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FROM NONLOCAL EULER-KORTEWEG TO LOCAL CAHN-HILLIARD VIA

THE HIGH-FRICTION LIMIT

CHARLES ELBAR, PIOTR GWIAZDA, JAKUB SKRZECZKOWSKI,

AND AGNIESZKA ŚWIERCZEWSKA-GWIAZDA

Abstract. Several recent papers considered the high-friction limit for systems arising in fluid

mechanics. Following this approach, we rigorously derive the nonlocal Cahn-Hilliard equation as

a limit of the nonlocal Euler-Korteweg equation using the relative entropy method. Applying

the recent result by the first and third author, we also derive rigorously the local degenerate

Cahn-Hilliard equation. The proof is formulated for dissipative measure-valued solutions of the

nonlocal Euler-Korteweg equation which are known to exist on arbitrary intervals of time. Our

work provides a new method to derive equations not enjoying classical solutions via relative entropy

method by introducing the nonlocal effect in the fluid equation.

1. Introduction

We consider the nonlocal Euler-Korteweg system re-scaled in time i.e. t→ t
ε and with high friction

coefficient 1
ε

∂tρ+
1

ε
div(ρu) = 0, in (0,+∞)× T

d, (1.1)

∂t(ρu) +
1

ε
div (ρu ⊗ u) = − 1

ε2
ρu − 1

ε
ρ∇(F ′(ρ) +Bη[ρ]), in (0,+∞)× T

d. (1.2)

This equation models the long-time asymptotics of the motion of a compressible fluid with density

ρ, velocity u which is in fact a liquid-vapor mixture. The fluid experiences high friction (due to the

term − 1
ε2 ρu) and additional capillary effects in the transition zone between liquid and vapor (due

to the term − 1
ερ∇(F ′(ρ) +Bη[ρ]) as proposed by Korteweg [59]).
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Concerning the notation, Td is the d-dimensional flat torus, ε > 0, Bη is the nonlocal operator

approximating −∆ operator, defined by

Bη[ρ](x) =
1

η2
(ρ(x) − ωη ∗ ρ(x)) =

1

η2

∫

Td

ωη(y)(ρ(x) − ρ(x− y)) dy (1.3)

for η > 0 small enough and ωη is the usual radial mollification kernel ωη(x) = 1
ηdω(

x
η ) with ω

compactly supported in the unit ball of Rd satisfying
∫

Rd

ω(y) dy = 1,

∫

Rd

y ω(y) dy = 0,

∫

Rd

yiyjω dy = δi,j
2D

d
<∞. (1.4)

When ε is very small, the friction is so big, that we mostly observe a phase separation phenomenon

between the liquid and the vapor. More rigorously, when ε → 0, we prove that the constructed

solution of (1.1)-(1.2) converge to solutions of the nonlocal Cahn-Hilliard

∂tρ = div(ρ∇µ), in (0,+∞)× T
d, (1.5)

µ = Bη[ρ] + F ′(ρ), in (0,+∞)× T
d, (1.6)

see Theorem 1.5. Furthermore, when ε, η → 0 in some scaling to be determined, we prove the

convergence of (1.1)-(1.2) to the local Cahn-Hilliard equation

∂tρ = div(ρ∇µ), in (0,+∞)× T
d, (1.7)

µ = −D∆ρ+ F ′(ρ), in (0,+∞)× T
d, (1.8)

which describes the dynamics of phase separation, see Theorem 1.4.

Our proof relies on the relative entropy method, which is for instance often used in the context of

weak-strong uniqueness. It relies on certain regularity of solutions of the limit system, which is not

available in the case of the local Cahn-Hilliard equation. Therefore, we introduce an intermediate

step, which is interesting by itself, and consider the nonlocal Cahn-Hilliard equation by introducing

the parameter η. Since we know from [39] that the solutions to the nonlocal Cahn-Hilliard equation

converge to the weak solutions of the local Cahn-Hilliard equation (see Definition 1.3) when η → 0,

it remains to prove that the nonlocal Euler-Korteweg system tends to the nonlocal Cahn-Hilliard

equation when ε→ 0. Then, sending ε and η to 0 with the appropriate scaling, we prove the result.

The main motivation for our work is the paper of Lattanzio and Tzavaras [61], who prove the con-

vergence of the local Euler Korteweg system to the local Cahn-Hilliard equation. They assume the

existence of admissible weak solutions of the first system and classical solutions of the second one.

The first assumption is a drawback as dissipative (that is, satisfying energy inequality) weak solutions
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Nonlocal Euler-Korteweg

(1.1)-(1.2)

Non-local degenerate

Cahn-Hilliard (1.5)-(1.6)

Local degenerate

Cahn-Hilliard (1.7)-(1.8)Theorem 1.5

ε→ 0

Proved in [39]

η → 0

Theorem 1.4

ε→ 0, η → 0 together

Figure 1. Relation between the three equations considered in this article.

existing on arbitrary intervals of time are not known to exist for most models in fluids dynamics.

One can try to construct the solutions via the convex integration method but these solutions will

have a jump in the energy at the initial time so they will not be dissipative. The second assumption

of [61] is also difficult to be satisfied as so far, there is no theory of classical solutions to the local

Cahn-Hilliard equation with degenerate mobility on arbitrary intervals of time. Similarly, there is no

maximum principle that is necessary in [61] to deduce that the classical solution is strictly positive

using positivity of the initial condition.

We propose to overcome the first problem by the concept of dissipative measure-valued solutions,

introduced by DiPerna [31] in the context of hyperbolic conservation laws in one dimension and by

DiPerna and Majda [32] for the incompressible Euler equations. Roughly speaking, they are defined

as the weak limit of classical solutions of appropriate approximating problems. As weak compactness

is not sufficient to pass to the limit in nonlinear terms, the definition of the measure-valued solution

includes the Young measure νt,x and the concentration measurem to represent weak limits as in (2.1).

While measure-valued solutions are weaker than the usual weak solutions, they are dissipative and

they are known to exist. Moreover, their importance comes from the fact that they enjoy the prop-

erty called weak-strong uniqueness: they coincide with the strong solution whenever the latter exists.

The dissipativity is important both for the weak-strong uniqueness and application of the relative

entropy method: the weak-strong uniqueness does not hold for weak or measure-valued solutions

without any condition on energy as demonstrated by solutions arising by the convex integration

method [29, 69].
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Since the weak-strong uniqueness property was observed by Brenier, De Lellis and Székelyhidi in [10],

measure-valued solutions were studied for several systems including compressible fluid models [55],

isentropic Euler system [48], polyconvex elastodynamics [30], Euler-Poisson system [18], general hy-

perbolic conservation laws [54]. Moreover, for many equations describing compressible fluids, the

measure-valued formulation has been significantly simplified [1, 8, 42]: it boils down to the usual

distributional identity modulo the so-called Reynolds stress tensor.

Concerning the problem of the existence of classical solutions, we propose to introduce nonlocality in

the equation and introduce an intermediate step in the convergence analysis as outlined in Figure 1.

The advantage is that the nonlocal Cahn-Hilliard equation is in fact a porous medium equation. In

particular, it satisfies the maximum principle and so, if the initial condition is positive, the solution

remains positive and one can prove the existence and uniqueness of a classical solution, see Section 4.

Furthermore, it is known that the nonlocal Cahn-Hilliard equation converges to the local one [39]

so that at the end, the nonlocality can be removed.

To prove the convergence, we use the relative entropy method. The method is based on introducing

a functional called relative entropy (or energy), which measures the dissipation between two solu-

tions of the system. Essentially, the same method is used to prove the aforementioned weak-strong

uniqueness when the relative entropy measures the distance between weak (measure-valued) and

strong solutions. This strategy has been applied for several singular limits [3, 21, 22, 25, 57, 60, 61]

and we also refer to the excellent review on weak-strong uniqueness [72].

Our proof via the relative entropy method is based on an important assumption that the initial datum

is well-prepared. In our case, this means that the initial velocity u0 vanishes as the parameter ε→ 0

cf. (1.9) and (1.10) so that the initial kinetic energy is very small. Such an assumption is necessary

to guarantee that the relative entropy Θ(0) at time t = 0 converges to 0 as ε→ 0 so that Θ(t) → 0,

cf. (5.5), which implies the main result. Let us however remark that one can also study similar

problems via compactness methods and this approach is also effective for ill-prepared initial data.

Nevertheless, its applicability is restricted to some special cases like one spatial dimension (which

allows to use the div-curl lemma in the time-space setting) [64] or the presence of viscosity terms

yielding compactness [43].
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1.1. Rigorous formulation of the main result. We make the following assumptions on the

potential F .

Assumption 1.1 (potential F ). For the interaction potential we assume that there exists k ≥ 2

and constant C such that F can be written as F = F1 + F2 where

(1) F1 ∈ C4(R) is a convex, nonnegative function having k-growth

1

C
|u|k − C ≤ F1(u) ≤ C|u|k + C,

1

C
|u|(k−2) − C ≤ F ′′

1 (u) ≤ C|u|(k−2) + C

and satisfying |uF ′
1(u)| ≤ C(F1(u) + 1), |uF (3)

1 (u)| ≤ C(F ′′
1 (u) + 1),

(2) F2 ∈ C4(R) is such that F2, F
′
2, F

′′
2 , sF

(3)
2 (s) ∈ L∞(R) are bounded on the whole line.

Moreover, ‖F ′′
2 ‖∞ < 1

CP
where CP is a constant in Lemma A.2.

We also define s := 2k
k−1 and s′ its conjugate exponent.

Example 1.2. The following potentials satisfy Assumption 1.1.

(1) power-type potential F (u) = |u|γ , γ > 2 used in the context of tumor growth models

[27, 36, 38, 66],

(2) double-well potential F (u) = u2 (u − 1)2 which is an approximation of logarithmic double-

well potential often used in Cahn-Hilliard equation, see [65, Chapter 1].

Before stating the main result, we define solutions of the local degenerate Cahn-Hilliard equation.

Definition 1.3. We say that ρ is a weak solution of (1.7)-(1.8) if

ρ ∈ L∞(0, T ;Lk(Td)) ∩ L2(0, T ;H2(Td)), ∂tρ ∈ L2(0, T ;W−1,s′(Td)),
√
F ′′
1 (ρ)∇ρ ∈ L2((0, T )× T

d),

ρ(0, x) = ρ0(x) a.e. in Td and if for all ϕ ∈ L2(0, T ;W 2,∞(Td)) we have

∫ T

0

〈∂tρ, ϕ〉(W−1,s′ (Td),W 1,s(Td)) = −D
∫ T

0

∫

Td

∆ρ∇ρ · ∇ϕ−D

∫ T

0

∫

Td

ρ∆ρ∆ϕ

−
∫ T

0

∫

Td

ρF ′′(ρ)∇ρ · ∇ϕ.

The definition of dissipative measure-valued solutions to (1.1)–(1.2) is quite technical and will be

presented in Definitions 3.1 and 3.4. The main theorem reads as follows.
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Theorem 1.4. Let ρ0 be an initial density satisfying

ρ0 ≥ σ > 0, ρ0 ∈ C3(Td)

for some σ > 0. Let u0,ε be an initial velocity satisfying

‖u0,ε‖L2(Td) → 0 as ε→ 0. (1.9)

Let (ρη,ε,
√
ρη,εuη,ε, ν

η,ε,mη,ε) be a dissipative measure-valued solution of (1.1)–(1.2) with the initial

condition (ρ0,u0,ε) and parameters ε, η satisfying Poincaré inequality (3.23). Then, for each sequence

ηk → 0, there exists a subsequence {ηk} (not relabelled) and a sequence {εk} depending on ηk and

the final time T such that εk → 0 and ρηk,εk → ρ in L2(0, T ;L2(Td)), where ρ is a weak solution of

(1.7)–(1.8) with initial condition ρ0 as defined in Definition 1.3.

Let us briefly comment that the measure-valued solution has in fact four components. While the

first component ρη,ε is the most important since it converges to the Cahn-Hilliard equation, we can

also characterize what happens with the other ones, see Theorem 6.2. Roughly speaking, the second

one converges to 0 in L∞(0, T ;L2(Td)) which represents that in the high-friction limit, the kinetic

energy converges to 0. The parametrized measure νη,ε converges in the second Wasserstein metric

W2 to the Dirac mass δρ(t,x) ⊗ δ0:

∫ T

0

∫

Td

[
W2(ν

ηk ,εk , δρ(t,x) ⊗ δ0)
]2

dxdt→ 0 as εk, ηk → 0

while the concentration measure mηk,εk converges to 0 in the total variation norm. The estimate in

the Wasserstein metric is in the spirit of [44].

Theorem 1.4 is valid only for a subsequence as the convergence from non-local Cahn-Hilliard to the

local one is based on the compactness arguments (and there is no uniqueness for the limit equation).

On the other hand, the passage from the nonlocal Euler-Korteweg equation to the nonlocal Cahn-

Hilliard equation is based on the relative entropy method and so the convergence is satisfied for any

sequence. We state this result below.

Theorem 1.5. Let η ∈ (0, η0) where η0 is defined in Lemma A.2. Let ρ0 be an initial density

satisfying

ρ0 ≥ σ > 0, ρ0 ∈ C3(Td)

for some σ > 0. Let u0,ε be an initial velocity satisfying

‖u0,ε‖L2(Td) → 0 as ε→ 0. (1.10)
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Let (ρη,ε,
√
ρη,εuη,ε, ν

η,ε,mη,ε) be a dissipative measure-valued solution of (1.1)–(1.2) with initial

condition (ρ0,u0,ε) and parameters ε, η satisfying Poincaré inequality (3.23). Let ρη be the solu-

tion of non-local Cahn-Hilliard (1.5)-(1.6) with the same initial condition ρ0. Then, ρη,ε → ρη in

L∞(0, T ;L2(Td)) as ε→ 0.

Similarly as for Theorem 1.4, we can prove convergence of the other components of the measure-

valued solution
√
ρη,εuη,ε, ν

η,ε, mη,ε, see Theorem 6.1.

1.2. Relevancy of the system.

The Euler–Korteweg equation. The compressible Euler–Korteweg equation models the motion of

liquid-vapor mixtures with possible phase transitions. It combines the classical Euler equation with

Korteweg tensor introduced in [59]. The equation reads

∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u) +∇(p(ρ)) = −ζρu+ ρ∇(K(ρ)∆ρ+
1

2
K ′(ρ)|∇ρ|2).

(1.11)

Here, ρ is the density of the fluid, u is its velocity, K(ρ) corresponds to the capillary coefficient, ζ is

the friction coefficient and p is the pressure function. In a liquid-vapor system, the tensor K takes

into account that the liquid and vapour are separated by a thin layer of finite thickness and describes

the capillary effects in this transition zone. There are numerous mathematical results concerning

well-(and ill-)posedness of solutions to (1.11), see [4,7,9,11,12,33]. For instance, for some particular

choice of K(ρ), an approach to prove existence of global solutions is to relate the Euler-Korteweg

and the Schrödinger equation through the Madelung transform [4,16]. For more general cases, only

local existence [9] and global existence for small irrotational data [7] is known. For the physical

background of (1.11) (in particular, the form of the Korteweg tensor) we refer to [35, 56, 58] but it

is a fairly complicated matter.

The viscous version of (1.11), that is the Navier-Stokes-Korteweg system, was also studied in the

mathematical literature [5,49]. In particular, several papers are concerned with the case of the non-

local equation, where −∆ρ is approximated by the nonlocal operator Bη. In [68], the author proves

the short-time well-posedness while in [24], the global well-posedness as well as the convergence

of the nonlocal Navier-Stokes-Korteweg to the local one is established. We also refer to [23] for a

variant of this system.
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The high-friction limit. The high-friction limit (also referred to in the literature as the relaxation

limit) is a part of a long research program of establishing a connection between nonlinear hyperbolic

systems and degenerate diffusion equations. One of the first results in this direction [64] states that

the solutions to the compressible Euler equations in one dimension

∂tρ+ ∂x(ρ u) = 0,

ε2∂t(ρ u) + ∂x(ε
2 ρ u2 + p(ρ)) = −u

(1.12)

converge, as ε→ 0, to the porous media equation

∂tρ = ∂x (ρ ∂xp(ρ))

where p(ρ) is the pressure function of the form p(ρ) = ργ . To connect (1.12) with our system

(1.1)–(1.2), it is sufficient to rescale ũ = ε u so that we have

∂tρ+
1

ε
∂x(ρ ũ) = 0,

∂t(ρ ũ) +
1

ε
∂x( ρ ũ

2 + p(ρ)) = − ũ

ε2
.

(1.13)

Intuitively, it is easy to understand from (1.13) that the flow of the fluid with big damping or friction

(caused by the term − ũ
ε2 ) and very small kinetic energy (caused by the initial condition) resembles

a flow through a porous media. Several other limit passages have been studied between porous

medium equation and hyperbolic equations [6,63,70]. The revival of interest in this type of problem

appeared recently with an observation that one can study these problems by the relative entropy

method [25, 47, 52, 60, 61].

In our case, we consider (1.11) with K(ρ) = 1, large friction coefficient ζ = 1
ε , we approximate the

Laplace operator −∆ by the nonlocal operator Bη with η small enough, and we perform a rescaling

in time t → t
ε . Then, we let both ε, η → 0, and in the limit, we obtain the Cahn-Hilliard equation.

Again, it is intuitive that due to the very large damping and small kinetic energy, we observe mostly

a phase separation process. The latter is described by the Cahn-Hilliard equation so it is not sur-

prising that it is the limiting PDE.

The Cahn-Hilliard equation. In their publications [14] and [15] J.W. Cahn and J. E. Hilliard pro-

posed the equation in 1958. It represents now a commonly used mathematical model for describing
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phase changes in fluids, although the equation was primarily developed in material sciences to ex-

plore phase separation processes under isotropy and constant temperature circumstances.

Being of fourth-order, the (local) Cahn-Hilliard equation is often rewritten in a system of two second-

order equations, i.e.

∂tρ = div (m(ρ)∇ (F ′(ρ)−D∆ρ)) →




∂tρ = div (m(ρ)∇µ) ,

µ = −D∆ρ+ F ′(ρ),

(1.14)

where ρ is the concentration of a phase and µ is called the chemical potential in material sciences

but is often used as an effective pressure. The interaction potential F (ρ) contained in this effec-

tive pressure term comprises the effects of attraction and repulsion between particles. Finally, the

Laplace operator takes into account surface tension effects.

The existence and uniqueness of solutions for the Cahn-Hilliard system (1.14) strictly depends on

the properties of the mobility term m(ρ) and the potential F (ρ), as well as the conditions assigned

on the boundary. More specifically, the presence of degeneration on the mobility, i.e. the possibility

for it to vanish, can turn the analysis of solutions into a rather complex problem. We refer to [40]

for the first existence result of weak solutions in the case of degenerate mobility and to [26] for some

improvements. The uniqueness and the existence of classical solutions are open questions for this

type of mobility. Since we use a relative entropy argument between the Euler-Korteweg equation

and the Cahn-Hilliard equation, the existence of a classical solution of the latter is a crucial point.

In fact, we need an L∞ bound on the second derivative of ρ, and that the solution remains positive

for all times in a finite time interval. Since the Cahn-Hilliard equation does not satisfy the maxi-

mum principle, it is impossible to get these estimates. For that purpose, we introduce the nonlocal

Cahn-Hilliard equation, which is a second-order equation with a nonlocal smooth advection term.

With classical arguments, we are able to prove that the latter admits a unique positive classical

solution. Let us finally remark that the nonlocal Cahn-Hilliard equation is nowadays a topic of

intense research activity, see for instance [19, 28, 45, 46, 67].

Mobilities. This work focuses on the mobility case where m(ρ) = ρ, which is a result of deriving the

Cahn-Hilliard equation from fluid models. This mobility is also obtained from Vlasov equation via

hydrodynamic limit [37] and is also observed in the nonlocal Cahn-Hilliard equation, which can be
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derived from systems of interacting particles as an aggregation-diffusion equation (see [13, 17, 20]).

Furthermore, it would be of interest to investigate whether this work can be extended to the mobility

case of m(ρ) = ρ (1 − ρ), as studied in the original works of Giacomin-Lebowitz [50, 51]. They

developed a model based on a d-dimensional lattice gas that evolves through Kawasaki exchange

dynamics, which is a Poisson process that exchanges nearest neighbors. In the hydrodynamic limit,

they observed that the average occupation numbers over a small macroscopic volume element tends

towards a solution of a non-local Cahn-Hilliard equation with mobility m(ρ) = ρ(1− ρ).

2. Generalised Young Measures

We introduce the framework of Young measures to define the solutions of the nonlocal Euler-

Korteweg equation. This framework is necessary since in the usual approximation schemes we

cannot pass to the limit in the terms term of type f(zj) where f is nonlinear and {zj} is only a

weakly star convergent sequence. The idea of Young measures is to embed the problem in a larger

space and gain linearity. We write f(zj(y)) = 〈f, δzj(y)〉, and if f ∈ C0(R
n), using the duality

(L1(Q;C0(R
n)))∗ = L∞

w (Q;M(Rn)), Banach-Alaoglu theorem and weak-star continuity of linear

operators, we can pass to the limit. The same is true if {f(zj)} is weakly compact in L1(Q) and

{zj} does not grow too fast as the following theorem states:

Theorem 2.1 (Fundamental Theorem of Young Measures). Let Q ⊂ Rd be a measurable set and

let zj : Q→ Rn be measurable functions such that

sup
j∈N

∫

Q

g(|zj(y)|) dy < +∞

for some continuous, nondecreasing function g : [0,+∞) → [0,+∞) with limt→+∞ g(t) = +∞.

Then, there exists a subsequence (not relabeled) and a weakly star measurable family of probability

measures ν = {νy}y∈Q with the property that whenever the sequence {ψ(y, zj(y))}j∈N is weakly

compact in L1(Q) for a Carathéodory function (measurable in the first and continuous in the second

argument) ψ : Q× Rn → R, we have

ψ(y, zj(y))⇀

∫

Rn

ψ(y, λ) dνy(λ) in L1(Q).

We say that the sequence {zj}j∈N generates the sequence of Young measures {νy}y∈Q.

Note that in the above theorem, we require that the sequence {ψ(y, zj(y))} is weakly compact

in L1(Q). This prevents the concentration effect to appear (think about the family of standard

mollifiers). When we do not have weak compactness, we use the following proposition which follows
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from the Banach-Alaoglu theorem. We formulate it with a distinguishment between time and space

variables (that is, Q = (0, T ) × Ω, y = (t, x) with t ∈ (0, T ) and x ∈ Ω) as usually in applications

one has better integrability in time which results in better characterization of the resulting measure.

The following proposition is a consequence of the Banach-Alaoglu theorem and the Radon-Nikodym

theorem, see [10].

Proposition 2.2. Let f be a continuous function and a sequence {f(t, x, zj(t, x))}j∈N be bounded

in Lp(0, T ;L1(Ω)) with p ≥ 1. Let {νt,x}t,x be the Young measure generated by {zj}j. Then there

exists a measure mf such that (up to a subsequence not relabelled)

f(t, x, zj(t, x))− 〈νt,x, f〉 ∗
⇀mf in Lp(0, T ;M(Ω)) if p > 1,

f(t, x, zj(t, x))− 〈νt,x, f〉 ∗
⇀mf in M((0, T )× Ω) if p = 1.

Moreover, if p > 1, the measure mf is absolutely continuous with respect to time: for a.e. t ∈ (0, T ),

there exists measure mf (t, ·) such that

∫

(0,T )×Ω

ψ(t, x) dmf (t, x) =

∫ T

0

∫

Ω

ψ(t, x)mf (t, dx) dt.

Let us remark that by the fundamental theorem, we have mf = 0 when the sequence {f(zj)}j∈N is

weakly compact in L1((0, T )× Ω). We use the notation:

f = 〈f(λ), νt,x〉+mf (2.1)

to represent weak limit of f(t, x, zj(t, x)). We also need the following result which allows comparing

two concentration measures mf1 and mf2 for two different nonlinearities f1, f2. For the proof, we

refer to [41, Lemma 2.1].

Proposition 2.3. Let {νt,x}(t,x)∈(0,T )×Ω be a Young measure generated by a sequence {zj}j∈N. If

two continuous functions f1 : (0, T )× Ω → Rd and f2 : (0, T )× Ω → R+ satisfy |f1(z)| ≤ f2(z) for

every z, and if {f2(zj)} is uniformly bounded in L1((0, T )× Ω), then we have

|mf1(A)| ≤ mf2(A),

for any borel set A ⊂ (0, T )× Ω.

Here, |µ| is the total variation measure defined as |µ|(A) = µ+(A)−µ−(A) where µ+, µ− are positive

and negative parts of µ.



12CHARLES ELBAR, PIOTR GWIAZDA, JAKUB SKRZECZKOWSKI, AND AGNIESZKA ŚWIERCZEWSKA-GWIAZDA

Let us conclude with a few comments about the measure mf which captures concentration effects.

One can describe it more precisely. The first attempts to do so by some generalizations of the Young

measures were initiated by DiPerna and Majda in the case of the incompressible Euler equations [32].

Then, Alibert and Bouchitté extended the result to a more general class of nonlinearities in [2]. They

proved that there exists a subsequence (not relabeled) as well as a parametrized probability measure

ν ∈ L∞
w (Q;P(Rn)) (which is identical with the "classical" Young measure), a non-negative measure

m ∈ M+(Q), and a parametrized probability measure ν∞ ∈ L∞
w (Q,m;P(Sn−1)) such that for

any Carathéodory function f such that f(x, z)/(1 + |z|) is bounded and uniformly continuous with

respect to z,

f(y, zj(y))
∗
⇀

∫

Rd

f(y, λ)dνy(λ) +

∫

Sn−1

f∞(y, β) dν∞y (β)m(y)

weakly* in the sense of measures. Here,

f∞(y, β) := lim
s→∞

f(y, tβ)

t
.

Their result was also extended to the case when f has different growth with respect to different

variables, see for instance [55].

3. Measure-valued solutions to the nonlocal Euler-Korteweg equation

3.1. Definition of dissipative measure-valued solutions. Let us motivate the definition of

a measure-valued solution by their construction. We will consider a sequence of approximating

solutions {(ρδ,uδ)}, see Section 3.2, satisfying the estimates (uniform in δ)

{ρδ} in L∞(0, T ;L2(Td)), {F (ρδ)} in L∞(0, T ;L1(Td)), {√ρδuδ} in L∞(0, T ;L2(Td)),

which will be a consequence of energy inequality (3.36). As we do not have estimates on {uδ} itself,

we will consider in fact the sequence {(ρδ,
√
ρδ uδ)}. Up to a subsequence, we have as δ → 0

ρδ
∗
⇀ ρ in L∞(0, T ;L2(Td))

√
ρδuδ

∗
⇀

√
ρu in L∞(0, T ;L2(Td)), (3.1)

where
√
ρu is a definition of a weak limit of

√
ρδuδ. Let {νt,x} be the Young measure generated by

this sequence as in Theorem 2.1. We will use dummy variables (λ1, λ
′) ∈ R+ × Rd when integrating

with respect to νt,x:

〈F (λ1, λ′), νt,x〉 :=
∫

R+×Rd

F (λ1, λ
′) dνx,t(λ1, λ

′), (3.2)
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with λ1 representing ρ variable and λ′ as representing
√
ρu variable. In terms of Young measures

we write weak convergence (3.1) as

ρ = 〈λ1, ν〉,
√
ρu = 〈λ′, ν〉, (3.3)

as there is no concentration measure because of integrability in L2((0, T )×Td). Using notation (2.1)

we represent weak limits (as δ → 0) of all the terms that should appear in the weak formulation and

the energy

ρ2 = 〈λ21, ν〉+mρ2

, (3.4)

ρu = 〈
√
λ1λ

′, ν〉, (3.5)

ρu ⊗ u = 〈λ′ ⊗ λ′, ν〉+mρu⊗u, (3.6)

ρ|u|2 = 〈|λ′|2, ν〉+mρ|u|2 , (3.7)

F (ρ) = 〈F (λ1), ν〉 +mF (ρ) (3.8)

ρF ′(ρ) = 〈λ1F ′(λ1), ν〉+mρF ′(ρ), (3.9)

p(ρ) = ρF ′(ρ)− F (ρ) +
1

2η2
ρ2, (3.10)

where p(ρ) := ρF ′(ρ)− F (ρ) + ρ2

2η2 .

Moreover, we will identify weak limits of several nonlinearities which will be used in this work. By

linearity of weak limits, we have the following identities:
∫

Td

ωη(y)|ρ(x) − ρ(x− y)|2 dy = ρ2 + ρ2 ∗ ωη − 2 ρωη ∗ ρ (3.11)

Similarly, for all bounded P : (0, T )× [0,+∞) → R+ and U : (0, T )× Td → Rd we have

|ρ− P|2 = ρ2 + P2 − 2ρP (3.12)

ρ|u − U|2 = ρ |u|2 + ρ |U|2 − 2 ρu · U, (3.13)

ρ(u − U)⊗ (u − U) = 〈(λ′ −
√
λ1U)⊗ (λ′ −

√
λ1U), νt,x〉+mρu⊗u, (3.14)

∫

Td

ωη(y)|(ρ− P)(x)− (ρ− P)(x− y)|2 dy =

∫

Td

ωη(y)|ρ(x)− ρ(x− y)|2 dy+

+

∫

Td

ωη(y)|P (x) − P (x− y)|2 dy − 2

∫

Td

ωη(y)(P (x) − P (x− y))(ρ(x) − ρ(x− y) dy,

(3.15)

F (ρ|P) := F (ρ)− F (P)− F ′(P)(ρ− P), p(ρ|P) := p(ρ)− p(P)− p′(P)(ρ− P) (3.16)

where nonlinearities are defined as

F (ρ|P) = F (ρ)− F (P)− F ′(P)(ρ− P), p(ρ|P) = p(ρ)− p(P)− p′(P)(ρ− P). (3.17)
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Now, we define measure-valued solutions by inverting this discussion.

Definition 3.1 (Measure-valued solution). We say that (ρ,
√
ρu, ν,m) where

ν = {νt,x} ∈ L∞
weak((0, T )× T

d;P([0,+∞)× R
d))

ρ = 〈λ1, ν〉 =
∫

R+×Rd

λ1 dνx,t(λ1, λ
′) ∈ L∞(0, T ;L2(Td)),

√
ρu = 〈λ′, ν〉 =

∫

R+×Rd

λ′ dνx,t(λ1, λ
′) ∈ L∞(0, T ;L2(Td)),

m =
(
mρ2

,mρu⊗u,mρ|u|2 ,mF (ρ),mρF ′(ρ)
)

with

mρ2

,mρ|u|2 ,mF (ρ) ∈ L∞((0, T );M+(Td)), mρF ′(ρ) ∈ L∞((0, T );M(Td)),

mρu⊗u ∈ L∞((0, T );M(Td)d×d)

and

|m̺u⊗u| ≤ m̺|u|2 (3.18)

|mρ F ′(ρ)| ≤ CF m
F (ρ) + CF m

ρ2

, CF defined in (B.2) (3.19)

is a measure-valued solution of (1.1)-(1.2) with initial data (ρ0,u0) if for every ψ ∈ C1
c ([0, T )×Td;R),

φ ∈ C1
c ([0, T )× Td;Rd) it holds that

∫ T

0

∫

Td

∂tψ ρ+
1

ε
∇ψ · ρudxdt+

∫

Td

ψ(x, 0)ρ0 dx = 0, (3.20)

∫ T

0

∫

Td

∂tφ · ρu+
1

ε
∇φ : ρu⊗ u− 1

ε2
φ · ρu+

1

ε
div φp(ρ) +

1

εη2
φ · ρ∇ωη ∗ ρdxdt

+

∫

Td

φ(x, 0) · ρ0u0 dx = 0,

(3.21)

where p(ρ) = ρF ′(ρ)− F (ρ) + ρ2

2η2 and all the terms are defined in (3.3)–(3.10).

Definition 3.2 (nonlinear functions). Given a measure-valued solution (ρ,
√
ρu, ν,m) and bounded

P : (0, T )× [0,+∞) → R+, U : (0, T )× Td → Rd, we define nonlinear quantities

∫

Td

ωη(y)|ρ(x) − ρ(x− y)|2 dy, |ρ− P|2, ρ|u−U|2, F (ρ|P), p(ρ|P),

ρ(u−U)⊗ (u −U),

∫

Td

ωη(y)|(ρ− P)(x)− (ρ− P)(x− y)|2 dy

by formulas (3.11)–(3.16).
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Definition 3.3 (energy). Given a measure-valued solution (ρ,
√
ρu, ν,m) for a.e. t ∈ (0, T ) we

define the energy as

Emvs(t) :=

∫

Td

1

2
ρ|u|2 + F (ρ) dx+

1

4η2

∫

Td

∫

Td

ωη(y)|ρ(x) − ρ(x− y)|2 dy dx,

where the nonlocal term is defined by (3.11). We also define

E0 :=

∫

Td

1

2
ρ0|u0|2(x) + F (ρ0) dx+

1

4η2

∫

Td

∫

Td

ωη(y)|ρ0(x)− ρ0(x− y)|2 dxdy.

This energy is well-defined because, by Proposition 2.2, a concentration measurem ∈ L∞(0, T ;M(Td))

admits disintegration dm(t, x) = m(t, dx) dt where m(t, ·) is a well-defined measure on Td for a.e.

t ∈ (0, T ).

We now introduce two properties which allows to select the right measure-valued solutions.

Definition 3.4 (Dissipativite measure-valued solution). We say that a measure-valued solution

(ρ,
√
ρu, ν,m) is dissipative if

Emvs(t) +
1

ε2

∫ t

0

∫

Td

ρ|u|2 dxdt ≤ E0 (3.22)

for almost every t ∈ (0, T ).

Definition 3.5 (Poincaré inequality). A measure-valued solution (ρ,
√
ρu, ν,m) with initial condi-

tion ρ0 satisfies the nonlocal Poincaré inequality if for a.e. t ∈ (0, T ) and all bounded P : ΩT →
[0,+∞) such that (P)Td = (ρ0)Td we have

∫

Td

|ρ− P |2 dx ≤ CP

4η2

∫

Td

∫

Td

ωη(y)|(ρ− P)(x) − (ρ− P)(x− y)|2 dy dx. (3.23)

where the constant CP is given by Lemma A.2.

Let us remark that in Lemma 5.2, we will prove that any measure-valued solution satisfies
∫

Td

|ρ− P |2 dx ≤ CP

4η2

∫

Td

∫

Td

ωη(y)|(ρ− P)(x) − (ρ− P)(x− y)|2 dy dx.

which is a weaker version of (3.23). Nevertheless, (3.23) will be necessary to estimate several terms

appearing in the application of the relative entropy method in Section 5. Let us also point out

that similar Poincaré-type inequalities are usually assumed for measure-valued solutions to several

different PDEs, see for instance [41, eq. (2.23)].

We conclude with a simple observation concerning the energy.
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Lemma 3.6. The energy Emvs defined by (3.22) is nonnegative.

Proof. The lemma seems to be trivial from the point of view of our discussion about weak limits at

the beginning of this section. However, the measure-valued solution is defined by Definition 3.1 so

that we can argue only using Definitions 3.1 and 3.2. Clearly, 1
2ρ|u|2 and F (ρ) are nonnegative so

that we only have to study the nonlocal term. By (3.11),

∫

Td

∫

Td

ωη(y)|ρ(x) − ρ(x− y)|2 dy = 2

∫

Td

ρ2 − 2

∫

Td

ρωη ∗ ρ.

By Cauchy-Schwarz and Young convolution inequalities:

2

∫

Td

ρωη ∗ ρ dx ≤ 2

∫

Td

ρ2 dx.

Using Jensen’s inequality (measure νt,x is the probability measure with respect to both coordinates)

∫

Td

ρ2 dx =

∫

Td

〈λ1, νt,x〉2 dx ≤
∫

Td

〈λ21, νt,x〉dx ≤
∫

Td

ρ2 dx (3.24)

so that the nonlocal term is nonnegative. �

3.2. The approximating system. To construct a measure-valued solution we use a method as

outlined in [62, Section 5.5], see also [18,53]. This is a fairly standard procedure based on regularizing

density by a positive parameter

ρ0,δ = ρ0 + δ, ρ0 ∈ C1(Td), ρ0 > 0, u0,δ(x) = u0(x) ∈W 3,2(Td)d, (3.25)

which makes the density ρδ globally bounded from below. We will only discuss the main steps and

for the full presentation, we refer to [62, Section 5.5].

We work in W 3,2(Td)d (but for dimensions d higher than 3, we need to work even in W 1+d,2(Td))

because of the embedding W 3,2(Td) ⊂ C1(Td) which will be important for certain estimates. We use

notation ((·, ·)) for the standard scalar product in W 3,2(Td)d. By [62, Appendix, Theorem 4.11], we

take {ωi} to be an orthonormal basis of W 3,2(Td)d which are C∞(Td)d functions. Finally, we define

ΠN to be the projection operator into span{ω1, ...,ωN} which satisfies ‖ΠNu‖W 3,2 ≤ ‖u‖W 3,2 and

‖ΠNu‖L2 ≤ ‖u‖L2.
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We will find solution (ρδ,uδ) such that

ρδ ∈ L∞((0, T )× T
d) ∩ L2(0, T ;W 1,2(Td)),

∂ρδ
∂t

∈ L2((0, T )× T
d)

uδ ∈ L∞(0, T ;W 3,2(Td)),
∂uδ

∂t
∈ L2((0, T )× T

d),

(3.26)

to the following problem: for all ψ ∈ C1
c ([0, T )× Td;R), φ ∈ C1

c ([0, T )× Td;Rd) it holds that

∫ T

0

∫

Td

∂tψρδ +
1

ε
∇ψ · ρδuδ dxdt+

∫

Td

ψ(x, 0)ρ0,δ dx = 0, (3.27)

∫ T

0

∫

Td

∂tφ · ρδuδ +
1

ε
∇φ : ρδuδ ⊗ uδ −

1

ε2
φ · ρδuδ +

1

ε
div φp(ρδ) dxdt

+

∫ T

0

∫

Td

1

εη2
φ · ρδ∇ωη ∗ ρδ dxdt+

∫

Td

φ(x, 0) · ρ0,δu0,δ dx = δ

∫ T

0

((uδ, φ)) dt.

(3.28)

To find the solution to (3.27)–(3.28), we use the method of Galerkin approximations. We look for

uN of the form

uN =

N∑

j=1

cNj (t)ωj

solving

∂ρN

∂t
+

1

ε
div(ρNuN ) = 0, (3.29)

∫

Td

(
ρN∂tu

N +
1

ε
ρNuN∇uN +

1

ε2
ρNuN +

1

ε
∇p(ρN )− 1

εη2
ρN∇ωη ∗ ρN

)
· ωi dx+

+ δ((uN ,ωi)) = 0,

(3.30)

for i = 1, ..., N with initial conditions ρN (0) = ρ0,δ, uN (0) = ΠNu0,δ.

The proof of existence to (3.29)–(3.30) follows 3 steps: using a fixed point argument to prove the

existence on a small interval, deriving a priori estimates on this interval, extending the procedure

on the whole interval. The crucial point is the lower bound on ρN in terms of δ. This is obtained

by the method of characteristics. Indeed,

ρN (t, x) ≥ ess inf
x∈Td

ρ0,δ exp

(
−1

ε

∫ T

0

‖divuN‖∞ dt

)
≥ δ exp

(
−1

ε

∫ T

0

‖uN‖W 3,2 dt

)
(3.31)

by the well-known formula for the continuity equation. On the other hand, thanks to the regularizing

term, ‖uN‖L2(0,T ;W 3,2(Td)) ≤ C
δ . This gives uniform lower (and also upper) bound on ρN and allows

us to look at (3.30) as a system of ODEs. We refer to [62, Section 5.5] and omit the details. We

obtain the following lemma:
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Lemma 3.7. For fixed N , there exists a solution to (3.29)–(3.30) such that ρN ∈ C1([0, T ]× Td),

u
N ∈ C1([0, T ];W 3,2(Td)d). Moreover, we have the energy estimate: for all times τ ∈ [0, T ]

∫

Td

1

2
ρN |uN |2 + F (ρN ) dx +

1

4η2

∫

Td

∫

Td

ωη(y)|ρN (x) − ρN (x− y)|2 dxdy

+ δ

∫ τ

0

‖uN‖2W 3,2 dt+
1

ε2

∫ τ

0

∫

Td

ρN |uN |2 dx ≤

≤
∫

Td

1

2
ρ0,δ|u0|2 + F (ρ0,δ) dx+

1

4η2

∫

Td

∫

Td

ωη(y)|ρ0,δ(x) − ρ0,δ(x− y)|2 dxdy,

(3.32)

as well as the following estimates

ρN (t, x) ≥ C

(
1

δ

)
(3.33)

‖ρN‖L∞((0,T )×Ω) +

∫ τ

0

‖∂tρN‖2L2(Td) +

∫ τ

0

‖∇ρN‖2L2(Td) ≤ C

(
1

δ

)
, (3.34)

∫ T

0

‖∂tuN‖2L2(Td) + δ‖uN‖L∞((0,T );W 3,2(Td)d) ≤ C

(
1

δ

)
, (3.35)

where C
(
1
δ

)
is a constant depending on 1

δ and other fixed parameters (like ε).

Proof. The energy estimate follows by testing (3.30) by uN (in the Galerkin sense: we multiply

(3.30) by cNi and sum for i = 1, ..., N). Estimate (3.33) follows from the characteristics as explained

in (3.31). Similarly, we obtain the upper bound. Concerning the estimates on derivatives of ρN ,

they follow by differentiating the formula from the method of characteristics and using the bound

‖uN‖L2(0,T ;W 3,2(Td)) ≤ C
δ . Finally, (3.35) is a consequence of testing (3.30) by ∂tu

N . �

Using the estimates in Lemma 3.7, up to a subsequence, we can pass to the limit N → ∞

ρN → ρδ strongly in L2((0, T )× T
d),

uN → uδ strongly in L2((0, T )× T
d)d

(the convergence holds even in better spaces). We also have an energy inequality:

∫

Td

1

2
ρδ|uδ|2 + F (ρδ) dx+

1

4η2

∫

Td

∫

Td

ωη(y)|ρδ(x)− ρδ(x− y)|2 dxdy

+ δ

∫ τ

0

‖uδ‖2W 3,2 dt+
1

ε2

∫ τ

0

∫

Td

ρδ|uδ|2 dx ≤

≤
∫

Td

1

2
ρ0,δ|u0|2 + F (ρ0,δ) dx+

1

4η2

∫

Td

∫

Td

ωη(y)|ρ0,δ(x)− ρ0,δ(x− y)|2 dxdy,

(3.36)

This concludes the proof of existence of (ρδ,uδ) satisfying (3.27)–(3.28).



19

3.3. Existence of dissipative measure-valued solutions. It remains to pass to the limit δ → 0

in (3.27)–(3.28). First we gather some uniform bounds in δ, being a simple consequence of (3.33)

and (3.36), in the following lemma:

Lemma 3.8. Let (ρδ,uδ) be weak solutions of (3.27)–(3.28) as constructed above. Then, there exists

a constant C > 0 independent of δ such that

ρδ ≥ 0 a.e. in (0, T )× T
d,

‖√ρδuδ‖L∞(0,T ;L2(Td)) ≤ C, ‖F (ρδ)‖L∞(0,T ;L1(Td)) ≤ C, ‖ρδ‖L∞(0,T ;L2(Td)) ≤ C,

δ‖uδ‖2L2(0,T ;W 3,2(Td)) ≤ C,

‖∂tρδ‖L2(0,T ;(W 1,4(Td))′) ≤ C.

In fact, the proof of the existence of dissipative measure-valued solution follows now the method

described at the beginning of Section 3.1. By Lemma 3.8, we have sufficient estimates to have

convergence (3.1) which allows us to define the Young measure {νt,x} as in (3.2)–(3.3). Then, the

representations formulas for weak limits of nonlinearities (3.4)–(3.7) are a consequence of Lemma

2.2 and the estimate on ‖√ρδuδ‖L∞(0,T ;L2(Td)) which guarantees that all of the considered quan-

tities are at least in L∞(0, T ;L1(Td)). Note that mρu = 0 because we have a uniform bound

‖ρδuδ‖
L∞(0,T ;L

4
3 (Td))

≤ C. Next, (3.8) follows from the estimate on ‖F (ρδ)‖L∞(0,T ;L1(Td)). Here, the

measuremF (ρ) is nonnegative because F = F1+F2 where F1 ≥ 0 while F2 is bounded so that the only

concentration effect can arise from F1. Similarly, by Assumption 1.1, ‖ρδ F ′(ρδ)‖L∞(0,T ;L1(Td)) ≤ C

so that (3.9) follows. Finally, (3.10) is a consequence of the linearity and uniqueness of weak limits.

This allows to pass to the limit δ → 0 in almost all of the terms in formulation (3.27)–(3.28).

Concerning the regularizing term on the (RHS) of (3.28), we observe that

∣∣∣∣∣δ
∫ T

0

((uδ, φ)) dt

∣∣∣∣∣ ≤ δ ‖uδ‖L2((0,T );W 3,2(Td)) ‖φ‖L2((0,T );W 3,2(Td)) ≤ C
√
δ ‖φ‖L2((0,T );W 3,2(Td)) → 0.

When it comes to the nonlocal terms, we observe that we can identify their weak limits because

the convolution upgrades a weak convergence to the strong one. More precisely, if ρδ
∗
⇀ ρ in

L∞(0, T );L2(Td)), then ρδ ∗ωη → ρ∗ωη in Lp(0, T ;Lp(Td)) strongly, for all 1 ≤ p <∞. This follows

by the Lions-Aubin lemma and a standard subsequence argument as the sequence {ρδ ∗ ωη}δ has

uniformly bounded derivatives in the spatial derivatives while its time derivative is bounded in some
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negative Sobolev space by Lemma 3.8.

Concerning (3.18), we notice that it is a consequence of the inequality

|λ′ ⊗ λ′| =




d∑

i,j=1

(
λ′iλ

′
j

)2



1/2

=

d∑

i=1

|λ′i|2 = |λ′|2

and Lemma 2.3. Similarly, (3.19) follows from by virtue of Proposition 2.3 and inequality (B.2).

Next, the constructed measure-valued solution is dissipative in the sense of Definition 3.4 because

we can pass to the limit in (3.36) using identified weak limits (rigorously, one multiplies (3.36) with

a nonnegative test function of time, passes to the limit and then performs a standard localization

argument).

Finally, the constructed solution satisfies Poincaré inequality as in Definition 3.5. Indeed, by Lemma

A.2 we have for all bounded and nonnegative ϕ : [0, T ] → [0,∞)

∫ T

0

∫

Td

ϕ(t)|(ρδ − P)− δ|2 ≤ CP

4η2

∫ T

0

∫

Td

∫

Td

ϕ(t)|(ρδ − P)(x)− (ρδ − P)(x− y)|2ωη(y) dxdy dt

because (ρδ − P)Td = δ. The (LHS) can be written as

∫ T

0

∫

Td

ϕ(t)|(ρδ − P)− δ|2 =

∫ T

0

∫

Td

ϕ(t)
(
(ρδ − P)2 + δ2 − 2 δ (ρδ − P)

)
.

As ρδ −P is bounded in L∞(0, T ;L2(Td)), the last two terms vanish in the limit δ → 0. Finally, the

term (ρδ − P)2 has weak limit ρ2 + P2 − 2P ρ which is exactly (ρ− P)2, cf. (3.12). Similarly, we

consider the term on the (RHS) so that we obtain

∫ T

0

∫

Td

ϕ(t)|ρ− P|2 ≤ CP

4η2

∫ T

0

ϕ(t)

∫

Td

∫

Td

ωη(y)|(ρ− P)(x)− (ρ− P)(x− y)|2 dy dxdt.

As this inequality holds for all ϕ, we conclude the proof.

4. Classical solutions to the nonlocal Cahn-Hilliard equation

To prove the convergence of the measure-valued solution of the nonlocal Euler-Korteweg to a solution

of the Cahn-Hilliard equation, we use arguments similar to weak-strong uniqueness. Therefore,

we study below the classical solutions of the nonlocal Cahn-Hilliard equation. More precisely, we
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consider the equation (1.5)–(1.6). The initial condition is a smooth positive function, more precisely

we consider for some α, σ > 0

ρ(0, x) = ρ0(x), ρ0 ∈ C2+α(Td), ρ0(x) ≥ σ ∀x ∈ T
d. (4.1)

We also suppose that F ∈ C4 which is required by the parabolic regularity theory exploited in

Lemma 4.2. Equations (1.5)-(1.6) can be rewritten as

∂tρ−∆(φ(ρ)) + div(ρ b(ρ)) = 0, φ(ρ) =
ρ2

2η2
+

∫ ρ

0

sF ′′(s) ds, b(ρ) =
∇ωη ∗ ρ
η2

. (4.2)

Theorem 4.1. Equation (4.2) with initial condition u0 satisfying (4.1) admits a classical unique

solution.

To prove this theorem we first consider an approximate problem and we define Tδ a smooth function

such that

Tδ(0) =
δ

2
, Tδ(ρ) = ρ if u ≥ δ, Tδ is increasing.

The plan is to approximate (1.5) with

∂tρ = div(Tδ(ρ)∇µ). (4.3)

We also define

φδ(ρ) :=

∫ ρ

0

Tδ(s)

η2
ds+

∫ ρ

0

Tδ(s)F
′′(s) ds =

∫ ρ

0

Tδ(s)

(
1

η2
+ F ′′(s)

)
ds (4.4)

so that equation (4.3) can be rewritten as a porous media equation

∂tρ−∆(φδ(ρ)) + div(ρ b(ρ)) = 0 ρ(0, x) = ρ0(x). (4.5)

From the properties of F we note that φδ ≥ 0 and φ′δ ≥ 0.

Lemma 4.2 (existence). There exists a classical solution to (4.5). Moreover, the solution obeys the

maximum principle

ρ(t) := σ exp

(
−
∫ t

0

‖div b(ρ)‖L∞(s) ds

)
≤ ρ(t, x) ≤ σ exp

(∫ t

0

‖div b(ρ)‖L∞(s) ds

)
.

Proof. The existence follows from [39]. To prove the maximum principle, we denote w = ρ − ρ so

that

∂tw −∆(φδ(ρ)) + div(w b(ρ)) + ρ(div(b(ρ))− ‖div(b(ρ))‖L∞) = 0, w(0, x) = ρ0(x)− ρ ≥ 0.
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We multiply this equation by sgn−(w) :=




−1 if w < 0

0 if w ≥ 0.

. We obtain, with w− = min{w, 0},

|w−| = −min{w, 0}.

∂t|w−|+∆(φδ(ρ)) sgn
−(w) + div(|w−| b(ρ)) ≤ 0.

Therefore integrating in space and using the inequality

∫

Td

∆φδ(ρ) sgn
−(w) ≥ 0,

we obtain

∂t

∫

Td

|w−| ≤ 0.

Using the initial condition we conclude |w−| = 0.

Since the solutions to (4.3) satisfy uniform lower bound, we obtain Tδ(ρ) = ρ for sufficiently small

δ and thus classical solutions of Theorem 4.1. �

Lemma 4.3 (uniqueness). Classical nonnegative solutions to (4.2) are unique.

Proof. We want to adapt usual L1 contraction principle [71, Proposition 3.5] to the case with addi-

tional continuity equation term. Let ρ1, ρ2 be solutions to (4.5) and let w = ρ1 − ρ2. Equation for

w reads

∂tw −∆(φ(ρ1)− φ(ρ2)) + div(ρ1 b(ρ1)− ρ2 b(ρ2)) = 0.

We multiply this equation by pε(φ(ρ1) − φ(ρ2)) where pε approximates p(u) = 1u>0 and p′ε ≥ 0.

Then,

∫

Td

∆(φ(ρ1)− φ(ρ2)) pε(φ(ρ1)− φ(ρ2)) dx = −
∫

Td

p′ε |∇(φ(ρ1)− φ(ρ2))|2 dx ≤ 0.

Concerning the other terms we notice that after sending ε→ 0 we obtain p(φ(ρ1)−φ(ρ2)) = p(ρ1−ρ2)
by monotonicity of φ. Therefore,

∫

Td

∂tw p(ρ1 − ρ2) dx = ∂t

∫

Td

|w|+ dx.

Now, we split the divergence term into two parts:

div(ρ1 b(ρ1)− ρ2 b(ρ2)) = [ρ1 divb(ρ1)− ρ2 divb(ρ2)] + [∇ρ1 b(ρ1)−∇ρ2 b(ρ2)] = A+B.
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The term A can be estimated in L1(Td) with

‖A‖1 ≤ ‖ρ1 divb(ρ1)− ρ2 divb(ρ1)‖1 + ‖ρ2 divb(ρ1)− ρ2 divb(ρ2)‖1

≤ ‖ρ1 − ρ2‖1 ‖divb(ρ1)‖∞ +
1

η2
‖ρ2‖1 ‖D2ωη‖∞‖ρ1 − ρ2‖1

≤ ‖D2ωη‖∞
η2

(‖ρ1‖1 + ‖ρ2‖1) ‖ρ1 − ρ2‖1

where we used Young’s convolutional inequality. Therefore,
∫

Td

pAdx ≤ ‖pA‖1 ≤
‖D2ωη‖∞

η2
(‖ρ1‖1 + ‖ρ2‖1) ‖ρ1 − ρ2‖1.

where we denoted for simplicity p = p(ρ1 − ρ2). Concerning term B we write similarly

B = (∇ρ1 b(ρ1)−∇ρ2 b(ρ1)) + (∇ρ2 b(ρ1)−∇ρ2 b(ρ2)) =: B1 +B2.

As above, we easily obtain

‖B2‖1 ≤
‖∇ωη‖∞

η2
‖∇ρ2‖1 ‖ρ1 − ρ2‖1,

∫

Td

pB2 dx ≤ ‖∇ωη‖∞
η2

‖∇ρ2‖1 ‖ρ1 − ρ2‖1.

The term B1 is more tricky. Keeping in mind that everything is multiplied by p(ρ1 − ρ2) we have

∫

Td

(∇ρ1 −∇ρ2) p(ρ1 − ρ2) b(ρ1) dx =

∫

Td

∇|ρ1 − ρ2|+ b(ρ1) dx =

= −
∫

Td

|ρ1 − ρ2|+divb(ρ1) dx ≤ ‖ρ1 − ρ2‖1 ‖ρ1‖1
‖D2ωη‖∞

η2
.

We conclude that for some constant C depending on L1 norms of ρ1, ρ2 and ∇ρ2 we have

∂t

∫

Td

|ρ1 − ρ2|+ dx ≤
∫

Td

|ρ1 − ρ2| dx.

Replacing ρ1 and ρ2 we obtain

∂t

∫

Td

|ρ1 − ρ2| dx ≤
∫

Td

|ρ1 − ρ2| dx.

so that we conclude ρ1 = ρ2. �

5. Convergence of nonlocal Euler-Korteweg to nonlocal Cahn-Hilliard

To prove convergence of nonlocal Euler-Korteweg equation to the nonlocal Cahn-Hilliard equation,

we first rewrite the latter as a nonlocal Euler-Korteweg equation with an error term:

∂tP+
1

ε
div(PU) = 0, (5.1)

∂t(PU) +
1

ε
div (PU⊗ U) = − 1

ε2
PU − 1

ε
P∇(F ′(P) +Bη[P]) + e(P,U). (5.2)
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Here, velocity U is given by

U = −ε∇(F ′(P)−Bη(P)) (5.3)

and the error term is given by

e(P,U) = ∂t(PU) +
1

ε
div (PU⊗ U)

= ε div(P∇(F ′(P) +Bη[P]))⊗∇(F ′(P) +Bη[P])))− ε∂t(P∇(F ′(P) +Bη[P]))).

Finally, given strong solution (P,U) and measure-valued solution represented by (ρ,
√
ρu, ν,m) we

define the relative entropy as

Θ(t) =

∫

Td

1

2
ρ|u− U|2 + F (ρ|P)dx+

1

4η2

∫

Td

∫

Td

ωη(y)|(ρ− P)(x)− (ρ− P)(x− y)|2 dy dx. (5.4)

where nonlinearity F (ρ|P) is defined in (3.17) and measure-valued terms are defined by (3.13), (3.15)

and (3.16). The main result reads:

Theorem 5.1. Let (ρ,
√
ρu, ν,m) be a dissipative measure valued solution of (1.1)–(1.2) satisfying

Poincaré inequality (3.23) and let (P,U) be classical solutions of (5.1)–(5.2). Then, for a constant

independent of ε and η we have

Θ(t) ≤
(
Θ(0) + ε4C(‖P‖C2,1)

∥∥∥∥
1

P

∥∥∥∥
2

∞

)
eTC(‖P‖C2,1)/η

d+3

. (5.5)

Lemma 5.2. Let η ∈ (0, η0). Then, the relative entropy defined by (5.4) is nonnegative: there exists

a κ ∈ (0, 1) such that
∫

Td

ρ|u−U|2 dx+
κ

4η2

∫

Td

∫

Td

ωη(y)|(ρ− P)(x) − (ρ− P)(x− y)|2 dy dx ≤ Θ(t) (5.6)

where both terms on the (LHS) are nonnegative. Moreover, for the constant CP (defined in Lemma

A.2) we have an estimate

‖ρ− P‖2L2(Td) ≤
CP

4η2

∫

Td

∫

Td

ωη(y)|(ρ− P)(x) − (ρ− P)(x− y)|2 dy dx. (5.7)

Proof of Lemma 5.2. We study the three terms appearing in (5.4) separately. First, for (3.13) we

write by Fubini theorem

ρ|u− U|2 =
〈
|λ′|2 + λ1 |U|2 − 2

√
λ1 λ

′U, νt,x

〉
+mρ|u|2 =

〈
|λ′ −

√
λ1U|2, νt,x

〉
+mρ|u|2 ,

so that, after integration in space, it is positive (for a.e. t ∈ (0, T )). Now, we study the nonlocal

term. We claim that (after integration)
∫

Td

∫

Td

ωη(y)|ρ(x) − ρ(x− y)|2 dy dx ≥
∫

Td

∫

Td

ωη(y)|ρ(x) − ρ(x− y)|2 dy dx. (5.8)
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Indeed, by definition (3.11), the (LHS) equals 2
∫
Td ρ2 −

∫
Td 2 ρωη ∗ ρ. By (3.24), we know that

∫
Td ρ2 ≥

∫
Td ρ

2. To conclude the proof of (5.8), it is sufficient to observe

2

∫

Td

ρ2 −
∫

Td

2 ρωη ∗ ρ =

∫

Td

∫

Td

ωη|ρ(x) − ρ(x− y)|2 dy dx.

Now, combining (3.15) and (5.8), we obtain

∫

Td

∫

Td

ωη(y)|(ρ− P)(x)− (ρ− P)(x− y)|2 dy dx ≥

≥
∫

Td

∫

Td

ωη(y)|(ρ− P)(x)− (ρ− P)(x− y)|2 dy dx.

Using Lemma A.2, we conclude the proof of (5.7) and nonnegativity of the nonlocal term.

It remains to study the term F (ρ|P). The concentration measure mF (ρ) is nonnegative and will be

neglected in the estimate below. We split F = F1+F2 (where F1, F2 are defined in Assumption 1.1)

in (3.16) so that from (3.8) and (3.16)

F (ρ|P) = 〈F1(λ1)− F1(P)− F ′
1(P)(λ1 − P), νt,x〉

+ 〈F2(λ1)− F2(P)− F ′
2(P)(λ1 − P), νt,x〉+mF (ρ)

(5.9)

The first term is nonnegative by convexity of F1. The second can be estimated from below (by

Taylor’s expansion) with −‖F ′′
2 ‖∞

〈
(λ1 − P)2, νt,x

〉
. Now, recall that ‖F ′′

2 ‖∞ < 1
CP

(cf. Assump-

tion 1.1). In particular, there exists κ ∈ (0, 1) such that ‖F ′′
2 ‖∞ < 1−κ

CP
. Using Poincaré inequality

(3.23) and the fact that the concentration measure mρ2

is nonnegative we have

−‖F ′′
2 ‖∞

∫

Td

〈
(λ1 − P)2, νt,x

〉
dx ≥ −‖F ′′

2 ‖∞
∫

Td

(ρ− P)2 dx ≥ − (1− κ)

CP

∫

Td

(ρ− P)2 dx

≥ −1− κ

4η2

∫

Td

∫

Td

ωη(y)|(ρ− P)(x)− (ρ− P)(x− y)|2 dy dx.
(5.10)

Therefore, we can compensate a possibly negative term with the positive nonlocal term appearing

in (5.4). �

Proof of Theorem 5.1. We split the reasoning into several steps.

Step 1: Energy identities. First, we recall that the dissipative measure valued solutions satisfy

∫

Td

1

2
ρ|u|2 + F (ρ) dx+

1

4η2

∫

Td

∫

Td

ωη(y)|ρ(x) − ρ(x− y)|2 dy dx+
1

ε2

∫ t

0

∫

Td

ρ|u|2 dxdt

≤
∫

Td

1

2
ρ0|u0|2(x) + F (ρ0) dx+

1

4η2

∫

Td

∫

Td

ωη(y)|ρ0(x)− ρ0(x− y)|2 dy dx.
(5.11)
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where the quantities on the (LHS) of (5.11) are evaluated at time t. Similarly, the classical solutions

(P,U) satisfy
∫

Td

1

2
P|U|2 + F (P) dx+

1

4η2

∫

Td

∫

Td

ωη(y)|P(x) − P(x− y)|2 dxdy =

=

∫

Td

1

2
P0|u0|2(x) + F (P0) dx+

1

4η2

∫

Td

∫

Td

ωη(y)|P0(x) − P0(x − y)|2 dxdy

− 1

ε2

∫ t

0

∫

Td

P|U|2 dxdt+
∫ t

0

∫

Td

U · e(P,U) dt dx.

(5.12)

Identity (5.12) can be obtained from testing (5.1)–(5.2) by U and performing several integration by

parts.

Step 2: Estimate for the mixed terms F ′(P)(ρ− P), Bη[P] and ρ |U|2. We consider weak solutions

of the mass equation satisfied by the differences between the measure valued solutions and classical

solutions:

∫ T

0

∫

Td

∂tψ(ρ− P) +
1

ε
∇ψ · (ρu− PU) dxdt+

∫

Td

ψ(x, 0)(ρ0 − P0) dx = 0. (5.13)

We set

θδ(t) :=





1 for 0 ≤ τ < t,

t−τ
δ + 1 for t ≤ τ < t+ δ,

0 for τ ≥ t+ δ.

Note that θ′(t) is an approximation of the dirac mass −δt. We consider test function in (5.13) defined

as ψ = θδ(t)
(
F ′(P) +Bη[P]− 1

2 |U|2
)

so that after letting δ → 0 we obtain

∫

Td

(
F ′(P) +Bη[P]−

1

2
|U|2

)
(ρ− P)

∣∣∣
t

τ=0
dx =

= +

∫ t

0

∫

Td

∂τ

(
F ′(P) +Bη[P]−

1

2
|U|2

)
(ρ− P) dxdτ

+
1

ε

∫ t

0

∫

Td

∇
(
F ′(P) +Bη[P]−

1

2
|U|2

)
· (ρu − PU) dxdτ.

(5.14)

Step 3: Estimate for the mixed term ρuU. We consider weak solutions of the momentum equation

satisfied by the differences between the measure valued solutions and classical solutions:

∫ ∞

0

∫

Td

∂tφ · (ρu − PU) +
1

ε
∇φ : (ρu⊗ u − PU⊗ U)− 1

ε2
φ · (ρu − PU) +

1

ε
div φ(p(ρ)− p(P))

+
1

εη2
φ · (ρ∇ωη ∗ ρ− P · ∇ωη ∗ P) +

∫

Td

φ(x, 0) · (ρ0u0 − P0U0) dx−
∫ ∞

0

∫

Td

φ · e(P,U) = 0.
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We consider test function φ = θδ(t)U so that after letting δ → 0 we obtain

∫

Td

U · (ρu− PU)
∣∣∣
t

τ=0
dx =

∫ t

0

∫

Td

∂τU · (ρu− PU) dxdτ

+

∫ t

0

∫

Td

1

ε
∇U : (ρu⊗ u− PU⊗ U) +

1

ε
div(U)(p(ρ)− p(P)) dxdτ

− 1

ε2

∫ t

0

∫

Td

U · (ρu− PU) dxdτ +
1

εη2

∫ t

0

∫

Td

U · (ρ∇ωη ∗ ρ− P · ∇ωη ∗ P) dxdτ

−
∫ t

0

∫

Td

U · e(P,U) dxdτ.

(5.15)

Step 4: First estimate on the relative entropy. Let us observe that when we subtract (5.12), (5.14)

and (5.15) from (5.11) we obtain an estimate for Θ(t)−Θ(0). To see this, let us write explicitly the

(LHS) after the subtraction (we omit integral with respect to x for simplicity and we consider only

terms at time τ = t; of course, for τ = 0, they will be analogous):

1

2
ρ|u|2 + F (ρ) +

1

4η2

∫

Td

ωη(y)|ρ(x) − ρ(x− y)|2 dy − 1

2
P|U|2 − F (P)

− 1

4η2

∫

Td

ωη(y)|P(x)− P(x− y)|2 dy −
(
F ′(P) +Bη[P]−

1

2
|U|2

)
(ρ− P)− U · (ρu − PU) .

We claim that this expression equals Θ(t). Indeed, the terms containing both density and velocity

sum up to the term ρ|u − U|2 as in (3.13). Similarly, terms with the potential F and its derivative

F ′ can be combined to (3.16). Finally, for the nonlocal term, the claim is the consequence of two

identities:

Bη[P] ρ =
1

2η2

∫

Td

ωη(y)(P(x)− P(x− y)) (ρ(x) − ρ(x− y)) dy

and the similar one for Bη[P] P we can easily see that this expression equals Θ(t). Subtracting all

the terms on the (RHS) of (5.12), (5.14),(5.15) from (RHS) of (5.11) we obtain

Θ(t)−Θ(0) ≤ − 1

ε2

∫ t

0

∫

Td

ρ|u|2 − P|U|2 − U · (ρu − PU) dxdτ

−
∫ t

0

∫

Td

∂τ

(
F ′(P) +Bη[P]−

1

2
|U|2

)
(ρ− P) + ∂τU · (ρu − PU) dxdτ

− 1

ε

∫ t

0

∫

Td

∇
(
F ′(P) +Bη[P]−

1

2
|U|2

)
· (ρu − PU) dxdτ

− 1

ε

∫ t

0

∫

Td

∇U : (ρu⊗ u − PU⊗ U) + div(U)(p(ρ)− p(P)) dxdτ

− 1

ε

1

η2

∫ t

0

∫

Td

U · (ρ∇ωη ∗ ρ− P · ∇ωη ∗ P) dxdτ.

(5.16)
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Step 5: Terms with ∂τU in (5.16). To estimate the right-hand side of (5.16) we first try to eliminate

time derivative from (5.16). To this end, we compute ∂tU from the equations (5.1)-(5.2) to obtain

that U satisfies

∂tU +
1

ε
(U · ∇)U = − 1

ε2
U − 1

ε
∇(F ′(P) +Bη[P]) +

e(P,U)

P
. (5.17)

We take the scalar product of this equation with ρu − ρU which yields

∂tU · (ρu− PU) +
1

2
∂t|U|2(P − ρ) +

1

ε
∇U : (ρu⊗ U − ρU ⊗ U)

=
1

ε2
(ρ|U|2 − U · ρu)− 1

ε
∇(F ′(P) +Bη[P]) · (ρu − ρU) +

e(P,U)

P
· (ρu− ρU),

where we used identities

1

ε
(U · ∇)U · (ρu − ρU) =

1

ε
∇U : (ρu ⊗ U − ρU ⊗ U),

∂tU · (ρu− ρU) = ∂tU · (ρu − PU) +
1

2
∂t|U|2(P − ρ).

Finally, using matrix identity xAy = A : x⊗ y where x, y ∈ Rd and A ∈ Rd×d we easily deduce the

formula

∇U : (ρu ⊗ U− ρU ⊗ U) = ∇U : (ρu ⊗ u − PU⊗ U)

−∇U : ρ(u− U)⊗ (u− U)−∇
(
1

2
|U|2

)
(ρu − PU),

where

ρ(u − U)⊗ (u − U) := ρu ⊗ u− ρu⊗ U − U ⊗ ρu + ρU ⊗ U.

We obtain

1

2
∂t|U|2 (P− ρ) + ∂t(U) · (ρu − PU)− 1

ε
∇
(
1

2
|U|2

)
· (ρu− PU)+

+
1

ε
∇U : (ρu ⊗ u − PU⊗ U) =

1

ε
∇U : ρ(u− U)⊗ (u− U)+

=
1

ε2
(ρ|U|2 − U · ρu)− 1

ε
∇(F ′(P) +Bη[P]) · (ρu − ρU) +

e(P,U)

P
· (ρu− ρU).

(5.18)

Note that this gives us an estimate on four terms appearing on the (RHS) of (5.16).

Step 6: Terms with F ′ and Bη in (5.16). We now consider the expression

−
∫ t

0

∫

Td

∂τ (F
′(P) +Bη[P]) (ρ− P) +

1

ε
∇ (F ′(P) +Bη[P]) · (ρu − PU) dxdτ

+

∫ t

0

∫

Td

1

ε
∇(F ′(P) +Bη[P]) · (ρu − ρU) dxdτ.
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The first integral comes from (5.16) while the second from (5.18) plugged into (5.16). We can

simplify this to get

−
∫ t

0

∫

Td

∂τ (F
′(P) +Bη[P]) (ρ− P) +

1

ε
∇ (F ′(P) +Bη[P]) ·U(ρ− P) dxdτ. (5.19)

We split the term with Bη[P] =
P
η2 − P∗ωη

η2 for the local and non-local parts. Now, concerning the

terms with potential F , we use (5.1) to deduce

∂tF
′(P) = F ′′(P) ∂tP = −1

ε
F ′′(P)∇P · U− 1

ε
F ′′(P)P divU = −1

ε
∇F ′(P) ·U − 1

ε
F ′′(P)P divU.

Similarly,

1

η2
∂tP = − 1

ε η2
∇P · U − 1

ε η2
P divU.

Therefore, the local parts of (5.19) sum up to

−1

ε

(
F ′′(P)P +

1

η2
P

)
divU (ρ− P) = −1

ε
p′(P)divU (ρ− P)

which together with − 1
ε div(U)(p(ρ) − p(P))divU from (5.16) gives p(ρ|P)divU, where

p(ρ|P) := p(ρ)− p(P)− p′(P) (ρ− P).

Now, we consider the nonlocal parts in (5.19) and the last nonlocal term coming from (5.16). which

equals

1

η2

∫ t

0

∫

Td

∂τ (P ∗ ωη) (ρ− P) +
1

ε η2
∇ (P ∗ ωη) ·U(ρ− P) dxdτ

− 1

ε

1

η2

∫ t

0

∫

Td

U · (ρ∇ωη ∗ ρ− P · ∇ωη ∗ P) dxdτ.
(5.20)

Using (5.1) and properties of the convolution we can rewrite the first term in (5.20):

1

η2

∫ t

0

∫

Td

∂τ (P ∗ ωη) (ρ− P) dxdτ = −1

ε

1

η2

∫ t

0

∫

Td

div(PU) (ωη ∗ (ρ− P)) dxdτ

=
1

ε

1

η2

∫ t

0

∫

Td

PU · (∇ωη ∗ (ρ− P)) dxdτ.

so that (5.20) boils down to

−1

ε

1

η2

∫ t

0

∫

Td

(ρ− P)U · ∇ωη ∗ (ρ− P) dxdτ.
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Step 7: Final estimate on the relative entropy. Using the steps above and (5.16) we obtain

Θ(t)−Θ(0) ≤ − 1

ε2

∫ t

0

∫

Td

ρ|u− U|2 dxdτ −
∫ t

0

∫

Td

e(P,U)

P
(ρu − ρU) dxdτ

− 1

ε

∫ t

0

∫

Td

∇U : ρ(u − U)⊗ (u − U) dxdτ − 1

ε

∫ t

0

∫

Td

div(U) p(ρ|P) dxdτ

− 1

ε

1

η2

∫ t

0

∫

Td

(ρ− P)U · ∇ωη ∗ (ρ− P) dxdτ =: A+B + C +D + E.

(5.21)

By definition of U we notice that

‖U‖∞, ‖∇U‖∞, |e(P,U)| ≤ εC(‖P‖C2,1),

where C(‖P‖C2,1) is a numerical constant which depends on ‖P‖C2,1 and blows up when η → 0

since we do not have estimates in C2 of the solutions of the local Cahn-Hilliard equation. Now, we

estimate the terms appearing on the (RHS) of (5.21).

Term E. For the nonlocal term E we use boundedness of U to have
∣∣∣∣
1

ε

1

η2

∫ t

0

∫

Td

(ρ− P)U · ∇ωη ∗ (ρ− P) dxdτ

∣∣∣∣ ≤
C ‖U‖∞

η2
‖ρ−P‖2 ‖∇ωη∗(ρ− P) ‖2 ≤ C‖U‖∞

ηd+3
‖ρ−P‖22.

Using (5.7) for η ∈ (0, η0) we obtain

E ≤ C(‖P‖C2,1)

4ηd+3

∫ t

0

Θ(τ) dτ.

Term B. Using (3.3) and (3.5) we can write

B = −
∫ t

0

∫

Td

〈
e(P,U)

P

√
λ1(λ

′ −
√
λ1U), νt,x

〉
dxdτ

Using Cauchy-Schwartz with a parameter

B ≤
∫ t

0

∫

Td

〈
ε2

2

∣∣∣∣
e(P,U)

P

∣∣∣∣
2

λ1 +
1

2ε2
|λ′ −

√
λ1U|2, νt,x

〉
dxdτ

Now,
∣∣∣e(P,U)

P

∣∣∣ ≤ εC(‖P‖C2,1)
∥∥ 1
P

∥∥
∞

. Moreover, expanding the square in |λ′ −
√
λ1U|2 and using

(3.5), (3.7) we recognize that

∫ t

0

∫

Td

〈
|λ′ −

√
λ1U|2, νt,x

〉
≤
∫ t

0

∫

Td

ρ|u − U|2.

Therefore, we have the estimate

B ≤ ε4 C(‖P‖C2,1)

∥∥∥∥
1

P

∥∥∥∥
2

∞

+
1

2ε2

∫ t

0

∫

Td

ρ|u − U|2.



31

Term C. We have
∣∣∣∣
1

ε

∫ t

0

∫

Td

∇U : ρ(u − U)⊗ (u − U) dxdτ

∣∣∣∣ ≤
C ‖∇U‖∞

ε

∫ t

0

∫

Td

∣∣∣ρ(u− U)⊗ (u − U)
∣∣∣dxdτ

Estimating directly under the integral in (3.14)

∣∣∣〈(λ′ −
√
λ1U)⊗ (λ′ −

√
λ1U), νt,x〉

∣∣∣ ≤ 〈|λ′ −
√
λ1U|2, νt,x〉

and using (3.18) we arrive at

C ≤ C(‖P‖C2,1)

∫ t

0

∫

Td

ρ|u − U|2 dxdτ

Term D. Using (3.16) and (3.10), we can write

|p(ρ|P)| ≤ 〈p(λ1)− p(P)− p′(P)(λ1 − P), νt,x〉+ |mρ F ′(ρ)|+mF (ρ) +
1

η2
mρ2

.

The first part can be estimated using (B.1):

〈p(λ1|P), νt,x〉 ≤ CF,R〈F (λ1|P), νt,x〉+
(
CF,R +

1

η2

)
〈(λ1 − P )2, νt,x〉 (5.22)

The concentration measures part can be estimated using (3.19):

|mρ F ′(ρ)|+mF (ρ) +
1

η2
mρ2 ≤ (CF + 1)mF (ρ) +

(
CF +

1

η2

)
mρ2

. (5.23)

Summing up (5.22) and (5.23) we obtain

|p(ρ|P)| ≤ C F (ρ|P) + C

(
1 +

1

η2

)
|ρ− P|2.

The last term can be estimated by the nonlocal term appearing in the definition of Θ due to the

Poincaré inequality (3.23). As F (ρ|P) also appears in the definition of Θ we obtain

D ≤
∣∣∣∣
1

ε

∫ t

0

∫

Td

div(U)p(ρ|P) dxdτ
∣∣∣∣ ≤ C(‖P‖C2,1)

(
1 +

1

η2

)∫ t

0

Θ(τ) dτ.

We conclude that for η < 1:

Θ(t) ≤ Θ(0) +
C(‖P‖C2,1)

4ηd+3

∫ t

0

Θ(τ) dτ + ε4C(‖P‖C2,1)

∥∥∥∥
1

P

∥∥∥∥
2

∞

Using Gronwall’s lemma, we obtain (5.5). �

Proof of Theorem 1.5. The proof is a direct consequence of (5.5). Indeed, we consider the relative

entropy Θ as in (5.4) with ρ = ρη,ε, u = uη,ε, P = ρη and U = −ε∇(F ′(ρη)−Bη(ρη)). As η ∈ (0, η0)

is fixed, ρη (which depends on η!) is a C2,1 function bounded away from 0 (Theorem 4.1, Lemma

4.2). Furthermore,

Θ(0) ≤ C (ε2 + ‖u0,ε‖2L2(Td)) → 0 (5.24)
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(here, we use that the initial density ρ0 belongs to C3 so that ‖U(0, x)‖L∞(Td) ≤ C ε, cf. (5.3)).

Therefore, we get that Θ(t) → 0 as ε → 0. By (5.6) and (5.7), we obtain convergence in L2(Td),

even uniformly in time. �

Proof of Theorem 1.4. We write ρη (note that it does not depend on ε, cf. (5.1) and (5.3)) for

solutions to (5.1)–(5.2) and we note that they depend on η. From [39] we know that there exists a

subsequence ηk → 0 such that

‖ρηk
− ρ‖L2((0,T )×Td) → 0,

where ρ is a weak solution to the local Cahn-Hilliard equation. Now, let ρηk,εk be a measure-valued

solution of non-local Euler-Korteweg equation. Using (5.24), (5.6) and (5.7), we have

‖ρηk
− ρηk,εk‖L2((0,T )×Td) ≤ C

(
ε2k + ‖u0,εk‖2L2(Td) + ε4k ‖ρηk

‖2C2,1

∥∥∥∥
1

ρηk

∥∥∥∥
2

∞

)
eCT‖ρηk

‖C2,1/η
d+3

.

Of course, the quantity ‖ρηk
‖2C2,1

∥∥∥ 1
ρηk

∥∥∥
2

∞
eCT‖ρηk

‖C2,1/η
d+3

k is blowing up as ηk → 0 (because we

lose parabolicity), nevertheless we can choose εk so small to obtain convergence to 0. The conclusion

follows by triangle inequality. �

6. Convergence result for the parametrized measure νη,ε and the concentration

measures mη,ε

Theorems 1.4 and 1.5 answer the question of what happens with the function ρη,ε when η, ε → 0.

However, the measure-valued solution (ρη,ε,
√
ρη,εuη,ε, ν

η,ε,mη,ε) is in fact a collection of four com-

ponents. Below, we address the question of convergence of the other components:
√
ρη,εuη,ε, ν

η,ε,

mη,ε. We provide a detailed proof only for the situation in Theorem 1.5. Adaptation to the case

analyzed in Theorem 1.4 is straightforward.

We first recall some basic notions from measure theory. We consider the set R+ × Rd and we write

(λ1, λ
′) for a given element of this set where λ1 ∈ R+ and λ′ ∈ Rd as in Section 3.1. For two

probability measures µ, ν on R+ × Rd with a finite second moment, that is,

∫

R+×Rd

(
|λ1|2 + |λ′|2

)
dµ(λ1, λ

′) <∞,

∫

R+×Rd

(
|λ1|2 + |λ′|2

)
dν(λ1, λ

′) <∞,

the Wasserstein distance W2(µ, ν) is defined as

W2(µ, ν)
2 = inf

π∈Π(µ,ν)

∫

(R+×Rd)2

[∣∣∣λ1 − λ̃1

∣∣∣
2

+
∣∣∣λ′ − λ̃′

∣∣∣
2
]
dπ
(
λ1, λ

′, λ̃1, λ̃′
)
, (6.1)
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where the set Π(µ, ν) is the set of couplings between µ, ν; that is, the set of measures π on the

product (R+ × R
d)2 such that

π(A× (R+ × R
d)) = µ(A), π((R+ × R

d)×B) = ν(B).

Furthermore, for a measure µ on some space X , the total variation of µ is defined as

‖µ‖TV = |µ|(X),

where |µ|(A) = µ+(A)− µ−(A) and µ+, µ− are positive and negative parts of µ, respectively. Note

that if µ is a nonnegative measure, ‖µ‖TV = µ(X). For more on spaces of measures and related

norms, we refer to [34, Chapter 1].

Theorem 6.1. Under the notation of Theorem 1.5, the function
√
ρη,εuη,ε converges to 0 in

L∞(0, T ;L2(Td)):

ess sup
t∈(0,T )

∫

Td

|√ρη,εuη,ε|2 dx→ 0 as ε→ 0. (6.2)

Moreover, the parametrized measure νη,ε ∈ L∞
weak

((0, T )×Td;P([0,+∞)×Rd)) converges to δρη(t,x)⊗
δ0 in the following sense

ess sup
t∈(0,T )

∫

Td

[
W2(ν

η,ε, δρη(t,x) ⊗ δ0)
]2

dx→ 0 as ε→ 0. (6.3)

Furthermore, the concentration measures vector mη,ε converges to 0 in the total variation norm,

uniformly in time:

ess sup
t∈(0,T )

‖mη,ε(t, ·)‖TV → 0 as ε→ 0. (6.4)

Proof. From the proof of Theorem 1.5, we know that supt∈(0,T ) Θ(t) → 0 where Θ(t) is defined as

in (5.4) with ρ := ρη,ε, P := ρη, u := uη,ε and

U := −ε∇(F ′(ρη)−Bη(ρη)). (6.5)

Due to Lemma 5.2 this yields

sup
t∈(0,T )

∫

Td

1

2
ρη,ε|uη,ε − U|2 dx +

κ

4η2

∫

Td

∫

Td

ωη(y)|(ρη,ε − ρη)(x) − (ρη,ε − ρη)(x − y)|2 dy dx→ 0

(6.6)

and these two quantities are nonnegative. First, by Poincaré inequality (3.23) and (3.12), we have

ess sup
t∈(0,T )

∫

Td

∫

R+×Rd

|λ1 − ρη(t, x)|2 dνη,εt,x (λ1, λ
′) dx+mρ2

η,ε(t,T
d) → 0. (6.7)
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In particular,

ess sup
t∈(0,T )

∫

Td

∫

R+

∫

R+×Rd

|λ1 − λ̃1(t, x)|2 dνη,εt,x (λ1, λ
′) dδρη(t,x)(λ̃1) dx→ 0. (6.8)

Second, due to (3.13), we can expand the term
∫
Td

1
2ρη,ε|uη,ε − U|2 into three integrals:

1

2

∫

Td

ρη,ε |uη,ε|2 dx−
∫

Td

ρη,ε uη,ε ·Udx+
1

2

∫

Td

ρη,ε |U|2 dx. (6.9)

We claim that the second and third term converge to 0. For the third term, this follows easily from

(6.5), nonnegativity of ρη,ε and the conservation of mass
∫
Td ρη,ε dx =

∫
Td ρ0 dx. Concerning the

second term, by the dissipativity (Definition 3.4) and nonnegativity of the energy (Lemma 3.6), we

have the uniform estimate

∣∣∣∣
∫

Td

ρη,ε uη,ε dx

∣∣∣∣ =
∣∣∣∣
∫

Td

〈√
λ1 λ

′, νη,ε
〉
dx

∣∣∣∣ ≤
1

2

∫

Td

〈λ1, νη,ε〉dx+
1

2

∫

Td

〈|λ′|2, νη,ε〉dx ≤

≤ 1

2

∫

Td

ρη,ε dx+
1

2

∫

Td

|√ρη,εuη,ε|2 dx =
1

2

∫

Td

ρ0 dx+
1

2

∫

Td

|√ρη,εuη,ε|2 dx ≤ C

As |U| ≤ Cε, we conclude that ess supt∈(0,T )

∣∣∫
Td ρη,ε uη,ε · Udx

∣∣→ 0 as ε→ 0 so that (6.9) implies

ess sup
t∈(0,T )

1

2

∫

Td

ρη,ε |uη,ε|2 dx→ 0.

Again, we can write it as

ess sup
t∈(0,T )

∫

Td

∫

R+×Rd

|λ′|2 dνη,εt,x (λ1, λ
′) dx+mρ |u|2

η,ε (t,Td) → 0 (6.10)

which implies

ess sup
t∈(0,T )

∫

Td

∫

Rd

∫

R+×Rd

|λ′ − λ̃′|2 dνη,εt,x (λ1, λ
′) dδ0(λ̃′) dx→ 0. (6.11)

Now, as the product measure νη,εt,x (λ1, λ
′)⊗ δρη

(λ̃1)⊗ δ0(λ̃′) is an admissible coupling between νη,εt,x

and δρη
⊗ δ0 we can estimate the infimum in (6.1) by

[
W2

(
νη,εt,x , δρη

⊗ δ0
)]2 ≤

∫

R+

∫

R+×Rd

|λ1 − λ̃1(t, x)|2 dνη,εt,x (λ1, λ
′) dδρη(t,x)(λ̃1)+

+

∫

Rd

∫

R+×Rd

|λ′ − λ̃′|2 dνη,εt,x (λ1, λ
′) dδ0(λ̃′)

so that integrating over Td and taking ess supt∈(0,T ) we conclude the proof of (6.3) due to (6.8) and

(6.11). Furthermore, by Jensen’s inequality
∫

Td

|√ρη,εuη,ε|2 =

∫

Td

|〈λ′, νη,ε〉|2 dx ≤
∫

Td

〈|λ′|2, νη,ε〉.

Taking ess supt∈(0,T ) and using (6.10), we arrive at (6.2).
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Finally, we study the concentration measures. From (6.7) and (6.10) we know that

ess sup
t∈(0,T )

mρ2

η,ε(t,T
d), ess sup

t∈(0,T )

mρ |u|2

η,ε (t,Td) → 0 as ε→ 0.

Using (3.18) we obtain the same for |mρu⊗u

η,ε |. It remains to study m
F (ρ)
η,ε and m

ρF ′(ρ)
η,ε . In fact, if

we prove that ess supt∈(0,T )m
F (ρ)
η,ε (t,Td) converges to 0 as ε→ 0, the same will be true for

∣∣∣mρF ′(ρ)
η,ε

∣∣∣
due to (3.19).

By supt∈(0,T ) Θ(t) → 0 and (6.6), we have that

sup
t∈(0,T )

∫

Td

F (ρη,ε|ρη) → 0 as ε→ 0.

We can write F (ρη,ε|ρη) as (cf. (5.9))

F (ρη,ε|ρη) = 〈F1(λ1)− F1(ρη)− F ′
1(ρη)(λ1 − ρη), ν

η,ε〉+

+ 〈F2(λ1)− F2(ρη)− F ′
2(ρη)(λ1 − ρη), ν

η,ε〉+mF (ρ)
η,ε .

(6.12)

The first term is nonnegative while the second converges to 0. Indeed, it can be bounded by

‖F ′′
2 ‖∞

〈
(λ1 − ρη)

2, νt,x
〉

which can be estimated due to inequality (cf. (5.10)):

‖F ′′
2 ‖∞

∫

Td

〈
(λ1 − ρη)

2, νt,x
〉
dx ≤ 1− κ

4η2

∫

Td

∫

Td

ωη(y)|(ρ− ρη)(x) − (ρ− ρη)(x− y)|2 dy dx

for some κ ∈ (0, 1). Thanks to (6.6),

ess sup
t∈(0,T )

∫

Td

|〈F2(λ1)− F2(ρη)− F ′
2(ρη)(λ1 − ρη), ν

η,ε〉| dx→ 0 as ε→ 0.

Due to (6.12), the proof of (6.4) is concluded. �

We can also formulate a similar result to Theorem 6.1 in the context of Theorem 1.4. The proof is

the same as the one of Theorem 6.1.

Theorem 6.2. Under the notation of Theorem 1.4, the function
√
ρηk,εkuηk,εk converges to 0 in

L∞(0, T ;L2(Td)):

ess sup
t∈(0,T )

∫

Td

|√ρηk,εkuηk,εk |2 dx→ 0 as εk, ηk → 0.

Moreover, the parametrized measure νηk,εk ∈ L∞
weak

((0, T )×Td;P([0,+∞)×Rd)) converges to δρ(t,x)⊗
δ0 in the following sense:

∫ T

0

∫

Td

[
W2(ν

ηk,εk , δρ(t,x) ⊗ δ0)
]2

dxdt → 0 as εk, ηk → 0.
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Furthermore, the concentration measures vector mηk,εk converges to 0 in the total variation norm,

uniformly in time:

ess sup
t∈(0,T )

‖mηk,εk(t, ·)‖TV → 0 as εk, ηk → 0.

Appendix A. Some inequalities

Lemma A.1. Let σ > 0 and a final time T > 0. Let u be defined by u(t) = σ exp
(
−
∫ t

0 ‖div b‖L∞(s) ds
)

and φδ defined in (4.4). Then
∫

Td

∆φδ(u) sgn
−(u− u) ≥ 0.

Proof. We note fτ a concave approximation as τ → 0 of the function f : x 7→ min{x, 0}. Then f ′
τ

approximates f ′ : x 7→ sgn−(x). We have

∫

Td

∆φδ(u)f
′
τ (u − u) = −

∫

Td

φ′δ(u)f
′′
τ (u− u)|∇u|2.

Since φ′δ ≥ 0, f ′′
τ ≤ 0 by concavity and we conclude by sending τ → 0. �

Lemma A.2. There exists η0 > 0 and constant CP such that for all η ∈ (0, η0) and all f ∈ L2(Td)

we have

‖f − (f)Td‖2L2(Td) ≤ CP

∫

Td

∫

Td

|f(x)− f(y)|2
4η2

ωη(|x− y|) dxdy.

Appendix B. Bound on the relative pressure

Lemma B.1. Let F satisfy Assumption (1.1), p(ρ) = ρF ′(ρ) − F (ρ) + ρ2

2η2 and F (ρ|P), p(ρ|P) be

defined by (3.17). Then there exists a constant CF,R such that p(ρ|P) is bounded in terms of F (ρ|P)
and |ρ− P|2 i.e.

p(ρ|P) ≤ CF,R F (ρ|P) +
(
CF,R +

1

η2

)
|ρ− P|2. (B.1)

Similarly, there exists constant CF such that

|ρF ′(ρ)| ≤ CF F (ρ) + CF ρ
2 + CF . (B.2)

Proof. We write

p(ρ|P) = (ρ− P)2
∫ 1

0

∫ τ

0

p′′(sρ+ (1− s)P) ds dτ,

F (ρ|P) = (ρ− P)2
∫ 1

0

∫ τ

0

F ′′(sρ+ (1− s)P) ds dτ.
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We note h(s) = sρ + (1 − s)P to simplify the notations. By definition p′(ρ) = ρ (F ′′(ρ) + 1
η2 ).

Therefore we obtain

p(ρ|P) = (ρ− P)2
∫ 1

0

∫ τ

0

F ′′
1 (h(s)) + F ′′

2 (h(s)) + h(s)F
(3)
1 (h(s)) + h(s)F

(3)
2 (h(s)) ds dτ +

1

η2
|ρ− P|2

= F (ρ|P) + (ρ− P)2
∫ 1

0

∫ τ

0

h(s)F
(3)
1 (h(s)) + h(s)F

(3)
2 (h(s)) ds dτ +

1

η2
|ρ− P|2.

We note I1 =
∫ 1

0

∫ τ

0 h(s)F
(3)
1 (h(s)) ds dτ and I2 =

∫ 1

0

∫ τ

0 h(s)F
(3)
2 (h(s)) ds dτ . By assumptions on

|uF (3)
1 | we obtain

I1 ≤ C + C

∫ 1

0

∫ τ

0

F ′′
1 (h(s)) ds dτ ≤ C + C

∫ 1

0

∫ τ

0

F ′′
1 (h(s)) + F ′′

2 (h(s)) ds dτ,

where the value of C changed in the last inequality, using the boundedness assumption on F ′′
2 . For

I2 we simply use boundedness of |uF 3
2 (u)| so that

I2 ≤ C.

This concludes the proof of (B.1). Concerning (B.2), we have

ρF ′(ρ) = ρF ′
1(ρ) + ρF ′

2(ρ) ≤ C(1 + F1(ρ)) + C ρ ≤ C (1 + F (ρ)) + C

(
1

2
+
ρ2

2

)
+ C,

where we used estimate on ρF ′
1(ρ), boundedness of F ′

2, F2 and inequality 2ρ ≤ 1 + ρ2. The proof is

concluded. �
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