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Abstract 
This brief paper documents a simple and efficient method to generate auditory-nerve spike 
trains for the purpose of simulating neural processes of auditory perception. In response to 
sound, each auditory nerve fiber carries information to the auditory brainstem in the form 
of a train of spikes (action potentials), the timing and rate of which reflect the sound.  The 
generation process is usually approximated as Poisson process with a time-varying rate, 
further modified by refractory effects. The purpose, here, is to simulate spike generation as 
a time- and interval-dependent thinning process applied to a homogenous Poisson process, 
allowing for fast generation, cheap storage, and unlimited temporal resolution. 
 

Introduction 
The ear serves to transduce acoustic vibrations in the air to neural patterns and deliver 
them to the brain, ultimately yielding a sound-evoked percept or behavior. Sound vibrations 
are transmitted via the outer and middle ear to the inner ear, where they undergo active 
amplification and filtering, the outcome of which determines the probability of release of 
quanta of neurotransmitter at the synapse between inner hair cell and auditory nerve fiber, 
thus determining the probability of occurrence of a spike within that fiber. Information 
available to the brain about sound is carried collectively by ~30000 fibers (~10 fibers contact 
each of ~3000 inner hair cells), each carrying a spike train of up to ~300 spikes/s average 
rate. 
 
The spike-generation process has been described as an inhomogenous Poisson process with 
a time-varying rate that follows the deflection (and/or velocity) of the basilar membrane at 
the position of the hair cell, further modified by refractory effects that depress firing 
probability immediately after each spike. This widely used approximation is reviewed by 
Delgutte (1996), some of its limits are discussed by Heil and Peterson (2017). 
 
Auditory models (or model suites) have been developed to approximate auditory 
transduction (Osses et al 2022). They serve two purposes: to embody knowledge accrued 
about the peripheral auditory system (and test it), and to generate patterns of auditory-
nerve discharge for simulation of downstream processes within the brainstem. A typical 
auditory model might combine a linear acoustic filtering module to represent the outer and 
middle ear, a non-linear filter-bank module to represent cochlear filtering, an inner hair-cell 



module to represent transduction from vibration to intracellular potential, and a spike 
generation module that generates an array of spike trains.  
 
Simpler configurations may be used for specific tasks, for example by omitting the initial 
filtering, or reducing the number of channels, or replacing non-linear by linear filters. While 
a complete, physiologically-realistic model is a worthy goal, a simpler model is often 
sufficient, or even preferable because more constrained (fewer parameters) and 
computationally less expensive. In particular, the final spike-generation phase is often 
omitted. 
 
Nonetheless, generating actual spike trains (as opposed to a time-varying probability) may 
be useful to assess the impact of refractory effects (not fully captured by the driving 
probability), or to drive models that rely on processing the spikes themselves. These include 
coincidence-based models for example for pitch or binaural unmasking, as well as a wider 
class of spike- or event-based models of perception or information processing (e.g. Liu et al 
2019). Spike generation enables a model to simulate the effects of deafferentation (Kujawa 
and Liberman 2009), putatively a major component of hearing loss, for example in terms of 
stochastic under-sampling (Lopez-Poveda 2014).  
 
Two obstacles to spike generation are computational cost and storage cost, both linked to 

the common time-sampled simulation approach (e.g. one sample every 10s). According to 
the inhomogenous Poisson model with refractory effects, spike probability at each time is 
determined by the product of a time-varying driving function, and a recovery function 
dependent on time since the latest spike. This can be simulated by drawing a random 
number at each time step and comparing it with that probability. Downsides are (a) the 
large number of random numbers required if the sampling rate is high, (b) the space 
required to store the (very sparse) time series of values (1 for a spike, 0 otherwise) and (c) 
the limited time resolution of each spike, dependent on the sampling rate. 
 
Two approaches are available to more efficiently simulate an inhomogenous Poisson 
process. Both rely on the fact that intervals between events of a homogenous Poisson 
process are distributed exponentially. The two approaches are time transformation (e.g. 
Jackson et al 2005) and thinning (e.g. Lewis and Shedler 1979). With time transformation, 
the duration of each randomly-drawn inter-event interval is scaled by a factor that depends 
on the instantaneous probability at (presumably) the first event of that interval. With 
thinning, the maximum value of the time-varying rate is used to simulate a homogenous 
Poisson process, and the resulting event train is then thinned probabilistically depending on 
the instantaneous rate at each event of this train.  
 
The time-transformation approach might seem preferable because it requires a single 
random draw per final spike, whereas thinning is more wasteful. However, time 
transformation is subject to a subtle issue: the underlying time-varying rate is sparsely 
sampled by the event train, all the more so as the rate is low. For example, if an event 
occurs at a dip in the time-varying rate, the next sampling point will be distant in time, 
possibly missing an intervening section of high rate. Thinning does not have this problem (at 
least, not to the same degree), and is the approach used here. 
 



The toolbox 
The toolbox, implemented in Matlab, contains a small set of routines to create and analyze 
spike trains. A spike train is represented as an array of floating-point numbers, each number 
representing time relative to a time reference locked to the beginning of the train. 
 
Spike trains are generated according to the thinning method. The input time series 
(instantaneous rate aka driving function) is scanned for its maximum value, this value 
parametrizes a homogenous Poisson process that produces a train of inter-spike intervals at 
that maximum rate. These are cumulatively summed (assuming a first spike at time 0) to 
obtain a train of spike times. This spike train is then thinned probabilistically depending on 
the value of the nominal instantaneous rate at the time of each spike, to simulate the time-
varying Poisson process. Finally, the spike train is again thinned probabilistically according to 
a recovery function. Initial spike generation and thinning are vectorized and thus fast, but 
the final thinning requires a loop. 
 
The toolbox includes a few additional routines to modify the spike train (jitter, cancellation 
filter, c.f. de Cheveigné 2021, 2023), and for routine statistics such as first-order and all-
order inter-spike interval histograms, peri-stimulus time (PST) histograms, and cross-
coincidence histograms). 
 
The toolbox is mainly intended as an add-on to existing auditory model toolboxes (e.g. 
Osses et al. 2022). 
 
The toolbox is archived at https://zenodo.org/badge/latestdoi/635354073. 
 
 

Results 
Spike generation 
Figure 1 illustrates the generation process. A homogenous Poisson process with a rate equal 
to the peak rate of the driving function (top) produces a train of spikes (black dots), that is 
thinned, first on the basis of the instantaneous values of the driving function (blue), and 
next on the basis of the recovery function (red).  
 

 
Fig. 1. Top: driving function (half-wave rectified 100 Hz sinusoid). Bottom: spike train produced by a 

homogenous Poisson process of rate 2000 spikes/second (black), the same after thinning according to the 
driving function (blue), and after additional thinning according to the recovery function (red). 
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Constant driving function 
In the absence of stimulation, most auditory nerve fibers have a spontaneous activity that 
can be characterized by a driving function that is constant (at least approximately, c.f. Heil 
and Peterson 2017). Stationary stimulation at a high frequency, beyond the phase-locking 
limit (approximately 5 kHz) also entails a constant driving function. Figure 2 shows interval 
statistics for constant drive, in the absence (black) or presence (blue and red) of refractory 
effects. The driving rate was 400/s, the effective rate (after thinning) was ~290/s and ~260/s 
for the stepwise (blue) and piecewise linear recovery time (red) respectively.  
 

 
 

Fig. 2. Interval statistics for spike trains resulting from a constant driving function, in the absence (black) and 
presence (blue and red) of refractory effects. Left: first-order interval histogram, right: all-order interval 

histogram, binwidth is 0.05 ms. For the blue curve (“dead time"), the recovery function was a step function 
equal to 0 below 0.8 ms and 1 beyond. For the red curve, the recovery function was piecewise linear (0 below 
0.8 ms, 0.5 at 1 ms, 0.9 at 2 ms, and 1 at 5 ms and beyond). Statistics were gathered over a duration of 600 s.  

 

Halfwave-rectified driving function 
Figure 3 (left) shows the peristimulus (PST) histogram for a spike train elicited by a half-
wave rectified sinusoidal (100 Hz) driving function in the absence (black) or presence (red) 
of refractory effects (peak rate 500 spikes/s, average spiking rates 160 and 110 spikes/s 
respectively). The center and right panels show first-order and all order ISI histograms, 
respectively. Refractory effects (red) reduce the number of spikes and deplete the zero-
order mode of the interval histograms. There is also a slight distortion of the shape of the 
PSTH, explored in more detail in the next paragraph. 
 

 
 

Fig. 3. Peri-stimulus time and interval statistics for spike resulting from a half-wave rectified sinusoidal driving 
function (100 Hz) of peak rate 500 spikes/s, in the absence (black) and presence (red) of refractory effects. The 
same piecewise-linear recovery function was used as in Fig. 2. Statistics were gathered over a duration of 600 s. 
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Side-effects of refractoriness 
In the absence of refractory effects (pure non-homogenous Poisson process), the empirical 
firing rate would faithfully follow the driving function (apart from stochastic variability).  The 
presence of refractory effects induces some distortions that are worth recognizing, so as to 
avoid attributing them to upstream phenomena (e.g. adaptation). 
 
Figure 4 shows three examples of such effects. The left panel shows a peri-stimulus time 
histogram (PSTH) in response to 5000 repetitions of a pulse of constant driving rate, either 
1000 spikes/s (black) or 5000 spikes/s (red) (effective rates 410 and 730 spikes/s 
respectively). A small onset overshoot is visible at the lower rate, at the higher rate it takes 
the form of a ringing pattern with a period close to the absolute refractory period (~1 ms). 
The center panel show the all-order ISIH for the same two spike trains, again showing 
evidence of periodicity at the higher rate. The right-hand panel shows a period histogram in 
response to a half-wave rectified 200 Hz sinusoidal driving function. The peak driving rate 
was either 1000 spikes/s (black) or 5000 spikes/s (red) (effective rates 180 and 360 spikes/s 
respectively). At the lower rate (black) the histogram is a slightly distorted version of the 
driving function (as in Fig. 3 left), at the higher rate the peak splits into two. 
 
In such conditions, one might be tempted to infer properties of the driving function 
(reflecting the stimulus, the filter, adaptation processes, etc.) (Lopez-Poveda 2005) that are 
instead an artifactual side effect of refractoriness. These effects are prominent mostly for 
high peak driving rates. 
 

 
 

Fig. 4. Side-effects of refractoriness. Left: peristimulus time histogram at the onset of a short pulse of constant 
rate repeated 5000 times, The nominal driving rate was 1000 spikes/s (black) or 5000 spikes/s (red) (effective 

rates were 410 and 730 spikes/s respectively). 

 

Jitter 
Adding jitter to spike times is a convenient way to model loss of synchrony at higher 
frequencies. Loss of synchrony is usually attributed to low-pass filtering effects due to inner 
hair-cell capacitance (Russell and Sellick 1983), but its effects are quite well captured by 
adding a Gaussian jitter to each spike time (Fig. 5) (compare with e.g. Versteegh et al 2011). 
Adding Gaussian jitter is thus an expedient way to reproduce phase-locking roll-off at higher 
frequencies, at least for the purpose of driving downstream processing models. 
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Fig. 5. Effect of adding Gaussian jitter to spike times on vector strength, for a half-wave rectified sinusoidal 

driving function (1000 spikes/s peak rate), for several values of standard deviation.  A value of ~50s mimicks 
quite well the synchrony roll-off observed in auditory-nerve recordings in the cat. The subtle increase in vector 

strength circa ~400 Hz is a side-effect of refractoriness. 

 

Cancellation 
The cancellation filter involves gating one spike train based on another spike train. 
Specifically, any input spike that coincides with a gating spike (within a window) is removed. 
It can be seen as a form of thinning by which spikes are removed to change the temporal 
structure of the spike train.  If the gating spike train is the same as the input but with some 
delay (or advance), the filter performs harmonic cancellation (de Cheveigné 1993, 2021, 
2023).  
 
Figure 6 illustrates this process applied to a spike train generated from the half-wave 
rectified sum of two sinusoids, 80 Hz and 100 Hz respectively.  The top plot shows an all-
order ISI histogram calculated from the raw spike train. The middle and bottom plots show 
the result of applying a cancellation filter with delay equal to 10 ms and 12.5 ms respectively 
(inverses of the two frequencies).  The first filter appears to effectively suppress correlates 
of 100 Hz, and the second those of 80 Hz.  Of course, the same effect could be obtained by 
filtering before spike generation (for example cochlear filtering), but it is interesting to see a 
similar result from processing in the neural domain. 
 
The peak firing rate here was 1000 spikes/s, a 1 ms step recovery function was applied, and 
10 spike trains were generated and merged (compound rate 1940 spikes/s). The 
cancellation filter kernel was boxcar-shaped with a width of 1 ms. 
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Fig. 6. Neural cancellation filter. Top: all-order inter-spike interval histogram for a driving function consisting of 
the half-wave rectified sum of 80 Hz and 100 Hz sinusoids. Middle and bottom: same, after filtering the spike 

train with a cancellation filter of delay parameter 10 ms or 12.5 ms (inverses of 80 Hz and 100 Hz). 

 

Computation and storage 
Computation time is data- and parameter-dependent, but to give an idea, simulation of a 
full set of 30000 fibers takes roughly ten times real time on a 2.4 GHz 8-core MacBook Pro. 
At 100 spikes/s average output rate, the resulting spike trains require 24 Mbytes storage 
(double precision) as opposed to 375 Mbytes if the spike trains were stored as a one-bit 
time series with 100 kHz sampling rate, or more for an integer or float time series. 
 

The toolbox 
The Matlab toolbox is available at XXX.  Most routines follow the same conventions: calling 
the routine without output arguments produces a plot reflecting the outcome (in some 
hopefully helpful fashion), calling it without input arguments runs a short piece of example 
code, hopefully useful to understand the effects of the routine and how to deploy it. 
 

Summary 
This paper documents simple and efficient methods of spike generation and processing for 
the purpose of modeling peripheral transduction and downstream neural mechanisms. The 
methods are not new, but they are not often deployed in the context of auditory model 
simulations, where they can be useful given the high rate and large volumes of neural 
patterns produced by the roughly 30 000 fibers of the human auditory nerve. Some auditory 
modeling suites already offer spike train output; a benefit of the present may be to add that 
capability to those that do not. 
 
The main benefits are fast generation (relative to the uniform time-series approach that a 
decision to fire or not at each time step), reduced space requirements (relative to a sparse 
time series of pulses), and precise time resolution (limited by floating-point resolution, 
rather than sampling rate). Spike times can easily be converted to a time series of pulses, for 
example for the purpose of autocorrelation or cross-correlation, although the toolbox offers 
time-based alternatives for those operations.  
 
Time-stamped event-based representations offer theoretical advantages, related to the 
potentially large amount of information carried by each spike (limited only by the precision 
of its representation, Maass 2001), and are the focus of intense interest for computational, 
sensory and cognitive applications (Maass 2015, Liu et al 2019).  
 
Thinning is the key to fast generation of arbitrarily-timed events from a Poisson process with 
time-varying rate and/or refractory effects. Thinning was also used by the cancellation filter 
to selectively modify the stimulus-driven temporal structure of the spike train (e.g. suppress 
a periodic masker). As another example, a Poisson-distributed spike train can be 
transformed by thinning into a Poisson + gamma mixture distribution, which better models 
spontaneous auditory-nerve interval distributions (Heil et al 2007). Thinning is quite 
versatile. 
 



Time-transformation (Jackson and Carney 2005), in principle yet more efficient than 
thinning, faces the problem that a momentarily low value of the rate will cause the next 
spike to be distant in time, potentially missing an intervening increase of the rate function 
that should normally have resulted in spiking. With thinning, the driving function is sampled 
“uniformly” (albeit stochastically) at the highest rate. There remains the problem that, after 
thinning, low-amplitude portions of the driving function are more sparsely sampled than 
high, but this is inherent in stochastic sampling and unrelated to the simulation method. 
 
Refractory effects may modify the relation between the driving function and the 
empirically-observed spiking rate, particularly at high instantaneous rates. This modification 
may affect statistics derived from experimental measurements (Fig. 4), and possibly also 
properties of downstream neural processing. Phenomena such as fast initial adaptation, 
ringing, or peak splitting are unlikely to result from refractoriness in general, but it is worth 
keeping that factor in mind when investigating them. Merging multiple spike trains (as 
captured by shuffled autocorrelation statistics, Joris 2003, or as might result from 
convergence of afferents from multiple fibers on the same neuron), attenuates some, but 
not all, effects of refractoriness (not shown).  
 
In summary, this short paper suggests approaches for phenomenological modeling of the 
spike generation process, for the purpose of better understanding the properties of this 
spike-based code, to allow simulation of downstream processes that use this code, and 
possibly also to gain additional insight into the sound-to-spike transduction process itself. 
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