (2015) 183–195.

[4] H. L. Sweeney, D. W. Hammers, Muscle contraction, Cold Spring Harbor
perspectives in biology 10 (2) (2018) a023200.

[5] I. Boyd, The isolated mammalian muscle spindle, Trends in neuro-
sciences 3 (11) (1980) 258–265.

[6] A. V. Hill, The heat of shortening and the dynamic constants of muscle,
Proceedings of the Royal Society of London. Series B-Biological Sci-
ences 126 (843) (1938) 136–195.

[7] A. F. Huxley, Muscle structure and theories of contraction, Prog. Biophys.
Biophys. Chem 7 (1957) 255–318.

[8] A. Gordon, A. F. Huxley, F. Julian, The variation in isometric tension with
sarcomere length in vertebrate muscle fibres, The Journal of physiology
184 (1) (1966) 170–192.

[9] D. T. McRuer, R. E. Magdaleno, G. P. Moore, A neuromuscular actuation
system model, IEEE Transactions on Man-Machine Systems 9 (3) (1968)
61–71.

[10] J. M. Winters, L. Stark, Analysis of fundamental human movement pat-
terns through the use of in-depth antagonistic muscle models, IEEE trans-
actions on biomedical engineering (10) (1985) 826–839.

[11] J. M. Winters, An improved muscle-reflex actuator for use in large-scale
neuromusculoskeletal models, Annals of biomedical engineering 23 (4)
(1995) 359–374.

[12] I. E. Brown, E. J. Cheng, G. E. Loeb, Measured and modeled properties of
mammalian skeletal muscle. ii. the effectsof stimulus frequency on force-
length and force-velocity relationships, Journal of Muscle Research &
Cell Motility 20 (7) (1999) 627–643.

[13] G. Joyce, P. Rack, D. Westbury, The mechanical properties of cat soleus
muscle during controlled lengthening and shortening movements, The
Journal of physiology 204 (2) (1969) 461–474.

[14] P. M. Rack, D. Westbury, The effects of length and stimulus rate on ten-
sion in the isometric cat soleus muscle, The Journal of physiology 204 (2)
(1969) 443–460.

[15] J. M. Winters, Hill-based muscle models: a systems engineering perspec-
tive, in: Multiple muscle systems, Springer, 1990, pp. 69–93.

[16] F. C. Van der Helm, L. A. Rozendaal, Musculoskeletal systems with in-
trinsic and proprioceptive feedback, in: Biomechanics and neural control
of posture and movement, Springer, 2000, pp. 164–174.

[17] N. Hogan, Adaptive control of mechanical impedance by coactivation of
antagonist muscles, IEEE Transactions on automatic control 29 (8) (1984)
681–690.

[18] J. McIntyre, J.-J. E. Slotine, Does the brain make waves to improve sta-
bility?, Brain research bulletin 75 (6) (2008) 717–722.

[19] J. M. Wakeling, S. S. Lee, A. S. Arnold, M. de Boef Miara, A. A.
Biewener, A muscle’s force depends on the recruitment patterns of its
fibers, Annals of biomedical engineering 40 (8) (2012) 1708–1720.

[20] I. Boyd, P. Murphy, V. Moss, Analysis of primary and secondary afferent
responses to stretch during activation of the dynamic bag 1 fibre or the
static bag 2 fibre in cat muscle spindles, in: The muscle spindle, Springer,
1985, pp. 153–158.

[21] I. A. Boyd, M. H. Gladden, The muscle spindle, Springer, 1985.
[22] U. Windhorst, Muscle proprioceptive feedback and spinal networks,

Brain research bulletin 73 (4-6) (2007) 155–202.
[23] M. P. Mileusnic, G. E. Loeb, Mathematical models of proprioceptors. ii.

structure and function of the golgi tendon organ, Journal of neurophysi-
ology 96 (4) (2006) 1789–1802.

[24] M. G. Maltenfort, R. Burke, Spindle model responsive to mixed fusimo-
tor inputs and testable predictions of β feedback effects, Journal of neu-
rophysiology 89 (5) (2003) 2797–2809.

[25] E. Schomburg, Spinal sensorimotor systems and their supraspinal control,
Neuroscience research 7 (4) (1990) 265–340.

[26] P. B. Matthews, The human stretch reflex and the motor cortex, Trends in
neurosciences 14 (3) (1991) 87–91.

[27] E. Jankowska, A neuronal system of movement control via muscle spindle
secondaries., Progress in brain research 80 (1989) 299–303.

[28] M. M. Gassel, A critical review of evidence concerning long-loop reflexes
excited by muscle afferents in man, Journal of Neurology, Neurosurgery
& Psychiatry 33 (3) (1970) 358–362.

[29] R. M. Eccles, A. Lundberg, Supraspinal control of interneurones mediat-
ing spinal reflexes, The Journal of physiology 147 (3) (1959) 565–584.

[30] K. Iqbal, A. Roy, Stabilizing pid controllers for a single-link biomechan-
ical model with position, velocity, and force feedback, J. Biomech. Eng.
126 (6) (2004) 838–843.

[31] D. A. Kistemaker, A. J. K. Van Soest, J. D. Wong, I. Kurtzer, P. L. Gribble,
Control of position and movement is simplified by combined muscle spin-
dle and golgi tendon organ feedback, Journal of neurophysiology 109 (4)
(2013) 1126–1139.

[32] E. Mtui, G. Gruener, P. Dockery, Fitzgerald’s Clinical Neuroanatomy and
Neuroscience E-Book, Elsevier Health Sciences, 2020.

[33] J. Nolte, The human brain, Mosby/Elsevier,, 1993.
[34] D. M. Wolpert, R. C. Miall, M. Kawato, Internal models in the cerebel-

lum, Trends in cognitive sciences 2 (9) (1998) 338–347.
[35] O. Barak, Mark l. latash. neurophysiological basis of movement. human

kinetics, champaign, 1998, Medicinski pregled 55 (5-6) (2002) 261–261.
[36] J. A. Kiernan, M. L. Barr, Barr’s the human nervous system: an anatomi-

cal viewpoint, Lippincott Williams & Wilkins, 2009.
[37] M. A. Patestas, L. P. Gartner, A textbook of neuroanatomy, John Wiley &

Sons, 2016.

9



[38] J. Huang, A. Isidori, L. Marconi, M. Mischiati, E. Sontag, W. Wonham,
Internal models in control, biology and neuroscience, in: 2018 IEEE Con-
ference on Decision and Control (CDC), IEEE, 2018, pp. 5370–5390.

[39] D. M. Wolpert, M. Kawato, Multiple paired forward and inverse models
for motor control, Neural networks 11 (7-8) (1998) 1317–1329.

[40] M. Kawato, Internal models for motor control and trajectory planning,
Current opinion in neurobiology 9 (6) (1999) 718–727.

[41] M. Mischiati, H.-T. Lin, P. Herold, E. Imler, R. Olberg, A. Leonardo,
Internal models direct dragonfly interception steering, Nature 517 (7534)
(2015) 333–338.

[42] M. P. Mileusnic, I. E. Brown, N. Lan, G. E. Loeb, Mathematical models of
proprioceptors. i. control and transduction in the muscle spindle, Journal
of neurophysiology 96 (4) (2006) 1772–1788.

[43] M. E. Broucke, Model of the oculomotor system based on adaptive inter-
nal models, IFAC-PapersOnLine 53 (2) (2020) 16430–16437.

[44] M. E. Broucke, Adaptive internal model theory of the oculomotor sys-
tem and the cerebellum, IEEE Transactions on Automatic Control 66 (11)
(2020) 5444–5450.

[45] E. Battle, M. E. Broucke, Adaptive internal models in the optokinetic
system, in: 2021 60th IEEE Conference on Decision and Control (CDC),
IEEE, 2021, pp. 641–648.

10


	Introduction
	Motivations

	Preliminaries on available experimental data in literature
	Literature models comparison
	Brown's et al model
	Winters' Model

	Proposed Models
	Evaluation Model
	Control Model

	Sensors modelling
	Spindles Ia and II
	Spindle-Ia
	Spindle-II


	Application Example: Oculomotor System
	Conclusions and future works

