
HAL Id: hal-04087841
https://hal.science/hal-04087841

Submitted on 3 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generation of a Turbulent Boundary Layer Inflow for
RANS Simulations

Aldo Rona, Marco Grottadaurea, Manuele Monti, Christophe Airiau,
Thangasivam Gandhi

To cite this version:
Aldo Rona, Marco Grottadaurea, Manuele Monti, Christophe Airiau, Thangasivam Gandhi. Genera-
tion of a Turbulent Boundary Layer Inflow for RANS Simulations. 15th AIAA/CEAS Aeroacoustics
Conference (30th AIAA Aeroacoustics Conference), May 2009, Miami, United States. pp.0. �hal-
04087841�

https://hal.science/hal-04087841
https://hal.archives-ouvertes.fr


Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and 

makes it freely available over the web where possible. 

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/

Eprints ID : 8015 

To cite this document : Rona, A. and Grottadaurea, M. and Monti, 

M. and Airiau, C. and Gandhi, Thangasivam Generation of a 

Turbulent Boundary Layer Inflow for RANS Simulations. (2009) 

In: 15th AIAA/CEAS Aeroacoustics Conference (30th AIAA 

Aeroacoustics Conference), 11 May 2009, Miami, USA. 

Any correspondence concerning this service should be sent to the repository 

administrator: staff-oatao@listes.diff.inp-toulouse.fr



Generation of a Turbulent Boundary Layer Inflow for

RANS Simulations

A. Rona∗, M. Grottadaurea†, M. Monti‡

University of Leicester, Leicester LE1 7RH, United Kingdom

C. Airiaua,b§, T. Gandhia,b¶

aUniversité de Toulouse; INPT, UPS; IMFT (Institut de Méchanique des Fluides de Toulouse)
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The generation of a fully turbulent boundary layer profile is investigated using analytical

and numerical methods over the Reynolds number range 300 ≤ Reθ ≤ 31000. The predic-

tions are validated against reference wind tunnel measurements with a zero streamwise

pressure gradient. The analytical method is then tested for favourable pressure gradient

by modelling the turbulent boundary layer approaching a two-dimensional potential sink.

Both methods show a good predictive ability under a zero pressure gradient, with the nu-

merical method providing a complete velocity profile through the laminar sub-layer down

to the wall. This work is of practical interest to computational fluid dynamic practitioners

for generating an equilibrium thick turbulent boundary layer at the computational domain

inflow.

Nomenclature

B Logarithmic law constant
F Van Driest near wall damping correction
F Normalised defect velocity, u+

e − u+

H Shape factor
K Sink flow acceleration parameter
L Flat plate length
ℓ Mixing length
p Pressure
Q Potential sink strength
Re Reynolds number
S Free-stream to friction velocity ratio, ue/uτ

T Temperature
U Tangential velocity above the boundary layer
u Tangential velocity
uτ Friction velocity
x Tangential distance from the boundary layer leading edge
y Wall-normal distance from the solid wall
βc Clauser parameter
δ Boundary layer thickness
δ∗ Boundary layer displacement thickness

∗Lecturer, Department of Engineering, AIAA Member.
†Researcher, Department of Engineering.
‡Researcher, Department of Engineering.
§Professor.
¶Doctorant, IMFT.



ǫ Least squares error
η Outer layer non-dimensional coordinate, η = y/δ
θ Boundary layer momentum thickness
κ von Karman constant, κ = 0.41
λ Local free-stream to leading edge free-stream velocity ratio, ue/u0

µ Laminar or molecular viscosity
ν Kinematic viscosity
Π Wake parameter
ρ Density
τ Shear stress

Subscripts
e Free-stream condition
l Laminar component
t Reynolds average (turbulent) component
w Wall condition
0 Leading edge condition
1 Local free-stream condition in an accelerating flow

Superscripts
+ Inner layer scaling
(̄) Time average
′ Fluctuation about the time-mean value

I. Introduction

Computational fluid dynamic simulations of wall bounded flows, such as the flow over high-lift devices,
ailerons, the elevators and the rudder, often use a turbulent boundary layer inflow to reduce the compu-
tational domain size with respect to a full wing, tailplane or fin simulation. The quality of the numerical
predictions can be significantly affected by how well the boundary layer inflow is modelled. This paper
compares the use of analytical correlations and of an auxiliary boundary layer numerical method to generate
a turbulent boundary layer inflow for CFD over a wide Reynolds number range.

Computational fluid dynamic simulations of individual airframe components are commonly used to study
the local aerodynamics in details.1–3 This enables to achieve a sufficient level of spatial and temporal
refinement around the specific components to model the onset of self-sustained oscillations, such as those in
cavity flows, edge tones and other fluid-resonant geometries. These flow instabilities contribute to airframe
noise and a good quality inflow prediction is very important to achieve quantitative predictions of the radiated
noise pattern. For instance, in a cavity, the inflow momentum thickness has a direct influence on acoustic
mode selection.4

Where the inflow features a fully developed turbulent boundary layer, an analytical profile for the mean
velocity can be imposed, derived from the integral boundary layer parameters as determined from either
a larger-scale numerical simulation or from experiment. A common choice for specifying the boundary
layer inflow in aerodynamics is by defining the inflow free-stream velocity, ue, temperature Te, pressure pe,
boundary layer thickness δ, momentum thickness based Reynolds number Reθ, shape factor H , and the
streamwise pressure gradient dpe/dx.

An alternative approach to define the mean velocity inflow is by using an auxiliary numerical simulation
of the upstream boundary layer obtained, for instance, from running two-dimensional companion software
by Wilcox.5

This paper presents and validates one analytical and one numerical approach for generating a turbulent
boundary layer inflow in CFD. The analytical method is a variant of the defect law by Coles,6 while the
numerical method is derived from matched asymptotic expansions.7 The analytical approach is then applied
to a boundary layer with favourable pressure gradient, in which a two-dimensional potential sink is used to
generate the outer flow.

Section II details the analytical method used to generate the outer layer velocity profile in a turbulent
boundary layer. Section III details the numerical method based on the equilibrium boundary layer model.



Section IV validates both methods using zero pressure gradient velocity data over the Reynolds number
range 300 ≤ Reθ ≤ 31000. Section V presents a two-dimensional sink flow and extends the validation to the
favourable pressure gradient boundary layer approaching the sink.

II. Analytical method

To describe the mean velocity profile in a turbulent boundary layer, similarity solutions are sought in the
inner and the outer regions. In the inner region, the mean streamwise velocity u scales with the wall friction
velocity uτ and with the viscous length scale l = ν/uτ , so that

u

uτ
= f

(
y+

)
(1)

where y+ = yuτ/ν is the non-dimensional wall-normal distance. In outer region, the velocity profile is
described by the velocity defect law

u∞ − u

uτ
= f (η) (2)

where η = y/δ is the non-dimensional wall-normal distance, ue is the free-stream velocity, ν is the kinematic
viscosity, y is the wall-normal distance and δ is the boundary layer thickness, which is taken as the wall-
normal distance at which u = ue.

Based on the existence of an overlap region between the inner and the outer regions, Coles6 proposed the
following additive law of the wall and law of the wake in non-dimensional form:

u+ =
1

κ
ln y+ + B +

Π

κ
f (η)

f (η) = 1 − cos (πη) (3)

where u+ = u/uτ is the normalized streamwise velocity, Π is the wake parameter, κ the von Kármán constant,
and B the logarithmic law constant.

Coles6 determined the wake parameter as

Π = κ/2
(
u+

e − κ−1 ln Reτ − B
)

(4)

where Reτ = δuτ/ν is the boundary layer Reynolds number and u+
e = ue/uτ is the normalized free-stream

velocity.
Let

f (η) = A1η
2 + A2η

3 (5)

be a cubic polynomial approximation to f (η) in eq. 3. Substituting the boundary conditions

u|y=δ = ue (6)

and
∂u

∂y

∣
∣
∣
∣
y=δ

= 0 (7)

in eq. 3, with f (η) from eq. 5, gives A1 = 6 [1 + 1/(6Π)] and A2 = −4 [1 + 1/(4Π)], with Π defined by eq. 4.
The law of the wake of eq. 3 then becomes

u+ =

Log-law of the wall
︷ ︸︸ ︷

1

κ
ln y+ + B +

1

k
η2 (1 − η)

︸ ︷︷ ︸

Pure wall flow

+2
Π

κ
η2 (3 − 2η)

︸ ︷︷ ︸

Pure wake component

(8)

Equation 8 is validated over a relatively wide range of momentum thickness based Reynolds number Reθ =
ueθ/ν in section IV. To evaluate eq. 8, the authors take κ = 0.41 and B = 5.0, as proposed by Coles.6



III. Successive complementary expansion method

The successive complemetary expansion method consists in seeking contiguous asymptotic matches be-
tween the inner and the outer regions of an incompressible turbulent boundary layer. This approach is
detailed in Cousteix & Mauss7 and just the key steps are reproduced in this paper that support the authors’
application to turbulent boundary layers.

III.A. Mixing length model

Across the boundary layer, the local shear stress

τ = µ
∂u

∂y
− ρu′v′ = τl + τt (9)

where u′ and v′ are the time-dependent fluctuations of the streamwise and flow-normal velocity components
and are unknown. To avoid having to resolve these unknowns, the Reynolds shear stress τt is evaluated using
Prandtl’s mixing length model,8 with the Van Driest9 near-wall damping correction F̃. This gives

τt = ρF̃
2
ℓ2

∣
∣
∣
∣

∂u

∂y

∣
∣
∣
∣

(
∂u

∂y

)

(10)

where F̃ = 1 − exp (−y+/26).
In the inner region, ℓ = κy, while in the outer region, ℓ/δ → 0.085 as y → δ. These two trends can be

merged analytically into a single distribution for the mixing length ℓ across the full boundary layer by the
use of a blending function. Michel et al.10 used the blending function

ℓ(η) = δcℓ tanh(
κη

cℓ
) (11)

with cℓ = 0.085 and κ = 0.41. The authors propose an alternative blending function that is shown in
section IV to give an improved prediction of the turbulent shear stress profile at the interface between the
inner and the outer layer, at low Reynolds numbers Reτ . This is

ℓ(η) = δ
κη

[1 + (κη/cℓ)
n
]
1/n

(12)

For 2.6 < n < 2.7, the ℓ(η) profile from equation 12 almost matches that from equation 11.

III.B. Inner region velocity profile

Normalising the local shear stress τ in eq. 10 by ρu2
τ and assuming a monotonic velocity profile gives

τ

τw
=

∂u+

∂y+
+ ℓ+2F̃

2
(

∂u+

∂y+

)2

(13)

In the limit y+ → 0, τ → τw and eq. 13 becomes

1 =
∂u+

∂y+
+ ℓ+2F̃

2
(

∂u+

∂y+

)2

(14)

where ℓ+ = ℓuτ/ν. Equation 14 is a quadratic in ∂u+/∂y+ with root7

∂u+

∂y+
=

2

1 +

√

1 + 4
[

ℓ+ (y+) F̃ (y+)
]2

(15)

Integrating equation 15 with respect to y+ with the boundary condition u+ (x, 0) = 0 gives the inner
layer tangential velocity profile that asymptotes to the log-law of the wall in equation 8 for y+ → ∞.



III.C. Outer region velocity profile

In an equilibrium turbulent boundary layer, the similarity solution for the outer layer can be expressed in
terms of the velocity defect F ′ (η) = u+

e − u+. Expressing τ/τw as a function of F and η gives7

τ

τw
= 1 −

F

F1
+

(
1

F1
+ 2β

)

ηF ′ (16)

where

F =

∫ η

0

F ′ (ξ) dξ; F1 = F (1) ; β = −
δ

uτ

due

dx
(17)

In the outer region, the Reynolds stress component is dominant over the laminar shear stress, so τ ≃ τt.
From eq. 10, noting that the van Driest damping constant F̃ → 1 at y+ ≥ 100, τ/τw = (ℓ/δ)

2
F ′′2, where

F ′′ = dF ′/dη. Substituting for τ/τw in eq. 16, the similarity solution for the outer region becomes

(
ℓ

δ

)2

F ′′2 = 1 −
F

F1
+

(
1

F1
+ 2β

)

ηF ′ (18)

III.D. Asymptotic matching of the inner and outer profiles

A matching condition is sought for the velocity profiles of the inner and outer regions, equations 15 and 18.
This is obtained from standard asymptotic analysis7 by considering eq. 15 in the limit y+ → ∞ and eq. 18
in the limit η → 0 that give respectively7

u+ = κ−1 ln y+ + C (19)

u+
e − u+ = −κ−1 ln η + Dv (20)

Adding eq. 19 to eq. 20 gives7

u+
e = κ−1 ln

uτδ

ν
+ C + Dv (21)

Equation 21 can be re-cast as function of the wall skin friction coefficient Cf = τw/
(
0.5ρu2

e

)
that is

imposed as equal in the inner and outer regions and provides the matching criterion for the two profiles
√

2

Cf
= κ−1 ln

uτδ

ν
+ C + Dv (22)

III.E. Numerical implementation

Expliciting the outer region velocity profile poses several challanges. Equation 18 is non-linear and is ill-
defined in at the upper boundary layer limit, at η → 1, where F ′′ → 0, and at the lower boundary layer
limit, at η → 0, where ℓ/δ → 0 and F ′′ → ∞. To solve the problem, auxiliary approximate solutions are
imposed on the floor of the laminar sub-layer and at the edge of the boundary layer, as shown in figure 1
so that the edges of the inner and of the outer regions are modelled analytically while the overlap region is
resolved numerically.

Let f (η) = F (η) /F (1). On the floor of the laminar sub-layer, imposing η = 0 and ℓ = κy, as in
section III.A, eq. 18 becomes

[κηF1f
′′ (η)]

2
= 1 − f (η) + (1 + 2βF1) ηf ′ (η) (23)

with the boundary condition f (0) = 0. Let β̃ = 2βF1. In a zero pressure gradient boundary layer, β = 0 by
eq. 17, for which eq. 23 has the explicit solution

f (η) =
η2

4α2
−

η ln η

α
+ A η; f ′ (η) =

η

2α2
−

1 + log η

α
+ A; f ′′ (η) =

1

2α2
−

1

αη

with α = F1κ. The integration constant A is determined by evaluating f ′ (η) at η = ǫ0 on the floor of the
laminar sub-layer. In a non-zero pressure gradient boundary layer, β̃ηf ′ → 0 as η → 0, so the zero pressure
gradient profile is used on the floor of the laminar sub-layer.
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Figure 1. Boundary layer decks.

At the edge of the boundary layer, at η = 1, eq. 18 becomes

[ℓ1F1f
′′ (η)]

2
= 1 − f (η) +

(

1 + β̃
)

ηf ′ (η) (24)

with the boundary conditions f (1) = 1, f ′ (1) = 0, f ′′ (1) = 0 and ℓ1 evaluated from eq. 12 at η = 1.
Cousteix11 proposed the solution for eq. 24

f (η) = 1 −
(1 − η)

3

3
; f ′ (η) = (1 − η)

2
; f ′′ (η) = −2 + 2η (25)

for β = 0, that has the attractive property of being independent from F1 and ℓ1 and is the solution used
in this work. The same solution is used for β 6= 0, as β̃ηf ′ (η) = 0 by the boundary condition f ′ (1) = 0 in
eq. 24.

IV. Zero pressure gradient boundary layers

The analytical and numerical methods for predicting a boundary layer mean turbulent velocity profile are
tested against a range of streamwise velocity measurements from zero pressure gradient boundary layers12–15

over the range 300 ≤ Reθ ≤ 31000. Table 1 lists the values of u+
e , Reτ and Π at each Reθ of the experimental

velocity traverse records.12–15 The values of u+
e and Reτ are the ones reported in experiment12–15 while Π

has been obtained by fitting eq. 8 using the least squares fit.

Reθ Reτ u+
e Π 100 × ǫ Symbol (Reτ)num (u+

e )num 100 × ǫnum

300 145 18.25 0.228 1.33 ◦ 142 18.54 2.12

697 335 20.25 0.219 1.35 ∗ 315 20.77 3.31

1003 460 21.5 0.317 1.78 △ 446 21.66 2.39

1430 640 22.4 0.336 1.38 · 627 22.51 2.77

2900 1192 24.33 0.421 1.02 ⊳ 1240 24.17 2.48

3654 1365 25.38 0.568 0.72 × 1551 24.71 2.44

5200 2000 26 0.505 1.62 ⊲ 2185 25.54 2.38

12633 4436 28.62 0.643 0.71 � 5188 27.65 2.51

13000 4770 28 0.480 0.99 3 5335 27.72 1.84

22845 8000 30.15 0.662 1.01 + 9258 29.06 2.34

31000 13030 30 0.388 2.05 ⋆ 12845 29.79 1.86

Table 1. Experimental velocity profiles.

The normalized mean streamwise velocity u+ is plotted against the normalized wall-normal distance y+

in figure 8 for different Reynolds numbers. The symbols used in figure 8 are measured values12–15 at different



Reθ, labelled as in table 1. The continuous lines show the fitted analytical profiles for the outer layer. For
clarity, an incremental shift of u+ = 2.5 is applied to all curves. The three 0 labels on the vertical axis of
figure 8 correspond to Reθ = 300, Reθ = 5200, and Reθ = 31000 respectively.
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Figure 2. Turbulent boundary layer profiles fitted to eq. 8. Symbols as in table 1.

The quality of the predictions is quantified by evaluating the mean square percentage error ǫ for each
profile

ǫ =

√
√
√
√ 1

N

N∑

i=1

(
u+

a − u+
e

u+
e

)2

(26)

where u+
a is the predicted value and u+

e is the corresponding experimental value for a given y+
i in a discretized

velocity profile of N points. The ǫ obtained at different Reθ with u+
a evaluated from equation 8 is reported

in table 1. The maximum ǫ is 2.05% at Reθ = 31000. Such error enables the use of eq. 8 to predict the mean
streamwise velocity of boundary layers in many common engineering applications, where an error margin of
5% is often acceptable. The experimental data seem to be randomly distributed about the fitted curve with
no underlying trend, suggesting that the curve fit has captured most of the u+ dependence on δ, ue, uτ , and
Reθ.

Figure 3 compares velocity profiles obtained using the successive complementary expansion method of
section III with the same experimental data of figure 2. n = 4 was used for the numerical prediction of the
mixing length in eq. 12. The symbols used in figure 8 are measured values12–15 at different Reθ, labelled
as in table 1. The continuous lines show the normalized numerical velocity profiles. For clarity, the same
incremental shift of u+ = 2.5 as in figure 2 is applied to all curves. The origin of the ordinate of figure 3 refers
to the Reθ = 300 profile. Figure 3 shows that the complementary expansion method of section III produces
a full velocity profile down to the wall. In the outer layer, the complementary expansion method captures
the Reynolds number dependent transition between the log-law and the constant free-stream velocity for
most of the curves. The free-stream velocity at Reθ = 22845, 12663 and 3654 appear to be under-predicted.
This is confirmed by the corresponding numerical mean square percentage error, ǫnum, which is computed
by evaluating u+

a in eq. 26 using the successive complementary expansion method. Specifically, the ǫnum at
Reθ = 22845, 12663 and 3654 are higher than for some of the other Reynolds numbers, due to the difference
in the normalized free-stream velocity between experiment and prediction. Whereas, in general, the error



from the numerical velocity profile is higher than that from the analytical profile, it is within the range for
which the predictions can be used for engineering accurate predictions.
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Figure 3. Turbulent boundary layer profiles fitted by the complementary expansion method. Symbols as in table 1.
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Figure 4. Outer layer profile fitted by the complemen-

tary expansion method. Reθ = 22845. (+) experiment,

(−) successive complementary expansion method.

The difference between the normalized free-stream ve-
locity from experiment and from the successive comple-
mentary expansion method is further investigated in fig-
ure 4, where the outer layer portion of the predicted veloc-
ity profile for Reθ = 22845 is re-plotted on a larger scale.
The continuous black line is the numerical prediction ob-
tained by matching the experimental value of Reθ in the
matched complementary expansion, the red dash-dot line
is obtained by matching the experimental value of Reτ ,
while the dashed blue line shows the predicted profile with
a matched normalized free-stream velocity u+

e . Matching
the experimental Reynolds numbers seems to give similar
profiles irrespective of whether the target Reynolds num-
ber is defined with respect to the momentum thickness,
Reθ, or the friction velocity, Reτ . Fitting the outer profile
by imposing the normalized free-stream velocity u+

e seems
to over-predict the boundary layer thickness, leading to
a coarser fit with experiment compared to the numerical
predictions obtained by matching the profile Reynolds number.

Figure 5(a) compares the mixing length distribution across a zero-pressure gradient boundary layer with
ℓ (η) obtained from measurements at Reτ = 1540 by Klebanoff,16 reported in Hinze.17 The ℓ distribution
from equation 11 is shown by the continuous line while the dashed line shows the distribution from equation 12
with n = 4. At these conditions, there appears to be a good improvement in the predicted mixing length
using the new formulation. No effort has been made to further optimize n ∈ ℜ by adding decimal digits.

Figure 5(b) shows the profile of the normalized eddy viscosity νt/ (uτF1δ) across the same zero pressure



gradient boundary layer, where νt = F̃
2
ℓ |∂u/∂y|. The symbols are from the same experiment16 as in

figure 5(a) (open circles) to which further measurements by Townsend18 at Reτ = 2775 have been added
(open squares). Using the mixing length model of Michael et al.,10 eq. 11, under-predicts the eddy viscosity,
as shown by the continuous line, whereas a better fit is achieved using eq. 12. As a numerical experiment,
the target Reynolds number in the successive complementary expansion method was varied over the range
1000 ≤ Reτ ≤ 2775 and was found to have very little effect on the predicted normalized νt, which is also the
trend in experiment.16, 18

0 0,2 0,4 0,6 0,8 1
0

0,005

0,01
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0,025
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η

Mixing
length
(m)

(a) Mixing length ℓ versus normalized distance from
the wall η at Reτ = 1540.
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τ δ F1
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(b) Normalized eddy viscosity νt

uτ δ F1
versus normalized dis-

tance from the wall η.

Figure 5. Turbulence model variables. (◦) experiment16 at Reτ = 1540, (2) experiment18 at Reτ = 2775, (−−) matched

complementary expansion at Reτ = 1000 with F1 = 3.1479 from eq. 11, (−) matched complementary expansion at

Reτ = 1000 with F1 = 3.1044 from eq. 12.

This paper has not attempted to predict the time-averaged velocity profiles of boundary layers at Reτ <
300 using the matched complementary expansion method. In this method, u+

e is obtained by matching the
outer layer velocity profile to the inner layer velocity profile in the logarithmic layer. When Reτ < 140,
an overlap region in the form of a logarithmic layer is no longer present, which prevents the method form
evaluating u+

e . Here the matched complementary expansion method in its present formulation has reached
its Reτ applicability limit.

V. Favourable pressure gradient boundary layers

V.A. Sink flow

.

u

Q

x

L

0

Trip

Sink

u 0

e

Figure 6. Sink flow.

Consider a two-dimensional poten-
tial sink of strength Q located at the
trailing edge of a two-dimensional
flat plate, as sketched in figure 6.
The sink induces a streamwise ve-
locity u0 at the leading edge of
the plate, at x = 0, from which
an incompressible turbulent bound-
ary layer develops along the plate
length L. It is assumed that
the favourable pressure gradient in-
duced by the potential sink of
strength Q does not re-laminarize
the boundary layer that remains turbulent over the full length L of the plate. Neglecting boundary layer
displacement thickness effects, from mass conservation, the local time-averaged free-stream velocity ue is
given by

ue

u0
=

1

1 − x/L
. (27)



The sink flow is uniquely characterized by the positive constant acceleration parameter

K =
ν

u2
e

due

dx
=

ν

U0L
. (28)

The sink flow is a smooth wall boundary layer that satisfies the conditions for ”precise equilibrium”,19–21

in that the mean defect velocity profile and the Reynolds stress profile are invariant with the streamwise
coordinate x. Coles6 proposed that the sink flow at equilibrium gives a pure wall flow velocity profile, eq. 8,
in which Π = 0. He provided several arguments to support his hypothesis but no rigorous proof was given
that Π = 0 corresponds to sink flow at equilibrium. This work is presented on the premise that Coles’
hypothesis is acceptable.

Perry et al.22 derived a formula for the total shear stress distribution along the flow-normal direction by
combining the law of the wake with the mean continuity and mean momentum equations:

τ

τ0
= f1

(
η, Π, u+

e

)
+ g1

(
η, Π, u+

e

)
βc, (29)

where βc = (δ∗/τ0) dΠ/dx is the Clauser parameter.23 The explicit forms of f1, g1 and g2 are given in Perry
et al.22 and depend only on the law of the wake. From the momentum integral equation and using the
momentum and the displacement thicknesses, that depend on the wake function, the evolution equations are
obtained

F1

(
u+

e

)2
E (Π) exp

(
κu+

e

)
K + βc = 0 (30)

E (Π) exp
(
κu+

e

)u+
e

λ

du+
e

dRx
= R

(
Π, u+

e , βc

)
(31)

where λ = ue/u0, Rx = xu0/ν, E (Π) and R (Π, u+
e , βc) are detailed in Perry et al.22

Perry et al.22 matched the shear stress distribution along η = 0.4 of a quasi-equilibrium boundary layer
sink flow to obtain

β =
−f1 (0.4, Π, u+

e ) + f1 (0.4, Π,∞)

g1

(
0.4, Π, u+

e

) +
g1 (0.4, Π,∞)

g1

(
0.4, Π, u+

e

)βae (Π) , (32)

where βae (Π) is the limit value of eq. 32 for u+
e → ∞.24 Green et al.25 proposed:

βae = 0.03

[
C2 (Π)

F1

]2

− 1.25, (33)

where C2 (Π) =
∫ 1

0
F ′2 (η) dη. Jones et al.21 proposed an empiric formula for βae,

βae = −0.5 + 1.38Π + 0.13Π2, (34)

based on curve fitting over the range 0 ≤ Π < 0.4.
Equation 30 can be solved numerically to obtain Π (u+

e ). Substituting this relation into eq. 31 and setting
the initial condition u+

0 = 19 at x = 0, that corresponds to a freshly tripped turbulent boundary layer, eq. 31
can be solved to give

x/L = 1 − exp

[

−K

∫ u+
e

u+

0

H
(
u+

e

)
du+

e

]

, (35)

H
(
u+

e

)
=

u+
e E [Π (u+

e )] exp (κu+
e )

R
{
Π

(
u+

e

)
, u+

e , βc

[
Π

(
u+

e

)
, u+

e

]} . (36)

Perry et al.26 generalized eq. 35 to include the effect of the wake strength gradient for non-equilibrium
boundary layers by solving an ordinary system of differential equations.

Equation 35 describes implicitly the streamwise variation of the wall shear stress along the flat plate.
This relationship is used in subsection V.B to compare the streamwise variation of the normalized shear
stress S and of other boundary layer integral parameters between theory and experiment.



V.B. Sink flow results

In this subsection, the law of the wake of eq. 8 is used to predict the streamwise variation of the integral
parameters characterizing the sink flow boundary layer of subsection V.A. This exercise follows that of Perry
et al.,22 where the laws of the wake of Coles6 and Lewkowicz27 were used. The aim is to show that there is
some improvement in the prediction of these non-dimensional parameters by using eq. 8 in place of the laws
of the wake in the literature6, 27 and that the analytical method presented herein is performing at least as
well as the literature benchmark in predicting a pure wake flow.

Figures 7(a) and 7(b) show the changes in the non-dimensional parameters Π and u+
e in the streamwise

direction, as determined by solving eq. 35 using eqs. 33 and 8 (black curves) and eqs. 33 and the law of
the wake by Lewkowicz27 (red curves). The starting condition is u+

0 = 19 at x = 0 that corresponds to
a turbulent boundary layer tripped at the leading edge, as sketched in figure 6. The numerical results
of eq. 35 are obtained at the three different values of the acceleration parameter, K = 2.7 × 10−6 (solid
curve), K = 3.56 × 10−6 (dash-dot curve), and K = 5.26 × 10−6 (dashed curve). In figs. 7(a) and 7(b),
these predictions are compared against experimental values from Jones et al.21 at K = 2.7 × 10−6 (∗), at
K = 3.56 × 10−6 (+), and at K = 5.26 × 10−6 (△). Using Lewkowicz’ law of the wall, eq. 35 results in a
distribution of Π (red curves) significantly higher than in experiment (symbols). The over-prediction from
using the law of the wall of Lewkowicz (red curves) is partially recovered by using eq. 8 that introduces a
vertical shift of Π ≈ −1/6 in the Π vs u+

e plot. This results in the black curves that are identical in shape
to the red curves but are closer to the experimental values, due to the Π ≈ −1/6 vertical shift.
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Figure 7. Variation of the wake parameter Π in a sink flow. βae from eq. 33.

Figure 7(b) shows the variation of the wake parameter Π in the streamwise direction. The physical
significance of the wake parameter is to allow for the presence of a wake region at the top of a turbulent
boundary layer in which the velocity profile departs from being a pure wall flow. The acceleration due to
the potential sink is such to stop the growth of the wake region, so that close to the sink the wake region
thickness approaches zero. This implies that the proper asymptotic value of Π close to the potential sink
is 0. Using Lewkowicz’ law of the wall and eq. 33 results in Π ≈ 1/6 as x/L → 1, as shown by the red
curves in figure 7(b). The correct asymptotic behavior of Π → 0 as x/L → 1 is recovered when eq. 8 and
eq. 33 are used, as shown by the black curves in fig. 7(b). This indicates that the new law of the wake is an
improvement over Lewkowicz’ formulation in predicting the asymptotic wake region of a turbulent boundary
layer with a strong favourable pressure gradient.

The variation of Reθ and of u0δ/ν with x/L using eq. 33 and eq. 8 is identical to the one given in Jones
et al.,21 where the law of the wake by Lewkowicz27 was used, and is therefore not reported here.

Figures 8(a) to 9(b) show the streamwise variation of the non-dimensional parameters obtained using
the empirical formula of eq. 34 in place of eq. 33. In these figures, the curves show predictions from solving
eq. 35. The red curves are obtained using the law of the wake by Lewkowicz27 and 34 and the black curves
are obtained using eqs. 8 and 34. The same line patterns (solid, dashed, dash-dot) as in fig. 7(a) are used to
identify respectively the same three values of the acceleration parameter K. The symbols are experimental
values from Jones et al.21 and are in the same notation as in fig. 7(a).

Figure 8(a) shows that, at the lowest value of the acceleration parameter K = 2.7 × 10−6, there is a
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Figure 8. Variation of the wake parameter Π in a sink flow. βae from eq. 34.
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significant improvement in the prediction of the variation of Π with u+
e . The black curve fits through the

cloud of experimental data (∗) better than the red curve, which under-estimates Π at this value of K. At the
higher acceleration parameter K = 3.56×10−6, the dash-dot curves from the law of the wake by Lewkowicz27

and 8 lie respectively below and above the experimental data (+), with neither equation giving a significantly
better prediction than the other. At the highest value of the acceleration parameter K = 5.26×10−6, neither
equation gives a good fit to the experimental data, although the red dashed line from the law of the wake
by Lewkowicz27 is the closest.

Figure 8(b) shows the streamwise variation of the wake parameter Π predicted using eq. 34. While in
eq. 33 βae depends directly on the boundary layer shape η, eq. 34 is an empirical regression with constant
coefficients, invariant on the profile shape. Therefore the streamwise Π distribution in figure 8(b) is also
insensitive to changes in the law of the wake, resulting in predictions that essentially overlap for all values of
K. The predictions are an improved fit to the experimental data with respect to figure 7(b), which reflects
the regression used to obtain eq. 34. The asymptotic trend of Π → 0 as x/L → 1 is captured less well than
with eqs. 8 and 33, black curves in figure 7(b), possibly due to the lack of experimental values at x/L → 1
on which eq. 34 is regressed.

Figure 9(a) shows the streamwise variation of the normalized boundary layer thickness at different values
of the acceleration parameter K. The symbols are experimental values from Jones et al.21 taken at the same
values of K as in figure 8(b). These data are labelled as in fig. 8(a). Predictions of δu0/ν are obtained using
eq. 8 (black curves) and using the law of the wake by Lewkowicz27 (red curves). The best match between
prediction and experiment is obtained by using eq. 8 at all K. This is because in deriving eq. 8 the height of
the boundary layer δ is used as one of the closure parameters, whereas the law of the wake by Lewkowicz27

satisfies eq. 6 but not eq. 7, leading to the coarser match in the streamwise variation of the normalized
boundary layer thickness shown in figure 9(a).

Figure 9(b) shows the streamwise variation of the momentum thickness based Reynolds number ap-
proaching the sink located at x = L. The same notation as fig. 9(a) is used. Reθ grows monotonically
in the downstream direction, with a reducing rate at increasing values of the acceleration parameter K.
Approaching the sink, the flow acceleration reduces the growth rate to zero, so that Reθ asymptotes to a
constant value that is K dependent. The predictions of Reθ appear to be weakly dependent upon whether
the law of the wake by Lewkowicz27 or eq. 8 are used for their estimate. The relative insensitivity of the
momentum thickness Reynolds number on the wake function agrees with the findings from using eq. 33 and
eq. 8, the predictions from which are identical to those given in Jones et al.21

Comparative predictions of the boundary layer parameters approaching the sink flow from the matched
complementary expansion method are not given due to the difficulty of finding a solution at the same values of
the acceleration parameter K as in experiment. The acceleration reduces the thickness of the outer layer, so
that the method fails to find a match between the inner and the outer layer velocity profile that is continuous
in u+ and in du+/dy+ across the interface. This outcome is in-line with the sink flow satisfying the conditions
for ”precise equilibrium” and giving a pure wall flow velocity profile, which is discontinuous at η = 1. A
preliminary analysis of the parameter space for K for which a solution by the matched complementary
expansion is available suggests that the method works for K < 10−6.

VI. Conclusions

Numerical and analytical methods for obtaining the time-mean velocity profiles of a turbulent boundary
layer are presented and validated against experimental data.

The analytical method is an extension to the law of the wake by Coles6 that matches both the free stream
velocity and the velocity gradient at the boundary layer edge. The method is shown to predict the outer
region of turbulent boundary layers rather well for zero streamwise pressure gradient test cases over the
Reynolds number range 300 ≤ Reθ ≤ 31000, with a maximum mean square percentage error of 2.05%.

The authors propose a modification to the successive complementary expansion numerical method in
Cousteix & Mauss,7 with a new blending function for the mixing length in the outer region. Comparison
against experimental data shows that the new blending function improves the prediction of the mixing length
and of the eddy viscosity in outer region of a zero pressure gradient boundary layer. The new method is
validated against experimental velocity profile data over the Reynolds number range 300 ≤ Reθ ≤ 31000
under zero streamwise pressure gradient and found to achieve engineering accurate predictions. The new
blending function introduces an additional adjustable parameter n ∈ ℜ in the model that can undergo a



more extensive calibration over a wider experimental dataset to further improve the predictions.
A sink flow test case was used to study the change in the wake region thickness in an accelerating flow.

By using the new law of the wake, the correct asymptotic behavior for the wake parameter Π is recovered,
namely Π → 0 at x/L → 1, when the streamwise variation of Π is evaluated from the integral length scales
F1 and C2 of the defect law under quasi-equilibrium conditions.

Using a parabolic distribution for the Clauser parameter at equilibrium, βae, independent from F1 and
C2, reduces the sensitivity of the predictions on the choice of the wake function. The new law of the wake
improves to some extent the predictions of the non-dimensional boundary layer thickness distribution.
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