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Abstract 
The design of batch plants necessary involves how equipment may be utilized, which 
means that plant scheduling and production must form an integral part of the design 
problem. The market demand for such products is usually changeable, and at the stage 
of conceptual design of a batch plant, it is almost impossible to obtain the precise 
information on the future product demand over the lifetime of the plant. This paper 
addresses the problem of the optimal design of batch plants with imprecise demands and 
proposes an alternative treatment of the imprecision by using concepts of fuzzy logic. 
For this purpose, we extended a Multi-Objective Genetic Algorithm (MOGA) 
developed in previous works, taking into account simultaneously three criteria, i.e. 
minimization of the investment cost, the operation cost and the total production time. 
The case of study is a multiproduct batch plant for the production of proteins taken from 
the literature. The methodology provides a set of scenarios that are helpful to the 
decision’s maker and constitutes a very promising framework for taken imprecision into 
account in new product development stage. 
 
Keywords: Multi-objective optimization, genetic algorithm, fuzzy arithmetic. 

1.  Introduction 
In recent years, there has been an increased interest in the design of batch processes due 
to the growth of specialty chemical, pharmaceutical,  and related industries, because 
they are a preferred operating method for manufacturing small volumes of high-value 
products. The market demand for such products is usually changeable, and at the stage 
of conceptual design of a batch plant, it is almost impossible to obtain the precise 
information on the future product demand over the lifetime of the plant.  However, 
decisions must be made on the plant capacity. This capacity should be able to balance 
the product demand satisfaction and extra plant capacity in order to reduce the loss on 
the excessive investment cost or that on market share due to the varying demands on 
products. Consequently, the mission of the designer, assisted by traditional tools, may 
prove to be hazardous and makes essential the resort to a more robust approach.  
The design of multiproduct batch plants has been an active area of research over the 
past decade. Most of the work has been yet limited to deterministic approaches, wherein 
the problem parameters are assumed to be known with certainty. However, in reality 



there can be uncertainty in a number of factors such as processing times, costs, 
demands, and not all the requirements placed by the technology of the process and the 
properties of the substances are defined. To cope with this, there has been increased 
interest in the development of different types of probabilistic models that explicitly take 
into account the various uncertainties (Sahinidis, 2003). For instance, Wellons and 
Reklaitis proposed an MINLP model for the design of batch plants under uncertainty 
with staged capacity expansions. Based on the structure of multiproduct batch plants, 
Straub and Grossmann (1992) developed an efficient procedure to evaluate the expected 
stochastic flexibility, embedded within an optimization framework for selecting the 
design (size and number of parallel equipment). Two-stage stochastic programming 
approaches have also been applied for design under uncertainty (Ierapetritou and 
Pistikopolous (1996); Harding and Floudas (1997); Petkov and Maranas (1998); Cao 
and Yuan (2002).  
The key point in the optimal design of batch plants under imprecision concerns 
modeling of demand variations. The most common approaches treated in the dedicated 
literature represent the demand uncertainty with a probabilistic frame by means of 
Gaussian distributions. Yet, this assumption does not seem to be a reliable 
representation of the reality, since in practice the parameters are interdependent, leading 
to very hard computations of conditional probabilities, and do not follow symmetric 
distribution rules. In this work, fuzzy concepts and arithmetic constitute an alternative to 
describe the imprecise nature on product demands. 
For this purpose, we extended a multi-objective genetic algorithm, developed in 
previous works (Dietz et al. 2005). For instance, the optimal design of a multiproduct 
batch chemical plant is not only to minimize the investment, but also to minimize the 
operation cost and to minimize the total production time, simultaneously. The paper is 
organized as follows. Section 2 is devoted to process description and problem 
formulation. Section 3 presents a brief overview of fuzzy set theory involved in the 
fuzzy framework within a multi-objective genetic algorithm. The presentation is then 
illustrated by some typical results in Section 4.  

2. Process description and problem formulation 
In previous works (Dietz et al., 2005, 2006), batch plant design was carried out 
minimizing the investment cost and the production system was represented using 
discrete event simulation techniques in order to take into account different production 
policies. Two strategies for campaign policies were tested, either monoproduct or 
multiproduct. In this work, only the monoproduct campaign policy was considered, so 
that the computation of cycle time can be easily implemented using the classical 
formulation proposed in (Montagna et al., 2000), involving size and time equations as 
well as constraints. The model uses the formulation presented in (Modi and Karimi, 
1989), then modified in (Xu et al., 1993), for multiproduct batch plant design 
formulation. It considers not only treatment in batch stages, which usually appears in all 
kinds of formulation, but also represents semi-continuous units that are part of the 
whole process (pumps, heat exchangers…). Let us recall that a semi-continuous unit is 
defined as a continuous unit working by alternating low-activity and normal activity 
periods. Besides, this formulation takes into account short-term or mid-term 
intermediate storage tanks. They are used to divide the whole process into sub-
processes, in order to store materials corresponding to the difference of each sub-
process productivity. This representation mode confers to the plant a major flexibility 
for numerical resolution, by preventing the whole process production from being 



paralysed by one bottleneck stage. Therefore, a batch plant is finally represented by 
series of batch stages (B), semi-continuous stages (SC) and storage tanks (T). 
The model considers the synthesis of I products treated in J batch stages and K semi-
continuous stages. Each batch stage consists of mj out-of-phase parallel items of same 
size Vj. Each semi-continuous stage consists of nk out-of-phase parallel items of same 
processing rate Rk. The item size (continuous variables) and equipment number per 
stage (discrete variables) are bounded. The S-1 storage tanks, of size Vs*, divide the 
whole process into S sub-processes. 
For instance, the optimal design of a multiproduct batch chemical plant is not only to 
minimize the investment, but also to minimize the operation cost and to minimize the 
total production time, simultaneously.  Then, an optimal design problem becomes a 
MOOP as following: 
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The problem statement involves four forms of different constraints as reported in 
literature: (i) Dimension constraints: every units has to restrict to its allowable range. (ii) 
Time constraint: the summation of available production time for all products is inferior 
to the total production time. (iii) Limiting cycle time for product i. (iv) Volume 
constraints: the volume Vj  has to be able to process all the products i. 
 

3. Overview of fuzzy multiobjective genetic algorithm approach 

3.1. Representation of fuzzy demands and time horizon due-date 
In the context of engineering design, an imprecise variable is a variable that may 
potentially assume any value within a possible range because the designer does not 
know a priori the final value that will emerge from the design process. The fuzzy set 
theory was introduced by Zadeh to deal with problems in which a source of vagueness 
is involved. The proposed approach involves arithmetic operations on fuzzy numbers 
and quantifies the imprecision of the demand by means of fuzzy sets (trapezoidal). In 
this case, the flat line over the interval (q2,q3) represents the precise demands with an 
interval of confidence at level α=1, while the intervals (q1,q2) and (q3,q4) represent the 
“more or less possible values” of the demand. The result of the total production time 

iH~  and the operation cost are treated and analyzed through fuzzy numbers. The time 

horizon H~  represented by a fuzzy expression (rectangle) and the production time iH~  
(trapezoidal) are fuzzy quantities, three different cases for determination of the criterion 
may occur, as shown in figure 1. The temporal criterion selected is called “common 
surface”, representing the intersection between the sum of the production time 
(trapezoid) and the horizon of time to respect (rectangle). The calculation of the 
criterion depends on each case: for instance, case1 illustrate the solutions which arrive 
just in time.  
 



  

  

  

  

  

 
 
 
 

Figure 1 – Fuzzy evaluation procedure in the GA 
 

3.2. Overview of  multi-objective genetic algorithm approach 
The multi-objective genetic algorithm presented elsewhere (Dietz et al., 2005) was then 
extended to take into account the fuzzy nature of both demand and horizon time. Let us 
mention that that the same encoding procedure was adopted since no fuzzy parameter is 
involved at that stage. The originality of this proposed research is that fuzziness is 
maintained throughout the computation procedure and no defuzzification is operated so 
that fuzzy results are proposed to the decision’s maker. The tunable parameters of the 
GA will also not be discussed here. More detail can be found in (Dietz et al., 2006). 
They involve addition, subtraction, taking the maximum of two fuzzy numbers (mainly 
at the selection stage and at the Pareto sort procedure), through the extension principle 
of (Zadeh, 1975).  Although there is a large body of literature that deals with the 
comparison of fuzzy numbers, the approach proposed by (Liou and Wang, 1992) was 
finally adopted here.  
 

3.3. Treatment of an illustrative example 
The case of study is a multiproduct batch plant for the production of proteins taken from 
the literature (Montagna et al., 2000), (Pinto et al., 2001). The batch plant involves eight 
stages for producing three recombinant proteins, on one hand two therapeutic proteins, 
Human insulin (I) and Vaccine for Hepatitis B (V) and, on the other hand, a food grade 
protein, Chymosin (C). This example is used as a benchmark since short-cut models 
describing the unit operations involved in the process are available. 
The GA parameters are the following ones: Population size 200 individuals, number of 
generations 400 iterations, crossover probability 40%, mutation probability 30% and the 
stop criterion considered in this study concerns a maximum number of generations to 
reach. For the considered example, table 1 shows the values for processing times, size 
factor for the units, cost data, and the production requirement for each product 
quantifying the imprecision of the demand by means of fuzzy numbers representing the 
“more or less possible values”.  
 

4. Typical results 
The method proposes a sufficiently large range of compromise solutions making it 
possible to the decision’s maker to tackle the problem of the final choice, with relevant 
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information for his final choice. The result obtained of the multi-objective optimization 
problem involves 200 non-dominated solutions: among them, 4 represent the case 2, 
where the production time Hi (trapezoidal) is within of time horizon H (rectangle), 2 
represent the first case (the delay) and 194 represent the case 3(the advance).  
This study leads to three different scenarios as a fuzzy decision-making approach to 
preliminary design. Table 2 shows the solution that minimizes the investment cost for 
case 2. Tables 3 and 4 present the results that minimize the total production time and 
minimize the investment cost (cases 1 and 3), respectively.  
 
   Processing time τi,j (h) Size factors (1/kg)  

           B1 B2 B3 B4 B5 B6 B1 B2 B3 B4 B5 B6 
Human Insulin (I) 
Chymosin (C) 
Vaccine for Hepatitis B (V) 
 

         1.15 
         5.95 
         3.96 
             
γj      0.4 

3.98 
7.52 
5.07 
 
0.29 

9.86 
7.01 
6.01 
 
0.33 

5.28 
7 
5.13 
 
0.3 

1.2 
1.08 
0.66 
 
0.2 

3.57 
5.78 
4.37 
 
0.35 

8.28 
5.58 
2.34 
 
 

6.92 
8.03 
9.19 
 

9.7 
8.09 
10.3 
 

2.95 
3.27 
5.7 
 

6.57 
6.17 
5.98 
 

10.6 
6.57 
3.14 
 

  
 
 

Unit price for product i 
($/Kg) 

  
 
 

Coefficients  ci,j 

I=(428260, 432630, 441370, 445740) 
C=(317520, 320760, 327240, 330480) 
V=(252840, 255420, 260580, 263160) 

H~ =(5950, 5950,6240,6240) Rectangle 

 CP CO  B1 B2 B3 B4 B5 B6 Cost of Fermenter=$250V0.6 
Cost of Micro Filter=$250V0.6 

Cost of Homogenizer=$250V0.6 
Cost of Ultra filter=$250V0.6 

Cost of Extractor=$250V0.6 

Cost of Chromatographic=$250V0.6 

I 
C 
V 
 

0.70 
0.74 
0.80 
 

0.08 
0.1 
0.07 
 

0.2 
0.15 
0.34 
 

0.36 
0.5 
0.64 
 

0.24 
0.35 
0.5 
 

0.4 
0.7 
0.85 
 

0.5 
0.42 
0.3 
 

0.4 
0.38 
0.22 
 
 

Minimum size =250 l 
Maximum size = 10 000 l 

Operating cost factors   
 B1 B2 B3 B4 B5 B6 

CE 20 30 15 35 37 18 

Table 1 – Data used in example 
 

Product Bis kg TLi h Optimal objective function value Storage Tanks 
 I 639.6 3.9 Cost = 595,266.56  [$]  

pD~ = [302914.3   306005.3   312187.2   315278.2] [$] 

∑
iH~ = [5998.05   6059.25   6181.66   6242.8] [h]     

Vs = 1737.22 [l] 
 C 808.6 5.6 

V 576.4 4.8 

Table 2 – Fuzzy optimal design of batch plant for case 1 (delay) 
 

Product Bis kg TLi h Optimal objective function value Storage Tanks 
I 636.4 3.9 Cost = 601269.4 [$]  

pD~ = [299022.5   302073.81   308176.3   311227.5] [$] 

∑
iH~ = [5962   6022.8   6144.5   6205.3] [h]     

Vs = 1736.2 [l] 
 C 831.8 5.6 

V 621.4 4.8 

Table 3 – Fuzzy optimal design of batch plant for case 2   
 

Product Bis kg TLi h Optimal objective function value Storage Tanks 
I 642.9 3.9 Cost = 598996.9  [$]  

pD~ = [300165.7   303228.6   309354.4   312417.3] [$] 

∑
iH~ = [5937.3   5998.3   6119.4   6180.08] [h]     

Vs = 1730.6 [l] 
 C 808.2 5.6 

V 602.1 4.8 

Table 4 – Fuzzy optimal design of batch plant for case 3 (advance)  

5. Conclusions 
In this paper, we have proposed a fuzzy approach to the treatment of imprecise demands 
in the batch design problem. In real application, designers not only require to minimize 



investment, but also to minimize the operation cost and horizon time, simultaneously. 
An example was used to show the significance of the proposed approach. The results 
show that a set of compromise solutions is generated to the decision’s maker, with an 
acceptable degree of imprecision affecting the defined criteria, which seems more 
realistic than a classical crisp approach. This approach will reduce the risk of making 
design decisions incorrectly. The results obtained on the treated example have shown 
that three different scenarios were obtained as a fuzzy decision-making approach. 
Finally, this framework provides an interesting decision-making approach to design 
multiproduct batch plants under conflicting goals. 
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