
HAL Id: hal-04088181
https://hal.science/hal-04088181v1

Submitted on 3 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Marche sans escale dans un graphe temporel
Juan Villacis-Llobet, Binh-Minh Bui-Xuan, Maria Potop-Butucaru

To cite this version:
Juan Villacis-Llobet, Binh-Minh Bui-Xuan, Maria Potop-Butucaru. Marche sans escale dans un
graphe temporel. AlgoTel 2023 - 25èmes Rencontres Francophones sur les Aspects Algorithmiques
des Télécommunications, May 2023, Cargese, France. �hal-04088181�

https://hal.science/hal-04088181v1
https://hal.archives-ouvertes.fr

Marche sans escale dans un graphe temporel

Juan Villacis-Llobet1 et Binh-Minh Bui-Xuan1 et Maria Potop-Butucaru1

1LIP6 (CNRS – Sorbonne Université), Paris, France

Une marche temporelle est une suite d’arêtes adjacentes où chacune est munie d’une date prise dans un ordre croissant
en suivant le sens de la marche. La marche est sans escale si les dates de toute paire d’arêtes consécutives se succèdent
sans temps d’arrêt. Un chemin temporel est une marche temporelle où tout sommet apparaît au plus une fois. Dans un
graphe temporel avec 𝑛 sommets et 𝑚 arêtes temporelles, il est possible de décider en temps 𝑂 (𝑛 + 𝑚 log𝑚) s’il existe
une marche temporelle sans escale partant d’un sommet 𝑠 et arrivant à un sommet 𝑡 avant une date 𝑑 [Himmel, Bentert,
Nichterlein and Niedermeier, CNA 2019]. En revanche, décider s’il existe un chemin temporel sans escale partant de
𝑠 et arrivant à 𝑡 avant la date 𝑑 est 𝑁𝑃-complet [Casteigts, Himmel, Molter and Zschoche, Algorithmica, 2021]. Nous
présentons un algorithme linéaire pour décider le premier cas †.

Mots-clefs : temporal graph, shortest path, foremost journey, non-stop journey.

1 Introduction
A temporal (di)graph is a collection of dated arcs over a vertex set. When studying the foremost arrival

date for connecting two vertices in a temporal graph, there is no need to make a distinction between the
notions of a walk and a path, in the following sense. Let us call the temporal version of a walk a journey,
and define it as a sequence of dated arcs fulfilling two properties: firstly, the arcs are dated increasingly
in the sequence (temporal); secondly, the target vertex of every preceding arc is the source vertex of its
immediate successor (walk). This helps modelling both ground traffic and TCP/IP transmission [SKK19],
where a vehicle or a TCP/IP package need to be at successive checkpoints in increasing arrival dates. Here,
the journey’s arrival date is the arrival date of the last arc in the sequence. A temporal path is a journey
which never visits a vertex twice. Then, as long as the foremost arrival date is concerned, there is no need
to circle around a stopover vertex. In other words, the foremost arrival date of a journey from a vertex 𝑠 to
a vertex 𝑡 is the foremost arrival date of a temporal path from 𝑠 to 𝑡.

Furthermore, the following hereditary property can be observed. There exists among the foremost jour-
neys from 𝑠 to 𝑡 a journey where every prefix is itself a foremost journey (from 𝑠 to the stopover vertex where
the prefix ends). This hereditary property of journeys is fundamental for devising polynomial algorithms
computing foremost journeys following a greedy approach similar to Dijkstra algorithm [BFJ03]. Simi-
lar prefix preservation properties are also proved to be important for classifying polynomial path-related
problems on temporal graphs [CFMS15, RMNN21].

In this paper, we study journeys with the non-stop property, when the dates of every consecutive pair of
arcs in the journey are without delay. This helps modeling cases with physical constraints when the traversal
is performed by an aircraft or a boat: while a TCP/IP package can be retained at a vertex for an unlimited
delay, an aircraft can not perform a stationary flight at a vertex waiting for a better wind condition. Another
use case of the non-stop property is about disease/gossip spreading where a viral infection/information is
supposed not to stay on any individual forever. Solving non-stop connectivity here would let us know if the
destination vertex would be at risk of contamination whenever the source vertex is infected/informed.

Computationally, the situation for non-stop connection is more challenging because the two above men-
tioned properties for the with-stops case do not necessarily hold. On the one hand there can be non-stop
journeys from 𝑠 to 𝑡 arriving at a date which is strictly earlier than the arrival date of any non-stop temporal
path from 𝑠 to 𝑡. There could also be instances where non-stop journeys exist while no non-stop temporal

†. An extended abstract of our results can be found in [VBP22].

Juan Villacis-Llobet et Binh-Minh Bui-Xuan et Maria Potop-Butucaru

path can be found, for instance when the dated arcs describe a non-stop looping over some stopover vertex.
Furthermore, it does not seem obvious to retrieve an equivalent of the hereditary property for non-stop jour-
neys. Thus, it seems difficult to adopt the greedy approach in order to compute the foremost arrival date
from 𝑠 to 𝑡 via a non-stop journey, as with [BFJ03]. Luckily enough, such a journey can be computed in
polynomial time, and as low as 𝑂 (𝑛+𝑚 log𝑚) for an 𝑛-vertex 𝑚-dated arc temporal graph [HBNN19]. The
situation is however much worse with non-stop temporal paths, where it is 𝑁𝑃-complete to decide whether
there exists a non-stop temporal path from 𝑠 to 𝑡 arriving at date 𝑑 [CHMZ21].

The main idea for dealing with non-stop journeys proposed in Himmel et al. [HBNN19] is to collect all
arcs dated with a given date 𝑑, plus some selected arcs just preceding 𝑑, into a graph named 𝐺𝑑 . Then, when
scanning every 𝐺𝑑 from the first to the last possible values of 𝑑, one can use an incremental computation
of journeys ending before 𝑑 in order to solve the foremost non-stop journey problem within the desired
𝑂 (𝑛 + 𝑚 log𝑚) time by a careful revision of Dijkstra algorithm on 𝐺𝑑 . Since the use of Dijkstra algorithm
hints at the existence of a greedoid structure, it would be very interesting to study how the outer incremental
scan over the values of 𝑑 combines with the inner calls of the revised Dijkstra algorithm on each 𝐺𝑑 .

Nevertheless, we below rather put the greedy approach aside and propose a new approach for non-stop
journeys, while aiming at improving the complexity downto linear time. Our approach relies on a transfor-
mation of the problem over journeys to another problem over arc sets, cf. Section 2. A particular case of
our algorithm is simple to implement and described in Section 3. Among other use, it can serve for unit
testing more optimised implementations. We also give in [VBP22] a more general version of our algorithm
whose time complexity remains linear. We close this paper by giving concluding remarks and propose some
direction for future works.

2 Reducing a path problem to a set problem
We denote 𝑉 ⊗ 𝑉 = 𝑉 × 𝑉 \ {(𝑣, 𝑣) : 𝑣 ∈ 𝑉}. A temporal digraph is a tuple 𝐺 = (𝜏,𝑉, 𝐴, 𝑐) where:

𝜏 ∈ N is an integer called the timespan of 𝐺 from which we define interval 𝑇 = È0, 𝜏 − 1É as the set of time
instants used in 𝐺; 𝑉 is a finite set called the vertex set of 𝐺; 𝐴 ⊆ 𝑇 ×𝑉 ⊗ 𝑉 is called the arc set of 𝐺; and
𝑐 : 𝐴 → N is a cost function representing the traversal time of every arc in 𝐺.

For every arc 𝑎 = (𝑑, 𝑠, 𝑡) ∈ 𝐴, we denote 𝑠(𝑎) = 𝑠 the source vertex of the arc, 𝑡 (𝑎) = 𝑡 its target vertex,
and 𝑑 (𝑎) = 𝑑 its departure time. The traversal of arc 𝑎 departs from 𝑠 towards 𝑡 at departure time 𝑑 and
arrives to 𝑡 at arrival time 𝑑 + 𝑐(𝑎).

We define journeys with waiting time constraints following the formalism given in [HBNN19]. Let
𝑠, 𝑡 ∈ 𝑉 be two distinct vertices of 𝐺. Let 𝛼, 𝛽 : 𝑉 → N be two functions representing the minimum
and maximum waiting time at every vertex. An (𝛼, 𝛽)-journey from 𝑠 to 𝑡 is a sequence of arcs 𝐽 =

(𝑎1, 𝑎2, . . . , 𝑎𝑝) ∈ 𝐴𝑝 , where 𝑠(𝑎1) = 𝑠, 𝑡 (𝑎𝑝) = 𝑡, and for every 1 ≤ 𝑖 < 𝑝 we have both 𝑡 (𝑎𝑖) = 𝑠(𝑎𝑖+1)
and 𝑑 (𝑎𝑖) + 𝑐(𝑎𝑖) + 𝛼(𝑡 (𝑎𝑖)) ≤ 𝑑 (𝑎𝑖+1) ≤ 𝑑 (𝑎𝑖) + 𝑐(𝑎𝑖) + 𝛽(𝑡 (𝑎𝑖)). For 1 ≤ 𝑖 < 𝑝, the traversal of arc 𝑎𝑖
begins from source vertex 𝑠(𝑎𝑖) at departure time 𝑑 (𝑎𝑖), it takes 𝑐(𝑎𝑖) time steps to arrive at target vertex
𝑡 (𝑎𝑖), where the journey has to be delayed for at least 𝛼(𝑡 (𝑎𝑖)) and at most 𝛽(𝑡 (𝑎𝑖)) time steps before
pursuing with the traversal of arc 𝑎𝑖+1. The arrival date of 𝐽 is defined as 𝑑 (𝑎𝑝) + 𝑐(𝑎𝑝). A journey is
called foremost when its arrival date is minimum.

On input a temporal graph 𝐺 = (𝜏,𝑉, 𝐴, 𝑐) with transit functions (𝛼, 𝛽) and two vertices 𝑠, 𝑡 in 𝐺, the
problem of computing the minimum value of arrival date 𝑑 (𝑎𝑝) + 𝑐(𝑎𝑝) taken over every (𝛼, 𝛽)-journey
𝐽 = (𝑎1, 𝑎2, . . . , 𝑎𝑝) from 𝑠 to 𝑡 is called the FOREMOSTJOURNEYARRIVAL under (𝛼, 𝛽)-transit problem.
When both 𝛼 and 𝛽 are constantly equal to 0, such a (0, 0)-journey 𝐽 is called a non-stop journey. Lemma 1
below is crucial because it helps us reduce a path-like problem down to a set problem. For any source vertex
𝑠 ∈ 𝑉 , we define the set of (𝛼, 𝛽)-reachable arcs from 𝑠 as

𝑅(𝑠) = {𝑎𝑝 ∈ 𝐴 : ∃ (𝛼, 𝛽)-journey 𝐽 = (𝑎1, 𝑎2, . . . , 𝑎𝑝) ∈ 𝐴𝑝 ∧ 𝑠(𝑎1) = 𝑠}.
Lemma 1 min{𝑑 (𝑎)+𝑐(𝑎) : 𝑎 ∈ 𝑅(𝑠)∧𝑡 (𝑎) = 𝑡} is equal to the minimum arrival date of an (𝛼, 𝛽)-journey
from 𝑠 to 𝑡.

Lemma 1 is proper to temporal digraphs in the sense that we can from input 𝐺 = (𝜏,𝑉, 𝐴, 𝑐) filter the
set 𝐴 to a smaller subset 𝑅(𝑠) ⊆ 𝐴, then filter further to the set of arcs whose target vertex is 𝑡, and finally
reduce the stream to find the minimum value 𝑑 (𝑎) + 𝑐(𝑎), as with filter-map-reduce programming.

Non-stop journeys in temporal graphs

3 Computing the foremost arrival date
We show how to compute 𝑅(𝑠), using some intermediary steps. We claim that it is possible to compute

𝑅(𝑠) from what we call the set of valid transit departures in an (𝛼, 𝛽)-journey from 𝑠, that is
𝐷 (𝑠) = {(𝑑, 𝑣) ∈ 𝑇 ×𝑉 : ∃ (𝛼, 𝛽)-journey 𝐽 = (𝑎1, 𝑎2, . . . , 𝑎𝑝) ∈ 𝐴𝑝 ∧ 𝑠(𝑎1) = 𝑠 ∧ 𝑠(𝑎𝑝) = 𝑣 ∧ 𝑑 (𝑎𝑝) = 𝑑}.

Indeed, we can output 𝑅(𝑠) from 𝐷 (𝑠) using a bucket sort (a.k.a. radix sort) approach as follows. We
initialize a boolean table R indexed by the elements of 𝐴. For any 𝑎 ∈ 𝐴 with 𝑎 = (𝑑, 𝑢, 𝑣), we scan 𝐷 (𝑠)
and check if (𝑑, 𝑢) ∈ 𝐷 (𝑠). If this is the case we set R[a] to true. At the end of the process, we scan R
and output every index 𝑎 where R[a] has value true. With a data structure representing 𝐷 (𝑠) with 𝑂 (1)
access to membership testing, the computation of 𝑅(𝑠) from 𝐷 (𝑠) is linear in |𝐴|.

We use the following graph in Lemma 2 below to compute 𝐷 (𝑠). The (𝛼, 𝛽)-transit departure digraph
𝐺𝐷 = (𝑉𝐷 , 𝐴𝐷) is a static graph, defined as follows. First, 𝑉𝐷 = {(𝑑, 𝑣) : ∃𝑎 ∈ 𝐴, 𝑠(𝑎) = 𝑣 ∧ 𝑑 (𝑎) = 𝑑} is
the set of all possible transit departures, including those not necessarily valid w.r.t. any (𝛼, 𝛽)-journey from
𝑠. For any pair of vertices 𝑥 = (𝑑, 𝑢) and 𝑦 = (𝑑 ′, 𝑣) of 𝑉𝐷 , we define (𝑥, 𝑦) ∈ 𝐴𝐷 if and only if we have
both that 𝑎 = (𝑑, 𝑢, 𝑣) belongs to 𝐴 and that 𝑑 + 𝑐(𝑎) + 𝛼(𝑣) ≤ 𝑑 ′ ≤ 𝑑 + 𝑐(𝑎) + 𝛽(𝑣).

To prevent exceeding the linear complexity, we must ensure that the size of 𝐺𝐷 is not too large. Let
𝛾 = max{𝛽(𝑣) − 𝛼(𝑣) + 1 : 𝑣 ∈ 𝑉}. We claim that |𝑉𝐷 | ≤ |𝐴| and |𝐴𝐷 | ≤ 𝛾 × |𝐴|. The former inequality
follows from definition of 𝑉𝐷 , which ensures there will be at most one vertex in 𝑉𝐷 for every arc in 𝐴. Let
us examine (𝑥, 𝑦) ∈ 𝐴𝐷 with 𝑥 = (𝑑, 𝑢) and 𝑦 = (𝑑 ′, 𝑣). By definition, 𝑎 = (𝑑, 𝑢, 𝑣) must belong to 𝐴, and
𝑑 ′ must satisfy the waiting time constraints 𝑑 + 𝑐(𝑎) + 𝛼(𝑣) ≤ 𝑑 ′ ≤ 𝑑 + 𝑐(𝑎) + 𝛽(𝑣). Let us define function
𝑓 : 𝐴𝐷 → 𝐴 × È0, 𝛾 − 1É as 𝑓 ((𝑑, 𝑢), (𝑑 ′, 𝑣)) = (𝑑, 𝑢, 𝑣, 𝑑 ′ − 𝑑 − 𝑐(𝑎)). Then, we can check that 𝑓 is a
well-defined injective function, and therefore, deduce that |𝐴𝐷 | ≤ 𝛾 × |𝐴|.

Let us first consider the case of non-stop journeys. It follows from definition that (𝑥, 𝑦) ∈ 𝐴𝐷 ∧ 𝑥 ∈ 𝐷 (𝑠)
implies 𝑦 ∈ 𝐷 (𝑠). Hence, 𝐷 (𝑠) encompasses the set of vertices in 𝐺𝐷 reachable from any vertex of the set
𝑉𝐷 ∩ {(𝑑, 𝑠) : 0 ≤ 𝑑 < 𝜏}. We prove in Lemma 2 that 𝐷 (𝑠) is exactly the latter set. Hence, 𝐷 (𝑠) can be
computed by any classical graph search on 𝐺𝐷 , which takes linear time in |𝐴| = |𝑉𝐷 | = |𝐴𝐷 | since 𝛾 = 1
for non-stop journeys.

Lemma 2 Let 𝐺 = (𝜏,𝑉, 𝐴, 𝑐) be a temporal digraph, 𝛼, 𝛽 : 𝑉 → N two functions representing the
minimum and maximum waiting time constraints, 𝑠 ∈ 𝑉 , and 𝐷 (𝑠) the set of valid transit departures in an
(𝛼, 𝛽)-journey from 𝑠. Let 𝐺𝐷 = (𝑉𝐷 , 𝐴𝐷) be the (𝛼, 𝛽)-transit departure digraph of 𝐺. Then, 𝐷 (𝑠) is
exactly the set of vertices in 𝐺𝐷 which are reachable from a (directed) path beginning at any vertex of the
set 𝑉𝐷 ∩ {(𝑑, 𝑠) : 0 ≤ 𝑑 < 𝜏}.
Proof. We denote by 𝑅𝐷 (𝑠) the set of vertices in 𝐺𝐷 which are reachable from a (directed) path beginning
at any vertex of the set 𝑉𝐷 ∩ {(𝑑, 𝑠) : 0 ≤ 𝑑 < 𝜏}. By definition of 𝐺𝐷 , we have the following closure
property: if (𝑥, 𝑦) ∈ 𝐴𝐷 and 𝑥 ∈ 𝐷 (𝑠) then 𝑦 ∈ 𝐷 (𝑠). Besides, whenever (𝑑, 𝑠) ∈ 𝑉𝐷 for any 0 ≤ 𝑑 < 𝜏,
that is, whenever there exists 𝑎 ∈ 𝐴 such that 𝑠(𝑎) = 𝑠 and 𝑑 (𝑎) = 𝑑, we also have that (𝑑, 𝑠) ∈ 𝐷 (𝑠) by
using the single-arc (𝛼, 𝛽)-journey 𝐽 = (𝑎) in the definition of 𝐷 (𝑠). Now, we use the above mentioned
closure property in order to deduce that 𝑅𝐷 (𝑠) ⊆ 𝐷 (𝑠). Hence, the only thing left for us to show is that
𝐷 (𝑠) ⊆ 𝑅𝐷 (𝑠).

Let (𝑑, 𝑣) ∈ 𝐷 (𝑠). We would like to prove that (𝑑, 𝑣) ∈ 𝑅𝐷 (𝑠). By definition of 𝐷 (𝑠), there exists an
(𝛼, 𝛽)-journey 𝐽 = (𝑎1, 𝑎2, . . . , 𝑎𝑝) ∈ 𝐴𝑝 such that 𝑠(𝑎1) = 𝑠, 𝑠(𝑎𝑝) = 𝑣, and 𝑑 (𝑎𝑝) = 𝑑. Let us consider
𝐽𝑞 = (𝑎1, 𝑎2, . . . , 𝑎𝑞), for any 1 ≤ 𝑞 ≤ 𝑝. For convenience, we denote 𝑑𝑞 = 𝑑 (𝑎𝑞), 𝑣𝑞 = 𝑠(𝑎𝑞), and
𝑥𝑞 = (𝑑𝑞 , 𝑣𝑞). Since 𝑎𝑞 ∈ 𝐴 we have from definition of 𝑉𝐷 that 𝑥𝑞 ∈ 𝑉𝐷 , for any 1 ≤ 𝑞 ≤ 𝑝. We claim
that (𝑥1, 𝑥2, . . . , 𝑥𝑝) is a directed walk in the static digraph 𝐺𝐷 , with 𝑥1 ∈ 𝑉𝐷 ∩ {(𝑑, 𝑠) : 0 ≤ 𝑑 < 𝜏} and
𝑥𝑝 = (𝑑, 𝑣).

Indeed, by definition of 𝐷 (𝑠) we have for any 1 ≤ 𝑞 ≤ 𝑝 that (𝑑𝑞 , 𝑣𝑞) ∈ 𝐷 (𝑠). When 𝑞 = 1, this implies
𝑣1 = 𝑠, and therefore 𝑥1 = (𝑑1, 𝑣1) = (𝑑1, 𝑠) belongs to 𝑉𝐷 ∩ {(𝑑, 𝑠) : 0 ≤ 𝑑 < 𝜏}. Since the original 𝐽
is an (𝛼, 𝛽)-journey, it must satisfy the waiting time constraints, that is, we have 𝑑𝑞 + 𝑐(𝑎𝑞) + 𝛼(𝑡 (𝑎𝑞)) ≤
𝑑𝑞+1 ≤ 𝑑𝑞 + 𝑐(𝑎𝑞) + 𝛽(𝑡 (𝑎𝑞)), for every 1 ≤ 𝑞 < 𝑝. Besides, since 𝑡 (𝑎𝑞) = 𝑠(𝑎𝑞+1) = 𝑣𝑞+1, we have
both (𝑑𝑞 , 𝑣𝑞 , 𝑣𝑞+1) = 𝑎𝑞 ∈ 𝐴 and 𝑑𝑞 + 𝑐(𝑎𝑞) + 𝛼(𝑣𝑞+1) ≤ 𝑑𝑞+1 ≤ 𝑑𝑞 + 𝑐(𝑎𝑞) + 𝛽(𝑣𝑞+1). This implies
(𝑥𝑞 , 𝑥𝑞+1) belongs to 𝐴𝐷 for every 1 ≤ 𝑞 < 𝑝. In other words, (𝑥1, 𝑥2, . . . , 𝑥𝑝) is a directed walk in 𝐺𝐷 .
Since 𝑑𝑝 = 𝑑 (𝑎𝑝) = 𝑑 and 𝑠𝑝 = 𝑠(𝑎𝑝) = 𝑣, we also have 𝑥𝑝 = (𝑑, 𝑣). We have shown a directed walk in

Juan Villacis-Llobet et Binh-Minh Bui-Xuan et Maria Potop-Butucaru

𝐺𝐷 beginning from vertex 𝑥1 ∈ 𝑉𝐷 ∩ {(𝑑, 𝑠) : 0 ≤ 𝑑 < 𝜏}, and ending at vertex 𝑥𝑝 = (𝑑, 𝑣). This also
implies there exists a directed path in 𝐺𝐷 from 𝑥1 to 𝑥𝑝 = (𝑑, 𝑣). Hence, (𝑑, 𝑣) ∈ 𝑅𝐷 (𝑠). We have proved
for every (𝑑, 𝑣) ∈ 𝐷 (𝑠) that (𝑑, 𝑣) ∈ 𝑅𝐷 (𝑠). In other words, 𝐷 (𝑠) ⊆ 𝑅𝐷 (𝑠). �

The general case of arbitrary 𝛾 ≥ 1 is considered in [VBP22]. Here, both bounds |𝑉𝐷 | ≤ |𝐴| and
|𝐴𝐷 | ≤ 𝛾 × |𝐴| are sharp: the size of 𝐺𝐷 is no more linear in |𝐴|, although it is not far from it. We
showed that it is possible to implicitly represent 𝐴𝐷 with a number of arcs linear in |𝐴|. Furthermore, we
also proved that 𝑉𝐷 can be constructed in linear time in |𝐴|, as well as the implicit representation of 𝐴𝐷 .
However, this did not allow us to conclude yet because a classical graph search on 𝐺𝐷 is not necessarily
possible when using the implicit representation of 𝐴𝐷 . We then devised a marking algorithm for finding
𝐷 (𝑠) in linear time in |𝐴|, see [VBP22, Section 4, Stage 3]. All in all, our results combine for a linear time
computation of the foremost arrival date of a (𝛼, 𝛽)-journey from 𝑠 to 𝑡.

4 Conclusion and perspectives
The non-stop transit condition adds new challenges to the computation of the foremost arrival date of

connecting through vertices of a temporal graph. Firstly it makes a singular difference between journeys
(temporal version of walks) and temporal paths, the former leading to a linear solution while the latter leads
to an 𝑁𝑃-complete problem. Then, it also blurs the possibilities of defining a greedoid after the loss of the
hereditary property for non-stop foremost journeys. The hereditary property states that there always exists
a foremost journey where every prefix is itself a foremost journey.

For future works, a first direction would be to explore polynomial cases of computing the foremost ar-
rival date of a non-stop temporal path, either by restricting the input temporal graph, or by exploring the
possibility of approximation algorithms. A more challenging direction would be to explore the possibilities
of defining a greedoid greedy algorithm solving these restricted cases. As for journeys, although we de-
scribed in [VBP22] how to compute the foremost arrival date of a non-stop journey in linear time, it could
be necessary to find a simpler substitution for the procedure described in [VBP22, Section 4, Stage 3].

Acknowledgements: We are grateful to the anonymous reviewers for their helpful comments which greatly
improved the paper.

References
[BFJ03] B.M. Bui-Xuan, A. Ferreira, and A. Jarry. Computing shortest, fastest, and foremost journeys

in dynamic networks. International Journal of Foundations of Computer Science, 14(2):267–
285, 2003.

[CFMS15] A. Casteigts, P. Flocchini, B. Mans, and N. Santoro. Shortest, fastest, and foremost broadcast
in dynamic networks. International Journal of Foundations of Computer Science, 26(4):499–
522, 2015.

[CHMZ21] A. Casteigts, A.S. Himmel, H. Molter, and P. Zschoche. Finding temporal paths under waiting
time constraints. Algorithmica, 83:2754–2802, 2021.

[HBNN19] A.S. Himmel, M. Bentert, A. Nichterlein, and R. Niedermeier. Efficient computation of opti-
mal temporal walks under waiting-time constraints. In 8th International Conference on Com-
plex Networks and Their Applications, volume 882 of SCI, pages 494–506, 2019.

[RMNN21] M. Rymar, H. Molter, A. Nichterlein, and R. Niedermeier. Towards classifying the polynomial-
time solvability of temporal betweenness centrality. In 47th International Workshop on Graph-
Theoretic Concepts in Computer Science, volume 12911 of LNCS, pages 219–231, 2021.

[SKK19] J. Saramäki, M. Kivelä, and M. Karsai. Weighted temporal event graphs. Temporal Network
Theory, pages 107–128, 2019.

[VBP22] J. Villacis-Llobet, B.M. Bui-Xuan, and M. Potop-Butucaru. Foremost non-stop journey arrival
in linear time. In 29th International Colloquium on Structural Information and Communica-
tion Complexity, volume 13298 of LNCS, pages 283–301, 2022.

	Introduction
	Reducing a path problem to a set problem
	Computing the foremost arrival date
	Conclusion and perspectives

