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For N P N, let π N be the law of the number of fixed points of a random permutation of t1, 2, ..., N u. Let P be a Poisson law of parameter 1. A classical result shows that π N converges to P for large N and indeed in total variation

This implies that π N and P can be coupled to at least this accuracy. This paper constructs such a coupling (a long open problem) using the machinery of intertwining of two Markov chains. This method shows promise for related problems of random matrix theory.

Introduction

For N P N t1, 2, ...u, let π N be the law of the number of fixed points of a random permutation of t1, 2, ..., N u. Let P be the Poisson law of parameter 1. A classical result, see de Montmort [START_REF] Montmort | Essay d'analyse sur les jeux de hazard[END_REF], shows that π N converges to P for large N . Indeed it is well-known (and estimates of the same order are proved below) that in total variation

N N `2 2 N `1 pN `1q! ď }π N ´P} tv ď 2 N `1 ´1 pN `1q! (1) 
The total variation distance can be realised by a coupling of π N and P, see e.g. Proposition 4.7 of Levin, Peres and Wilmer [START_REF] Levin | Markov chains and mixing times[END_REF], and it has been a long open problem to give an explicit realization of such a coupling. The super-exponential errors bounds in [START_REF] Richard Arratia | Logarithmic combinatorial structures: A probabilistic approach[END_REF] occur in other problems such as the number of k-cycles in a random permutation, which has a limiting Poisson distribution of parameter 1{k with super-exponential error. Similar results hold for the trace of powers of random matrices for the compact classical groups O N , U N and SP 2N , see e.g. Courteaut, Johansson and Lambert [START_REF] Courteaut | From Berry-Esseen to superexponential[END_REF]. The method introduced here shows promise for finding couplings for these problems. For a history of Montmort's theorem, see Takacs [START_REF] Takacs | The problem of coincidences[END_REF]. For extensions and a recent literature review, see Diaconis and Fulman and Guralnick [START_REF] Diaconis | On fixed points of permutations[END_REF]. At the end of this introduction we will present several attempts, successful as well as unsuccessful, to get a proof by coupling of (1).

To present our approach, for any N P N and any permutation σ in the symmetric group S N , denote η 1 pσq the number of fixed point of σ: η 1 pσq |tx P N : σpxq " xu| (where N t1, 2, ..., N u and more generally, for any n ď n 1 P Z ` t0, 1, 2, ...u, we write n, n 1 tn, n `1, ..., n 1 u). The number η 2 pσq of 2-cyles of σ will also play an important role:

η 2 pσq
|tpx, yq P N 2 : x ă y, σpxq " y and σpyq " xu| Let ν N stands for the uniform distribution on S N , so that π N is its image by η 1 on Z `. To simplify the notation, we will often drop the exponent N when referring to these probability measures. As mentioned in [START_REF] Richard Arratia | Logarithmic combinatorial structures: A probabilistic approach[END_REF], the fixed-point law π is very close to the Poisson distribution P. The bounds in [START_REF] Richard Arratia | Logarithmic combinatorial structures: A probabilistic approach[END_REF] are for instance recorded in (1.11) page 15 of Arratia, Barbour and Tavaré [START_REF] Richard Arratia | Logarithmic combinatorial structures: A probabilistic approach[END_REF] and are deduced from computations of David and Barton [START_REF] David | Combinatorial chance[END_REF] using properties of alternating series with decreasing terms coming from the following traditional facts.

We have

@ x P 0, N , πpxq " D N ´x pN ´xq! 1 x! (2) 
where for any n P Z `, D n stands for the number of derangements from S n , namely the permutations of S n without fixed point (with the convention that D 0 " 1). The formula due to de Montmort [START_REF] Montmort | Essay d'analyse sur les jeux de hazard[END_REF] gives the number of derangements:

@ n P N, D n " n! n ÿ k"0 p´1q k k! (3) 
leading to the explicit formula:

@ x P 0, N , πpxq " 1 x! N ´x ÿ k"0 p´1q k k! (4) 
As announced above, our purpose is to deduce bounds on }π ´P} tv , of the same logarithmic order as that of [START_REF] Richard Arratia | Logarithmic combinatorial structures: A probabilistic approach[END_REF]. Here is a sketch of the proof. We use a random transposition to construct a Markov chain on the symmetric group S N . Then the intertwining-lumping procedure presented in Section 2 and some fiddling around is used to construct a monotone birth-and-death chain with the fixed point distribution π as reversible distribution. A similar construction gives a monotone birth-and-death chain with a Poisson stationary distribution. Revisiting next the classical coupling of two monotone birth-and-death chains leads to our bound. In more detail the intertwining-lumping construction produces the penta-diagonal Markov kernel P on V 0, N ´2 \ tN u

given by 

@ x P V
where

x P V, ppxq E ν rη 2 |η 1 " xs (6) 
(the conditional expectation is with respect to the uniform measure ν on S N ). As explained in Section 2 below, this chain is a projection of Markov chains on conjugacy classes derived from multiplication from random transpositions. Note that P does not allow to get out of V : we have P p0, ´1q " P p0, ´2q " P p1, ´1q " P pN, N 1q " 0 and P pN ´3, N ´1q " P pN ´2, N ´1q " P pN, N `1q " P pN, N `2q " 0. For the latter equalities, we need the following observations about p: obviously we have ppN q " 0 and the value ppN ´2q is 1, since knowing that η 1 " N ´2, we necessarily have η 2 " 1. Similarly, the value ppN ´3q is 0, since knowing that η 1 " N ´3, we necessarily have η 2 " 0 (and the number of 3-cycles is equal to 1).

By our construction, the probability measure π will naturally appear to be reversible for the Markov kernel P . Furthermore the reversibility of P (without even knowing the reversible probability) in conjunction with ppN q " ppN ´3q " 0 and ppN ´2q " 1 are sufficient to determine P and by consequence the other values of p and those of π. These features can be translated into convenient estimates on p, leading to quantitative couplings of the Markov chains whose transitions are dictated by P with other Markov chains whose invariant measure is the conditioning of P on V (more conveniently, we will restrict our attention to the state space 0, N ´4 Ă V ). These bounds are carried out in Section (4) and we will deduce the convergence

lim N Ñ8 1 N lnpN q lnp}π ´P} tv q " ´1 (7) 
of the right logarithmic order.

Let us now list several attempts to prove (1) via coupling arguments, as well as some remarks.

A failed effort

This section records a natural coupling, indeed one that extends to all the classical compact groups and their Weyl groups. By the law "natural yields right", this should work to give good error bounds, alas it doesn't! Let pX n q nPN be independent t0, 1u-valued random variables with

@ n P N, PrX n " 1s " 1 n " 1 ´PrX n " 0s
Define for all N P N,

S N X 1 X 2 `X2 X 3 `¨¨¨`X n´1 X N `XN S 8 X 1 X 2 `X2 X 3 `¨¨Ï
n the unpublished paper of Diaconis and Mallows [START_REF] Diaconis | New representations for the characteristic polynomial of a random matrix in the classical groups[END_REF], recorded in Diaconis and Forrester [START_REF] Diaconis | Hurwitz and the origins of random matrix theory in mathematics[END_REF], it is shown that for any k P Z `, PrS N " ks " π N pkq and PrS 8 " ks " Ppkq

Thus the joint law of pS N , S 8 q makes a natural coupling. Alas, S 8 ´SN " X N pX N `1 ´1q XN`1 X N `2 `XN`2 X N `3 `¨¨¨has typical distance of order 1{N . For more background and details, see Diaconis and Forrester [START_REF] Diaconis | Hurwitz and the origins of random matrix theory in mathematics[END_REF].

A successful and strange coupling from computer science

Jim Pitman has explained a fascinating construction of a super exponential coupling due to computer scientists Duchon and Duvignau [START_REF] Duchon | A new generation tree for permutations, preserving the number of fixed points[END_REF] and Duchon and Duvignau [START_REF] Duchon | Preserving the number of cycles of length k in a growing uniform permutation[END_REF]. Pitman's development of these ideas is unpublished [START_REF] Pitman | A modified Pascal triangle for uniform renewals, ascents and peaks of permutations, and Poisson matching distributions[END_REF]. We thank him for permission to state his results. The construction calls for a countable collection pU n q nPN of independent random variables uniformly distributed on r0, 1s. Define

S mintn ě 1 : U n ă U n`1 u, time of first ascent T mintn ě 2 : U n ą maxpU n´1 , U n`1 qu, time of first peak M S ´δT ´S is odd
Theorem 1 The distribution of the random variable M is the Poisson law of parameter 1.

Define further for fixed N P N,

S N minpS, N q T minpT, N q M N S N ´δT N ´SN is odd Theorem 2
The random variable M N has the law of the number of fixed points of a random permutation of N .

As a consequence of the two previous theorems, we get Corollary 3 For any N P N, we have

}LpM q ´LpM n q} tv ď PrT ą N s ď 2 N pN `1q!
This result seems magical and the present paper records an effort to find a proof using more standard tools which might permit generalization. We also hope to study it on its own at least to generalize to the law of the number of k-cycles.

Unstability of the super-exponential bounds

The previous super-exponential bounds are delicate. Consider for example the number of fixed points in the first N ´1 places of a random permutation of N . This quantity too has an approximate Poisson distribution of parameter 1 but the total variation distance between these two laws is of order 1{N .

Similarly, for any θ P p0, 1q, the number of fixed points in places tθN u has a Poisson law of parameter θ as limiting law. Indeed the point process on r0, 1s which has an event at k{N if and only if a random permutation σ of S N satisfies σpkq " k is well approximated by a unit rate Poisson process. But these approximations are only accurate up to order 1{N .

Equality of first N moments

For N P N, consider two random variables X N and X 8 respectively distributed according to π N and P. The high order of contact between these two laws can be captured by moments. Indeed Diaconis and Shahshahani [START_REF] Diaconis | On the eigenvalues of random matrices[END_REF] show

@ k P 0, N , ErX k N s " ErX k 8 s
Similar results hold for the joint mixed moments of the number of k-cycles and for compact classical groups.

The Markov approach

It is related to Stein's method, see e.g. Diaconis and Holmes [START_REF] Diaconis | Stein's method: expository lectures and applications[END_REF] or Section 4 of Chatterjee, Diaconis and Meckes [START_REF] Chatterjee | Exchangeable pairs and Poisson approximation[END_REF], but the underlying philosophy is quite old. Assume we would like to investigate some features of a given probability measure π. The Markov approach consists in introducing and studying a Markov process (in continuous time) or chain (in discrete time) encapsulating the "relevant characteristics" of the underlying state space and admitting π as invariant probability (sometimes no effort is required in this introduction, as π is already defined as an invariant probability). An example of this situation is the investigation of absence of phase transition, exponential decay of correlations, or analyticity of correlation of Gibbs measures, which was done via the use of stochastic Ising processes leaving these Gibbs measures invariant, see Holley and Stroock [START_REF] Holley | Applications of the stochastic Ising model to the Gibbs states[END_REF] or Chapter 4 of the book of Liggett [START_REF] Thomas | Interacting particle systems[END_REF]. Our goal here is to give a new illustration of this Markov approach by recovering the right order of (1).

The plan of the paper is as follows. In the next section we present a general procedure producing a Markov chain by projection of another Markov chain. Reversibility is preserved by such projections. In Section 3, the transposition random walk on S N is projected in this way through η 1 to get the Markov kernel P on V . In Section 4, we deduce the a priori bounds on p that are applied in Section 5 to control our couplings of Markov chains, leading to desired upper bound on the approximation of π by P. In a spirit similar to that of Section 4, in Appendix A, we directly recover (4), giving an alternative proof to the classical inclusion-exclusion argument. In Appendix B, some complements are given about the conditional expectation p.

Consider a Markov chain pX, Y q pX n , Y n q nPZ `taking values in a product state space V ˆW . Assume that V and W are finite and that the transition matrix Q of pX, Y q is irreducible. Denote by µ its invariant measure. Consider r 1 : V ˆW Ñ V and r 2 : V ˆW Ñ W the canonical projections and let µ 1 r 1 pµq be the first marginal distribution of µ. Denote by µ 1,2 the Markov kernel from V to W corresponding to the conditional distribution of r 2 knowing r 1 . So we have the decomposition @ px, yq P V ˆW, µpx, yq " µ 1 pxqµ 1,2 px, yq

Consider the Markov kernel P given on V via @ x, x 1 P V P px, x 1 q ÿ y,y 1 PW Qppx, yq, px 1 , y 1 qq µ 1,2 px, yq and the Markov kernel Λ from V ˆW to V given by @ px, yq P V ˆW, @ x 1 P V, Λppx, yq, x 1 q µ 1 px 1 q Lemma 4 We have the intertwining relation

QΛ " ΛP

Proof

On one hand, Λ can be identified with µ 1 , so that QΛ " µ 1 .

On the other hand, we have for any px, yq P V ˆW and

x 1 P V , ΛP ppx, yq, x 1 q " µ 1 P px 1 q " ÿ x 2 PV µ 1 px 2 qP px 2 , x 1 q " ÿ x 2 PV µ 1 px 2 q ÿ y 1 ,y 2 PW Qppx 2 , y 2 q, px 1 , y 1 qq µ 1,2 px 2 , y 2 q " ÿ y 1 PW ÿ px 2 ,y 2 qPV ˆW µpx 2 , y 2 qQppx 2 , y 2 q, px 1 , y 1 qq " ÿ y 1 PW µpx 1 , y 1 q " µ 1 px 1 q namely ΛP " µ 1 " QΛ
In particular, µΛ is invariant is for P , i.e. µ 1 is invariant for P (in fact this is just the above proof). We also have: Lemma 5 Assume that µ is reversible for Q, then µ 1 is reversible for P .

Proof

Consider f, g P R V . We have The construction above corresponds to a lumping procedure. More generally, let W be a finite (or denumerable) set and pQpw, w 1 qq w,w 1 PW be a Markov kernel on W admitting pπpwqq wPW as stationary distribution. Given a partition of the state space W " Ů vPV A v into non-empty subsets, reporting which A v contains the current state of a Markov chain associated to Q gives a "lumped process". As is well-known, see e.g. Theorem 6.3.2 of Kemeny and Snell [START_REF] Kemeny | Finite Markov chains. With a new appendix "Generalization of a fundamental matrix[END_REF] or Pang [START_REF] Pang | Lumpings of algebraic Markov chains arise from subquotients[END_REF], this may not be a Markov chain. The analogous projected Markov kernel pP pv, v 1 qq v,v 1 PV on V can defined as

@ v, v 1 P V, P pv, v 1 q ÿ wPAv, w 1 PA v 1 πpwq πpA v q Qpw, w 1 q
Arguing as above, the probability measure pπpA v qq vPV is invariant for P (and reversible when π is reversible for Q). Defining

@ w P W, @ v P V, Λpw, vq πpA v q
we get the intertwining relation QΛ " ΛP . If the classical Dynkin condition holds, namely for any v, v 1 P V , Qpw, A v 1 q does not depend on the choice of w P A v , then the projected chain P agrees with the usual lumped chain.

A penta-diagonal and two birth and death Markov chains

Here we apply the abstract projection scheme of the previous section in the setting of the symmetric group S N . It is related to Chapter 12 of Stein's book [START_REF] Stein | Approximate computation of expectations[END_REF], which studies the law of the numbers of the cycles of length l, for all l P N , under the uniform distribution on S N , using a random transposition to build a reversible Markov chain.

Consider the transposition random walk on the symmetric group S N , whose transition matrix T is given by @ σ, σ 1 P S N , T pσ, σ 1 q " " 2 N pN ´1q , if there exists a transposition τ such that σ 1 " τ σ 0 , otherwise (where permutations are seen as bijective mappings from N and the product corresponds to the composition).

The Markov kernel T is reversible with respect to the uniform probability distribution ν on S N . Generalizing η 1 and η 2 , for any l P N and σ P S N define η l pσq as the number of cycles of order l in σ (singleton cycles corresponding to fixed points). In particular we have

@ σ P S N , η 1 pσq `2η 2 pσq `¨¨¨`N η N pσq " N
Let pσpnqq nPZ `be a Markov chain with transitions dictated by T and denote

@ n P Z `, ηpnq pη l pσpnqqq lP N
It is well-known that η pηpnqq nPZ `is also a Markov chain whose transition matrix is denoted Q and is reversible with respect to µ the image of ν in the mapping S N Q σ Þ Ñ pη l pσqq lP N . Indeed this is the classical coagulation-fragmentation chain of statistical mechanics, see Diaconis, Mayer-Wolf, Zeitouni and Zerner [START_REF] Diaconis | The Poisson-Dirichlet law is the unique invariant distribution for uniform split-merge transformations[END_REF].

The Markov chain η can be written under the form pX, Y q with

X η 1 Y η 2,N pη 2 , η 3 , ..., η N q
We are thus in position to apply Lemmas 4 and 5.

Our next goal is to describe the corresponding Markov kernel P . Note that the corresponding state space is

V " 0, N ztN ´1u (8)
already met in the introduction (it is not possible for a permutation to have N ´1 fixed points). Consider a permutation σ P S N . Denote f 1 , f 2 , ..., f k its fixed points (so that η 1 pσq " k) and let C 1 , C 2 , ..., C l be the other cycles of σ.

Consider a transposition τ pi, jq. Let us describe η 1 pσ 1 q with σ 1 τ σ. ' If both i and j are fixed points of σ, then the fixed points of σ 1 are the elements of tf 1 , f 2 , ..., f k uzti, ju and its non-singleton cycles are C 1 , C 2 , ..., C l and pi, jq. Thus we have η 1 pσ 1 q " η 1 pσq ´2.

' If i is a fixed point of σ and j P C r , with r P l , then the fixed points of σ 1 are the elements of tf 1 , f 2 , ..., f k uztiu and its non-singleton cycles are C m with m ‰ r in addition to a new cycle containing C r and j. Thus we have η 1 pσ 1 q " η 1 pσq ´1.

' If i P C r and j P C s with r ‰ s, then the cycles and fixed points of σ 1 are the same as those of σ, except that C s and C r are merged into a new cycle. In particular we have η 1 pσ 1 q " η 1 pσq.

' The last situation is when i and j belong to the same cycle C r . We consider three subcases: -When C r " pi, jq, then the fixed points of σ 1 are tf 1 , f 2 , ..., f k , i, ju and its non-singleton cycles are the C s , for s P l ztru. We deduce η 1 pσ 1 q " η 1 pσq `2.

-When there exists x P C r such that ti, ju " tx, σpxqu, assume for instance that i " x and j " σpxq and C r ‰ pi, jq. Then i is a new fixed point of σ 1 and its non-singleton cycles are the same as those of σ, except that the point i has been removed from C r . We deduce η 1 pσ 1 q " η 1 pσq `1.

-When there does not exist x P C r such that ti, ju " tx, σpxqu (in particular the cardinal of C r is at least 4), then σ 1 has the same fixed points as σ and the only difference in its non-singleton cycles is that C r has been divided into two new non-singleton cycles. We deduce η 1 pσ 1 q " η 1 pσq.

Integrating these observations with respect to τ uniformly distributed among all transpositions, we end up with the kernel P given in [START_REF] Montmort | Essay d'analyse sur les jeux de hazard[END_REF], with ppxq "

ż η 2 µ 1,2 px, dη 2,N q
namely the mean of η 2 knowing η 1 " x when η 1,N is distributed according to µ (the above integral is in fact a sum, but the integral notation is more convenient). Note that this formulation is equivalent to [START_REF] Diaconis | New representations for the characteristic polynomial of a random matrix in the classical groups[END_REF].

The distribution π of the number of fixed points of the uniform permutation is equal to µ 1 , with the notation of Section 2. According to Lemma 5, π is reversible for P , as announced in the introduction.

In the sequel it will sometimes be more convenient to work with tri-diagonal kernels than with the penta-diagonal kernel P , so let us extract two birth and death kernels from P .

The first one, denoted r P , is given by

@ x ‰ y P V, r P px, yq 1 N pN ´1q $ ' ' ' ' & ' ' ' ' % xpN ´xq , if x ‰ N and y " x ´1 N ´x ´2ppxq , if x ‰ N ´2 and y " x `1 2 , if x " N ´2 and y " N N pN ´1q , if x " N and y " N ´2 0 , otherwise (9) 
This Markov kernel is obtained by removing all transitions of the form px, x `2q and px, x ´2q from P , except for pN ´2, N q and pN, N ´2q (because N ´1 is not a value taken by η 1 ), and putting their weights to the diagonal. For the corresponding Markov chains, it amounts to forbid the jumps of size two and keep the current position instead (except for the transitions between N ´2 and N ).

From the fact that π is reversible for P , we deduce that π is also reversible for r P , since the property of being reversible is preserved by removing transitions (when the transitions in both directions along an edge are removed together). As announced, r P corresponds to a birth-and-death Markov transition on V .

The second birth-and-death Markov transition p P will be useful in Appendix A. It is obtained by ordering V as N ´3, N ´5, ..., 3, 1, 0, 2, 4, ..., N ´2, N when N is even. When N is odd, rather order V as N ´3, N ´5, ..., 2, 0, 1, 3, ..., N ´2, N , the following construction leads to similar results in this case, so let us only consider the situation where N is even.

Thus we define for i P 0, N ´1 ,

z i # 2i , if i P 0, N {2 ´2 2 `2i ´N , if i P N {2 ´1, N ´1
The Markov kernel p P is given on 0, N ´1 by @ i ‰ j P V, p P pi, jq

" P pz i , z j q , if |i ´j| " 1 0 , otherwise (10) 
This construction of p P is somewhat supplementary to that of r P : only the transitions of size two are kept, all transitions of size 1 being removed, except those between 0 and 1, to insure irreducibility.

For the same reason as for r P , the kernel p P admits p π pp πpiqq iP 0,N ´1 for reversible measure, where

@ i P 0, N ´1 , p πpiq πpz i q (11)
4 An a priori estimate A drawback of Definition (5) of the Markov kernel P is that the quantities ppxq, for x P V , are a priori unknown. We will give an explicit formula for them in Appendix (A), but the control of the couplings of next section only requires an a priori bound about them, presented in Proposition 6 below.

We have seen in the introduction that ppN ´3q " ppN q " 0 and that ppN ´2q " 1. These equalities and the fact that P is reversible are sufficient knowledges to deduce the following bound: Proposition 6 We have for the mapping p defined in (6),

@ x P 0, N ´2 , |2ppxq ´1| ď 1 pN ´x ´2q!

Proof

Recall that Kolmogorov criterion for reversibility, see e.g. the book of Kelly [START_REF] Kelly | Reversibility and stochastic networks[END_REF], asserts that for any finite sequence px 0 , x 1 , ..., x n q from V with n P N, we have P px 0 , x 1 qP px 1 , x 2 q ¨¨¨P px n´1 , x n qP px n , x 0 q " P px 0 , x n qP px n , x n´1 q ¨¨¨P px 2 , x 1 q ¨¨¨P px 1 , x 0 q For given x P 0, N ´4 , assuming N ě 4, let us apply this formula with

x 0 " x x 1 " x `1 x 2 " x `2
We get To simplify notations, let us write kpxq " 2ppxq, for any x P 0, N ´2 . The above formula is equivalent to the downward iteration, for x P 0, N ´4 , kpxq " pN ´xqpN ´x ´1 ´kpx `1qq pN ´x ´1q 2 ´kpx `1q

P px, x `1qP px `1, x `2qP px `2,
Starting from kpN ´3q " 2ppN ´3q " 0, we deduce iteratively kpN ´4q, kpN ´5q, ... down to kp0q.

For x P 0, N ´4 , denote F x the rational function @ r P RztpN ´x ´1q 2 u, F x prq pN ´xqpN ´x ´1 ´rq pN ´x ´1q 2 ´r so that kpxq " F x pkpx `1qq.

For any x P 0, N ´4 , 1 is a fixed point of F x (the only one in fact), since

F x p1q " pN ´xqpN ´x ´1 ´1q pN ´x ´1q 2 ´1 " 1
Thus ( 12) can be written in the convenient form kpxq ´1 " F x pkpx `1qq ´Fx p1q "

ż kpx`1q 1 F 1 x psq ds (13) 
which suggests computing:

@ s P RztpN ´x ´1q 2 u, F 1 x psq " ´pN ´xqpN ´x ´1qpN ´x ´2q ppN ´x ´1q 2 ´sq 2 (14) 
These observations lead to a proof of the bound of Proposition 6 by a backward iteration. Indeed, for x " N ´2 and x " N ´3, the bound is true, since it is respectively implied by

2ppN ´2q ´1 " 2 ´1 " 1 " 1 0! " 1 pN ´2 ´pN ´2qq! and 2ppN ´3q ´1 " 0 ´1 " ´1 " ´1 1! " ´1 pN ´2 ´pN ´3qq! Consider x P 0, N ´4 , we have N ´x ě N ´x ´1 ě N ´x ´2 ě 2 (15) 
so that F 1 x ă 0. This observation and (13) imply that if kpx `1q ą 1, then kpxq ă 1 and conversely, if kpx `1q ă 1, then kpxq ą 1, namely the sequence pkpzq ´1q zP 0,N ´2 is alternating.

Let us consider separately the first case: x " N ´4. Since kpN ´3q " 0 ă 1, we deduce from ( 14) with x " N ´4, that for s P rkpN ´3q, 1s " r0, 1s,

|F 1 N ´4psq| ď 4 ˆ3 ˆ2 p3 2 ´1q 2 " 3 8 ď 1 2
It follows from ( 13) that

|kpN ´4q ´1| ď 1 2 |kpN ´3q ´1| ď 1 2 " 1 pN ´pN ´4q ´2q!
Let us now assume the bound of Proposition 6 is true for some x `1 P 1, N ´4 and let us prove it for x.

Note that we have

kpx `1q ď 1 `1 pN ´x ´2q! ď 1 `1 2! " 3 2 
so ( 15) and ( 14) imply that for s P r1, F x pkpx `1qqs (or s P rF x pkpx `1qq, 1s if F x pkpx `1qq ď 1),

|F 1 x psq| ď pN ´xqpN ´x ´1qpN ´x ´2q ppN ´x ´1q 2 ´4{3q 2
Let us show that the r.h.s. is bounded above by 1{pN ´x ´2q. To simplify notation, write y N ´x ´1 ě 3, so that the desired bound amounts to py `1qypy ´1q py 2 ´4{3q 2 ď 1 y ´1

namely py 2 ´1qpy ´1qy ď py 2 ´4{3q 2

i.e.

y 4 ´y3 ´y2 `y ď y 4 ´8 3 y 2 `16 9 
or gpyq ě 0, where

@ y ě 3, gpyq y 3 ´5 3 y 2 ´y `16 9 
We compute @ y ě 3, g 1 pyq " 3y 2 ´10 3 y ´1

and the largest zero of the r.h.s is

1 18 p10 `?208q ă 3
It follows that g is increasing on r3, `8q and we compute gp3q " 27 ´15 `3 `16 9 ą 0

showing the validity of ( 16). We deduce from (13) that

|kpxq ´1| ď ˇˇˇˇż kpx`1q 1 1 N ´x ´2 ds ˇˇˇď 1 N ´x ´2 |kpx `1q ´1| ď 1 pN ´x ´2q!
where we took into account the iteration assumption, namely |kpx `1q ´1| ď 1{ppN ´x ´3q!q.

Remark 7 The observation made after [START_REF] Holley | Applications of the stochastic Ising model to the Gibbs states[END_REF] implies more precisely that for x P 0, N ´2 , 2ppN 2 ´xq ´1 is positive for even x and negative for odd x. These computations, especially the iteration relation [START_REF] Diaconis | On the eigenvalues of random matrices[END_REF], also show that the reversible couple pπ, P q is well-defined by ppN ´3q " 0 " ppN q and ppN ´2q " 1: no further information are needed for its investigation, in particular not the interpretation of p as a conditional expectation on the larger space S N . Namely we can work only on V .

Let us state this construction formally:

Remark 8 Consider P defined in [START_REF] Montmort | Essay d'analyse sur les jeux de hazard[END_REF] with the ppxq replaced by some ppxq ě 0, under the constraint that P is a Markov kernel on 0, N . Add the constraints ppN ´1q " ppN q " 0 (in our previous case, N ´1 becomes a transient point, with P pN ´1, N q " 1{pN pN ´1qq and P pN ´1, N ´1q " 1 ´P pN ´1, N q). Assume furthermore that the values ppxq satisfy the iteration [START_REF] Diaconis | On the eigenvalues of random matrices[END_REF]. Thus P is a function of ppN ´2q and ppN ´3q. Then taking ppN ´2q " 1{2 and ppN ´3q " 1{2 (implying ppxq " 1{2 for all x P 0, N ´4 , due to the fact that 1 is a fixed point of F x ), we end up with a Markov kernel P which is reversible with respect to the restriction of the Poisson distribution on 0, N . This observation is at the heart of the couplings presented in next section.

A monotone coupling

Our purpose here is to prove by coupling an upper bound of the Poisson approximation of π, of the same logarithmic order as that of (1). It would be possible to push further the computations, but our main emphasis is placed on the method rather than on sharp estimates.

More precisely, we want to show (7) by only using that π is reversible with respect to the Markov kernel r P defined in [START_REF] Diaconis | On fixed points of permutations[END_REF] and the a priori estimate given in Proposition 6. Instead of working on V or Z `, we can restrict our attention to 0, N ´4 (assuming N ě 4). Indeed, denote ζ the conditioning of P to 0, N ´4 , since

lim N Ñ8 1 N lnpN q lnpPp N ´3, 8 qq " ´1
we easily deduce that

lim N Ñ8 1 N lnpN q lnp}ζ ´P} tv q " ´1 (17) 
Furthermore it is not difficult to see that

lim N Ñ8 1 N lnpN q lnpπptN ´3, N ´2, N uqq " ´1
since by a direct investigation, we get that

πpN q " 1 N ! (18) πpN ´2q " 1 2 1 N ! πpN ´3q " 1 3 1 N ! It follows that lim N Ñ8 1 N lnpN q lnp}π ´π} tv q " ´1 (19) 
where π is the conditioning of π to 0, N ´4 . These limiting behaviors imply that (7) amounts to

lim sup N Ñ8 1 N lnpN q lnp}π ´ζ} tv q ď ´1 (20) 
Indeed, on one hand, from [START_REF] Levin | Markov chains and mixing times[END_REF] we get

lim inf N Ñ8 1 N lnpN q lnp}π ´P} tv q ě lim inf N Ñ8 1 N lnpN q ln ˆ1 2 |πpN q ´PpN q| " lim inf N Ñ8 1 N lnpN q ln `p1 ´e´1 q{pN !q " ´1
and on the other hand, from ( 17), ( 19) and [START_REF] Lindvall | Lectures on the coupling method[END_REF],

lim sup N Ñ8 1 N lnpN q lnp}π ´P} tv q ď max ˆlim sup N Ñ8 1 N lnpN q lnp}π ´π} tv , lim sup N Ñ8 1 N lnpN q lnp}π ´ζ} tv , lim sup N Ñ8 1 N lnpN q lnp}ζ ´P} tv " ´1
Thus it remains to prove [START_REF] Lindvall | Lectures on the coupling method[END_REF]. By reversibility of r P with respect to π, we have that π is reversible with respect to the birth and death Markov kernel P given by @ x ‰ y P 0, N ´4 , P px, yq

1 N pN ´1q $ & % xpN ´xq , if y " x ´1 N ´x ´2ppxq , if y " x `1 0
, otherwise (as usual the diagonal entries are deduced by the fact that the rows sum to 1). Consider the birth and death Markov kernel R given by To simplify the notations, from now on, π and P will be written π and P , we hope it will not bring confusion with the previous π and P .

@ x ‰ y P 0, N ´4 , Rpx, yq 1 N pN ´1q $ & % xpN ´xq , if y " x ´1 N ´x ´1 , if y " x `1 0 ,
Consider X pXpnqq nPZ `a stationary Markov chain whose transitions are given by P and whose initial law is π. Similarly let Y pY pnqq nPZ `be a stationary Markov chain whose transitions are given by R and whose initial law is ζ. We couple them in a monotone way: namely at any time n P Z `, the transition from pXpnq, Y pnqq to pXpn `1q, Y pn `1qq is given by sampling an independent uniform random variable U pnq on r0, 1s and by deciding that The corresponding Markov kernel on 0, N ´2 2 will be denoted S, namely we have @ px, yq, px 1 , y 1 q P 0, N ´2 2 , Sppx, yq, px 1 , y 1 qq " PrpXpn `1q, Y pn `1qq " px 1 , y 1 q|pXpnq, Y pnqq " px, yqs Consider, traditionally τ the coupling time τ inftn P Z `: Xpnq " Y pnqu but also the auxiliary random chain Z pZpnqq nPZ

Xpn `1q " $ & % Xpnq ´1 , if
@ n P Z `, Zpnq n´1 ÿ k"0 1 tXpkq"Y pkq, Xpk`1q‰Y pk`1qu
Their interest is that for any time n P Z `, we have

}π ´ζ} tv ď PrXpnq ‰ Y pnqs ď Prτ ą ns `PrZpnq ą 0s (21) 
By choosing n of order N 4 lnpN q, we will get an estimate of }π ´ζ} tv of the order we are looking for.

This resort to coupling is different from its traditional use in the quantitative investigation of convergence to equilibrium, where different lines of the same transition kernel are coupled. The bound ( 21) is neither good for short or long times n, it is interesting only for certain times, enabling us to estimate the difference between the invariant probabilities of two different transition kernels.

To illustrate the difference between these approaches, let us evaluate the new term in (21):

Lemma 9 For any n P Z `, we have

PrZpnq ą 0s ď 2 N n N !

Proof

For any given n P Z `, we have

PrZpnq ą 0s ď ErZpnqs " n´1 ÿ k"0 Er1 Xpkq"Y pkq, Xpk`1q‰Y pk`1q s " n´1 ÿ k"0 Er1 Xpkq"Y pkq SppXpkq, Y pkqq, Aqs (22) 
where

A tpx 1 , y 1 q P 0, N ´4 2 : x 1 ‰ y 1 u
Taking into account Proposition 6, we have

@ x P 0, N ´4 , Sppx, xq, Aq ď |1 ´2ppxq| N pN ´1q ď 1 pN ´x ´2q! 1 N pN ´1q ď 1 pN ´xq!
It follows that for any k P 0, n , Er1 Xpkq"Y pkq SppXpkq, Y pkqq, Aqs "

N ´4 ÿ x"0 PrXpkq " x " Y pkqsSppx, xq, Aq ď N ´4 ÿ x"0 PrY pkq " xsSppx, xq, Aq ď N ´4 ÿ x"0 1 Z N x! 1 pN ´xq! ď 1 Z N N ÿ x"0 1 x! 1 pN ´xq! " 1 ˆ2N Z N N !
where we used that pY pkqq kPZ `is stationary with common distribution ζ and where

Z N " N ´4 ÿ x"0 1 x! ě 1
The desired result follows by remembering [START_REF] Pitman | A modified Pascal triangle for uniform renewals, ascents and peaks of permutations, and Poisson matching distributions[END_REF].

Note that the bound of the above lemma will be small even of we choose a time n exponential large in N .

In view of [START_REF] Pang | Lumpings of algebraic Markov chains arise from subquotients[END_REF] as well as the hitting times of zero by X and Y :

τ X 0 inftn P Z `: Xpnq " 0u τ Y 0 inftn P Z `: Y pnq " 0u
Indeed, it is clear that

@ n P Z `, Prτ ą ns ď Prτ X 0 ą ns `Prτ Y 0 ą ns `Pr r Zpnq ą 0s `Pr p Zpnq ą 0s (23) 
It remains to estimate each of the terms of the r.h.s. Let us start with the last two terms. In this respect, it is useful to remark that the Markov chain Y is monotone, namely that for x ď y P 0, N ´4 , if Y x pY x pnqq nPZ `and Y y pY y pnqq nPZ `are Markov chain with transition kernel R starting respectively from x and y, then we can couple them in a monotone fashion (similar to the coupling of X and Y above), so that Pr@ n P Z `, Y x pnq ď Y y pnqs " 1 (see for instance the book of Lindvall [START_REF] Lindvall | Lectures on the coupling method[END_REF]).

Let us prove this monotonicity of Y :

Lemma 10
The Markov chain Y is monotone.

Proof

Since Y is a birth and death chain, to get it is monotone, it is sufficient to check that @ x P 0, N ´5 , Rpx, x ´1, x q ě Rpx `1, xq (again see e.g. Lindvall [START_REF] Lindvall | Lectures on the coupling method[END_REF]). The previous bound amounts to

@ x P 0, N ´5 , 1 ´N ´x ´1 N pN `1q ě px `1qpN ´x ´1q N pN `1q or @ x P 0, N ´5 , N pN `1q ě px `2qpN ´x ´1q (24) 
The maximum of the r.h.s. as x runs in R is attained at the point x " pN ´3q{2 and replacing in the above r.h.s., the desired inequality is true if we have N ě pN `1q{4, which is satisfied as soon as N ě 1{3. 

Let us come back to the quantities

Fix some k P 0, n ´1 . If Xpkq ě Y pkq and Xpk `1q ă Y pk `1q hold, then either Xpkq " Y pkq or Xpkq " Y pkq `1. Let us consider the latter case, we have:

Er1 Xpkq"Y pkq`1, Xpk`1qăY pk`1q s " N ´4 ÿ x"0 PrXpkq " x `1, Y pkq " xsSppx `1, xq, A ´q (26) 
where

A
´ tpx 1 , y 1 q P 0, N ´4 :

x 1 ă y 1 u
But for the transition from px `1, xq to B to happen, the underlying uniform random variable on r0, 1s must have taken advantage of the discrepancy between 2ppx`1q and 1, otherwise the monotonicity of Y leads to a contradiction. We deduce

Sppx `1, xq, A ´q ď |1 ´2ppx `1q| N pN ´1q ď 1 pN ´x ´1q! 1 N pN ´1q ď 1 pN ´x `1q!
and it follows, as in proof of Lemma 9 that

N ´4 ÿ x"0 PrXpkq " x `1, Y pkq " xsSppx `1, xq, A ´q ď N ´4 ÿ x"0 1 Z N x! 1 pN ´x `1q! ď 2 N `1 pN `1q! ď 2 N N !
The treatment of the cases Xpkq " Y pkq is similar to the proof of Lemma 9, leading to

N ´4 ÿ x"0 PrXpkq " x, Y pkq " xsSppx, xq, A ´q ď 2 N N ! (27) 
It follows that for any k P 0, n ´1

Er1 XpkqěY pkq, Xpk`1qăY pk`1q s ď 2 N `1 N !
and (25) leads to the first desired bound.

The second desired bound is obtained in a similar way, the main difference being that we have to replace, for k P 0, n ´1 , (26) by Er1 Xpkq"Y pkq´1, Xpk`1qăY pk`1q s "

N ´4 ÿ x"0 PrXpkq " x `1, Y pkq " xsSppx `1, xq, A `q
where A ` tpx 1 , y 1 q P 0, N ´4 :

x 1 ą y 1 u
Then we rather use

Sppx ´1, xq, A `q ď |1 ´2ppx ´1q| N pN ´1q ď 1 pN ´x ´1q! 1 N pN ´1q ď 1 pN ´x `1q! leading to Er1 Xpkq"Y pkq´1, Xpk`1qăY pk`1q s ď 2 N `1 pN `1q! ď 2 N N !
As in (27), we also have

Er1 Xpkq"Y pkq, Xpk`1qăY pk`1q s ď 2 N N !
enabling us to conclude to the second desired bound.

We are left with the evaluation of the tails of τ X 0 and τ Y 0 in [START_REF] Stein | Approximate computation of expectations[END_REF]. We start with the last one:

Lemma 12 There exists a constant c ą 0 such that for any N large enough and any n P Z `, we have

Prτ Y 0 ą ns ď e 1´cn{N 3
whatever the initial law of Y p0q.

Proof

For any time k P Z `such that Y pkq " y ‰ 0, we compute

E " exp ˆYk`1 ´Yk N ˙ˇˇˇY k " y  " e ´1{N ypN ´yq N pN ´1q `e1{N N ´y ´1 N pN ´1q `1 ´ypN ´yq `N ´y ´1 N pN ´1q " 1 `pe ´1{N ´1q ypN ´yq N pN ´1q `pe 1{N ´1q N ´y ´1 N pN ´1q
Denoting F N pyq the r.h.s., it is a second order polynomial whose minimal value is attained at y e 1{N ´1 `N 2p1 ´e´1{N q belonging to 1, N ´4 for N large enough. It follows that the maximal value of F N pyq for y P 1, N ´4 is attained either at y " 1 or y " N ´4.

We compute that

F N p1q " 1 `pe ´1{N ´1qpN ´1q `pe 1{N ´1qpN ´2q N pN ´1q F N pN ´4q " 1 `4pe ´1{N ´1qpN ´4q `3pe 1{N ´1q N pN ´1q
and we deduce there exists a constant c ą 0 such that for N large enough,

maxpF N p1q, F N pN ´4qq ď 1 ´c N 3 leading to @ k P Z `, Y k ‰ 0 ñ E " exp ˆYk`1 N ˙ˇˇˇY k  ď ´1 ´c N 3 ¯exp ˆY pkq N implying @ k P Z `, E " exp ˆYk`1 N ˙ˇˇˇY k  1 Y pkq‰0 ď ´1 ´c N 3 ¯exp ˆY pkq N i.e. @ k P Z `, E " exp ˆYk`1 N ˙1Y pkq‰0 ˇˇˇY pkq  ď ´1 ´c N 3 ¯exp ˆY pkq N ȯr,
using the Markov property,

@ k P Z `, E " exp ˆYk`1 N ˙1Y pkq‰0 ˇˇˇF Y pkq  ď ´1 ´c N 3 ¯exp ˆY pkq N ẇhere F Y pkq is the sigma-field generated by Y p0q, Y p1q, ..., Y pkq.

Iterating this relation, we get for any

k P N, E " E " exp ˆYk`1 N ˙1Y pkq‰0 ˇˇˇF Y pkq  1 Y pk´1q‰0 ˇˇˇF Y pk ´1q  ď ´1 ´c N 3 ¯2 exp ˆY pk ´1q N
Ṗushing further the iteration, we end up with

E " ¨¨¨E " E " exp ˆYk`1 N ˙1Y pkq‰0 ˇˇˇF Y pkq  1 Y pk´1q‰0 ˇˇˇF Y pk ´1q  ¨¨¨1 Y p0q‰0 ˇˇˇF Y p0q  ď ´1 ´c N 3 ¯k exp ˆY p0q N Ṫaking into account that Y k`1 ě 0 and that Y p0q ď N , we get E " ¨¨¨E " E " 1 Y pkq‰0 ˇˇF Y pkq ‰ 1 Y pk´1q‰0 ˇˇF Y pk ´1q ‰ ¨¨¨1 Y p0q‰0 ˇˇF Y p0q ‰ ď e ´1 ´c N 3 ¯k
Taking expectation and simplifying conditional expectation iteratively (starting with F Y p0q, next F Y p1q, etc.), we end up with

PrY pkq ‰ 0, Y pk ´1q ‰ 0, ..., Y p0q ‰ 0s ď e ´1 ´c N 3 ¯k implying Prτ Y 0 ą ks ď e ´1 ´c N 3 ¯k ď e 1´c k N 3
which is desired bound, taking k " n.

The tail of τ X 0 is evaluated similarly:

Lemma 13 There exists a constant r c ą 0 such that for N large enough and any n P Z `, we have

Prτ X 0 ą ns ď e 1´r cn{N 3
whatever the initial law of Xp0q.

Proof

According to Proposition 6, we have 2ppxq ě 1{2 for all x P 0, N ´4 , fact which suggests to consider Markov chains r Y p r Y pnqq nPZ `associated to the transition kernel r R given by

@ x ‰ y P 0, N ´4 , r Rpx, yq 1 N pN ´1q $ & % xpN ´xq , if y " x ´1 N ´x ´1{2 , if y " x `1 0
, otherwise which differs from R only the replacement of N ´x ´1 by N ´x ´1{2.

Consider the corresponding hitting time of 0:

τ r Y 0 inftn P Z `: r Y pnq " 0u
Coupling in a monotone way X and r Y and starting with r Y p0q " Xp0q, we get that

@ n P Z `, Xpnq ď r Y pnq at least if r Y is monotone.
This is true and is proven as for Lemma 10, where [START_REF] Takacs | The problem of coincidences[END_REF] has to be replaced by

@ x P 0, N ´5 , N pN `1q ě px `2qpN ´x ´1{2q
We deduce that Summarizing the previous computation, we have shown there exist two constants c, r c ą 0 such that for any N large enough and n ě 0,

@ n P Z `, Prτ X 0 ą ns ď Prτ
}π ´ζ} tv ď 2 N n N ! `2 2 N `1n N ! `e1´cn{N 3 `e1´r cn{N 3 ď 5 ˆ2N n N ! `2e 1´p cn{N 3
with p c c ^r c.

Taking n " N lnpN q{p c, we conclude [START_REF] Lindvall | Lectures on the coupling method[END_REF].

A Recovering classical results on π through the Markov approach

Working in the same spirit as in Section 4, it is possible to recover the exact formula for the number of fixed points πpxq (see ( 4)) from the reversibility of the Markov chain P (see [START_REF] Montmort | Essay d'analyse sur les jeux de hazard[END_REF]) with respect to π, leading to an alternative proof for Montmort's formula (3) (the traditional argument goes through the inclusion-exclusion principle, see e.g. [START_REF]Derangement -Wikipedia, the free encyclopedia[END_REF] or Chapter 1 of Arratia, Barbour and Tavaré [START_REF] Richard Arratia | Logarithmic combinatorial structures: A probabilistic approach[END_REF]).

We will use the birth and death chain p P defined in [START_REF] Diaconis | Stein's method: expository lectures and applications[END_REF] above and it's stationary distribution p π defined in [START_REF] Diaconis | The Poisson-Dirichlet law is the unique invariant distribution for uniform split-merge transformations[END_REF]. Using that notation, the reversibility says @ i P 0, N ´1 , p πpiq p P pi, i `1q " p πpi `1q p P pi `1, iq or @ i P 0, N ´1 , πpz i qP pz i , z i`1 q " πpz i`1 qP pz i`1 , z i q namely πp0qP p0, 1q " πp1qP p1, 0q and @ x P V ztN u, πpxqP px, x `2q " πpx `2qP px `2, xq (28)

i.e.

πp0qpN ´2pp0qq " πp1qpN ´1q and @ x P V ztN u, 2πpxqppxq " πpx `2qpx `2qpx `1q

The last condition implies that

@ x P V ztN u, ppxq " πpx `2q 2πpxq px `2qpx `1q
This formula also holds for x " N , since both terms vanish, thus we have shown:

Lemma 14 We have

@ x P V, ppxq " πpx `2q 2πpxq px `2qpx `1q
Thus for x P 0, N ´3 , the relation πpxq r P px, x `1q " πpx `1q r P px `1, xq becomes πpxqpN ´xq ´πpx `2qpx `2qpx `1q " πpx `1qpx `1qpN ´x ´1q (29)

For x " N ´2, the relation πpN ´2q r P pN ´2, N q " πpN q r P pN, N ´2q becomes πpN ´2q2 " πpN qN pN ´1q (30)

These relations lead us to introduce the function f on V defined by @ x P 0, N , f pxq πpxq Ppxq

where P is the Poisson distribution of parameter 1 (with the convention f pN ´1q " 0 " πpN ´1q). Indeed, (29) and (30) reduce to @ x P 0, N ´3 , f pxqpN ´xq ´f px `2q " f px `1qpN ´x ´1q 2f pN ´2q " f pN q namely @ x P 0, N ´2 , pf pxq ´f px `1qqpN ´xq " f px `2q ´f px `1q

This relation leads to the introduction of the function g on V defined by @ x P 0, N ´1 , gpxq f px `1q ´f pxq since we get @ x P 0, N ´2 , gpxq " ´gpx `1q N ´x " gpx `2q pN ´xqpN ´x ´1q " p´1q N ´x gpN ´1q pN ´xq! " p´1q N ´x f pN q pN ´xq!

Taking into account that gpN ´2q " f pN ´1q " 0, we deduce that

@ x P 0, N ´2 , f pxq " ´gpxq ´gpx `1q ´¨¨¨´gpN ´2q " f pN q N ´x ÿ k"0 p´1q k k!
a formula also valid for x " N , so finally

@ x P V, πpxq " 1 A N x! N ´x ÿ k"0 p´1q k k!
For completeness, let us also recall a simple proof of the well-known formula (2):

Lemma 16 For any x P V , we have

πpxq " D N ´x pN ´xq! 1 x!
Proof Fix x P V and denote I x the set of subsets of N whose cardinal is x. By symmetry we have, denoting by σ a generic permutation, πrη 1 " xs " ÿ IPIx πr@ i P I, σpiq " i, @ j P N zI, σpjq ‰ js " ˆN x ˙πr@ j P N ´x , σpjq ‰ j, @ i P N ´x `1, N , σpiq " is

" ˆN x ˙DN´x N ! " D N ´x pN ´xq! 1 x!
Montmort's formula ( 3) is now a consequence of the above lemma and of Proposition 15:

Corollary 17 We have for any n P N,

D n " n! n ÿ k"0 p´1q k k! Remark 18 
a) It seems from ( 28) that we have an extra relation for pp0q: πp0qpN ´2pp0qq " πp1qpN ´1q, which amounts to

pp0q " N 2 ˆ1 ´DN´1 D N pN ´1q
Ċomparing with (31), which gives for x " 0, pp0q " 1 2

D N ´2 pN ´2q! N ! D N we deduce D N " pN ´1qpD N ´1 `DN´2 q
This is the well-known iteration formula for the derangement numbers, see e.g. [START_REF]Derangement -Wikipedia, the free encyclopedia[END_REF]. b) Note that π is not close to P is the separation discrepancy This fact a priori excludes a proof via strong stationary times (see Diaconis and Fill [START_REF] Diaconis | Strong stationary times via a new form of duality[END_REF]) in Section 5. B Complements on the conditional expectation p Some observations about p are gathered here.

Note that Lemma 16 also leads to an expression of the quantities ppxq in terms of the number of derangements, from Lemma 14:

@ x P V, ppxq " 1 2 D N ´x´2 pN ´x ´2q! pN ´xq! D N ´x (31) " 1 2 ř N ´x´2 k"0 p´1q k k! ř N ´x l"0 p´1q l l!
This formula leads to an estimate of our quantities of interest, the |2ppxq ´1|, for x P 0, N ´2 , of the same order as that of Proposition 6:

Lemma 19 We have @ x P 0, N ´2 , |2ppxq ´1| ď 3 N ´x ´1 pN ´xq! ď 3 pN ´x ´1q!
and in particular we get, for N ě 4,

@ x P 0, N ´4 , 1 4 ď ppxq ď 3 4 
Proof From (31) we deduce:

@ x P V, 2ppxq " ř N ´x´2 k"0 p´1q k k! ř N ´x l"0 p´1q l l! " 1 ´řN´x N ´x´1 p´1q k k! ř N ´x l"0 p´1q l l! implying @ x P V, |2ppxq ´1| " ˇˇ1 pN ´x´1q! ´1 pN ´xq! ˇř N ´x l"0 p´1q l l! " 1 pN ´x ´1q! 1 ´1 N ´x ř N ´x l"0 p´1q l l! " N ´x ´1 pN ´xq! 1 ř N ´x l"0 p´1q l l!
Note that the series ř n l"0

p´1q l l!
provide alternating approximations of e ´1, it follows that

@ x P 0, N ´2 , 3 ÿ l"0 p´1q l l! ď N ´x ÿ l"0 p´1q l l! ď 2 ÿ l"0 p´1q l l! namely @ x P 0, N ´2 , 1 2! ´1 3! ď N ´x ÿ l"0 p´1q l l! ď 1 2! i.e. @ x P 0, N ´2 , 1 3 ď N ´x ÿ l"0 p´1q l l! ď 1 2
whose lower bound leads to the first desired estimate.

For the second estimate, note that

@ x P 0, N ´4 , 3 pN ´x ´1q! ď 3 pN ´pN ´4q ´1q! ď 3 3! " 1 2 
Lemma 19 can be used similarly to Proposition 6 in Section 5, leading to the same conclusion.

Coming back to the formulation (6) of p as a conditional expectation of η 2 , it is natural to wonder if it could not be deduced from symmetry arguments. Remark it is true for the whole expectation: E ν rη 2 s " 1{2 (see the proof of Lemma 22 below with k " 0), in the same way one immediately gets E ν rη 1 s " 1. So to finish this appendix, let us show that symmetry arguments lead to a natural linear equation satisfied by p, even if we did not find how to use it to deduce the a priori bounds similar to those of Proposition 6 or Lemma 19.

For k P 0, N , denote

A k " tpi 1 , i 2 , ..., i k q P N k : m ‰ n P k ñ i m ‰ i n u
In particular, we have

|A k | " N pN ´1q ¨¨¨pN ´k `1q (32) 
(by convention, A 0 " tHu and |A 0 | " 1).

For k P 0, N , we define the mapping F k on the symmetric group S N via

@ σ P S N , F k pσq ÿ pi 1 ,...,i k qPA k ź jP k 1 tσpi j q"i j u
Let us check these mappings are functions of η 1 (the number of fixed points):

Lemma 20 For any k P 0, N , we have

F k " η 1 pη 1 ´1q ¨¨¨pη 1 ´k `1q (33) 
Proof Indeed, for any given σ P S N , denote Fpσq the set of fixed points of σ. We have

F k pσq " |A k X Fpσq k | " η 1 pσqpη 1 pσq ´1q ¨¨¨pη 1 pσq ´k `1q
Remark 21 Since F k is a polynomial of order k in η 1 , any function of η 1 can be expressed as a linear combination of the F k for k P 0, N , and even only for k P 0, N ´1 or alternatively k P V , since η 1 is taking N values, those of V 0, N ztN ´1u. It follows that if we want to prove that

E ν rη 2 |η 1 s " f pη 1 q for a given function f : V Ñ R `, it is sufficient to check that @ k P 0, N , E ν rη 2 F k s " E ν rf pη 1 qF k s
We are thus led to compute the l.h.s.

Lemma 22

For any k P 0, N , we have 1 tσpi j q"i j u fi fl Note that the above expectation vanishes if m P ti 1 , ..., i k u or n P ti 1 , ..., i k u, so writing i k`1 " m and i k`2 " n, we end up with 2E ν rη 2 F k s " ÿ pi 1 ,...,i k ,i k`1 ,i k`2 qPA k`2 E ν » -1 tσpi k`1 q"i k`2 , σpi k`2 q"i k`1 u ź jP k 1 tσpi j q"i j u fi fl " ÿ pi 1 ,...,i k ,i k`1 ,i k`2 qPA k`2 πrσpi 1 q " i 1 , σpi 2 q " i 2 , ..., σpi k q " i k , σpi k`1 q " i k`2 , σpi k`2 q " i k`1 s For any pi 1 , ..., i k , i k`1 , i k`2 q P A k`2 , the above probability can be computed by first choosing σpi 1 q " i 1 , whose probability is 1{N , next choosing σpi 2 q " i 2 , whose subsequent probability is 1{pN ´1q, etc, up to choosing σpi k`2 q " i k`1 , whose probability is 1{pN ´k ´1q. We deduce πrσpi 1 q " i 1 , σpi 2 q " i 2 , ..., σpi k q " i k , σpi k`1 q " i k`2 , σpi k`2 q " i k`1 s " 1 N pN ´1q ¨¨¨pN ´k ´1q and by consequence

E ν rη 2 F k s " # 1{2 , if k P 0, N ´2 0 ,
2E ν rη 2 F k s "
|A k`2 | N pN ´1q ¨¨¨pN ´k ´1q " 1 due to (32), at least when k `2 ď N . Obviously, when k P 0, N ´1 satisfies k `2 ą N , namely when k P tN ´1, N u, we end up with 2E ν rη 2 F k s " 0.

Lemma 23 For any k P 0, N , we have E ν rF k s " 1 Proof Indeed, as in the above proof, E ν rF k s " ÿ pi 1 ,...,i k qPA k πrσpi 1 q " i 1 , σpi 2 q " i 2 , ..., σpi k q " i k s " ÿ pi 1 ,...,i k qPA k It follows that if f : V Ñ R is a function satisfying

@ k P V, E ν rf pη 1 qF k s " 1 (34) 
then we can conclude that f " 1, the function only taking the value 1.

Consider : V Ñ R given by the conditional expectation f pη 1 q " Er2η 2 |η 1 s

According to Lemma 22, f almost satisfies (34), the only discrepancy being the case k " N . Of course it can not satisfy (34), otherwise we would get from Section 5 that the law of η 1 is the conditioning of the Poisson distribution of parameter 1 to V and this is not true (e.g. due to (4)).

Nevertheless, Lemma 22 leads to a linear equation for f . Denote a pa k q kPV the vector of the coefficients in the writing

f pη 1 q ÿ kPV a k F k we have Ga " ¨1 1 . . . 1 0 ‹ ‹ ‹ ‹ ‹ ' i.e.
a " G ´1 ¨1 1 . . .

1 0 ‹ ‹ ‹ ‹ ‹ '
where G pG k,l q k,lPV is the Gram matrix given by

@ k, l P V, G k,l E ν rF k F l s (35) 
In accordance with Remark 21, the family pF k q kPV is linearly independent in L 2 pπ 1 q, due to the fact that π 1 pxq ą 0 for all x P V , which implies that dimpL 2 pπ 1 qq " N . As a consequence, G is invertible.

As seen in Section 5, more interesting for us is the function g f ´1 defined on V . Since Lemma 23 shows that

1 " ÿ kPV b k F k with ¨b0 b 1 . . . b N ´2 b N ´1 ‹ ‹ ‹ ‹ ‹ ' " G ´1 ¨1 1 . . . 1 1 ‹ ‹ ‹ ‹ ‹ '
we deduce that gpη 1 q " ř kPV c k F k , with ¨c0 c 1 . . .

c N ´2 c N ´1 ‹ ‹ ‹ ‹ ‹ ' " G ´1 ¨0 0 . . . 0 1 ‹ ‹ ‹ ‹ ‹ '
More precisely, the computations of Section 5 show the only a priori informations we need to control our coupling constructions are estimates on expressions such as

ÿ xP 0,N ´2 |gpxq| 1 ex! (36) 
Below we compute the entries of G directly via symmetry arguments, without a priori knowledge of the law π of η 1 , nevertheless, it does not seem very helpful to estimate expressions such as (36).

Proposition 24

The matrix G is symmetric and extending Definition (35) to any k, l P 0, N , we have @ k ď l P 0, N , G k,l " k! k^pN ´lq ÿ r"0 1 r! ˆl k ´rṖ roof For any i " pi 1 , ..., i k q P A k , denote tiu the set ti 1 , ..., i k u Ă N , as well as 

µ 1 rf P rgss " ÿ xPV µ 1

 1 pxqf pxq ÿ yPW Qrg ˝r1 spx, yqµ 1,2 px, yq " ÿ px,yqPV ˆW f ˝r1 px, yqQrg ˝r1 spx, yqµpx, yq " µrf ˝r1 Qrg ˝r1 ss " µrg ˝r1 Qrf ˝r1 ss " µ 1 rgP rf ss

  It is thus sufficient to find a constant r c ą 0 such that for any N ě 5 and any n P Z `, we have Prτ r Y 0 ą ns ď e 1´r cn{N 3 whatever the initial law of r Y p0q. This done as in the proof ofLemma 12. 

1 N

 1 pN ´1q ¨¨¨pN ´k `1q " |A k | N pN ´1q ¨¨¨pN ´k `1q " 1

1 N

 1 r A k ttiu : i P A k u " tS Ă N : |S| " kuWe compute, for any k ď l P N ,E ν rF k F l s " k!l! ÿ SP r A k , T P r A lPr@ s P S, σpsq " s, @ t P T, σptq " ts" k!l! ÿ SP r A k , T P r A l pN ´1q ¨¨¨pN ´|S Y T | `1q " k!l! ÿ uP l,pl`kq^NA k,l puq pN ´uq! N !

  U pnq ă P pXpnq, Xpnq ´1q Xpnq , if P pXpnq, Xpnq ´1q ď U pnq ă P pXpnq, Xpnq ´1q `P pXpnq, Xpnqq Xpn `1q , if P pXpnq, Xpnq ´1q `P pXpnq, Xpnqq ď U pnq

	and
	$
	&
	Y pn `1q "

% Y pnq ´1 , if U pnq ă RpY pnq, Y pnq ´1q Y pnq , if RpY pnq, Y pnq ´1q ď U pnq ă RpY pnq, Y pnq ´1q `RpY pnq, Y pnqq Y pn `1q , if RpY pnq, Y pnq ´1q `RpY pnq, Y pnqq ď U pnq

  and Lemma 9, our next task is to get an estimate on Prτ ą ns for given n P Z `. T go in this direction, we will need two other auxiliary random chains r Z p r Zpnqq nPZ `and p Z p p Zpnqq nPZ XpkqěY pkq, Xpk`1qăY pk`1q

				`,
	defined respectively through			
	@ n P Z `,	#	r Zpnq p Zpnq	ř n´1 k"0 1 XpkqďY pkq, Xpk`1qąY pk`1q ř n´1 k"0 1

  Er1 XpkqěY pkq, Xpk`1qăY pk`1q s

	Proof	
	We have	
	Pr p Zpnq ą 0s ď Er p Zpnqs	
	n´1	
	ÿ	
	"	
	k"0	
	Pr p Zpnq ą 0s ď	2 N `1n N !
	Pr r Zpnq ą 0s ď	2 N `1n N !

Pr r Zpnq ą 0s and Pr p Zpnq ą 0s, we have: Lemma 11 For any n P Z `, we have

  if k P tN ´1, N u

	Proof				
	Note that				
	@ σ P S N ,	η 2 pσq "	1 2	ÿ mP N	1 tσpmq‰m, σ 2 pmq"mu
		"	1 2	ÿ m‰nP N	1 tσpmq"n, σpnq"mu
	so that				
				»	
	ÿ	ÿ				ź
	2E ν rη 2 F k s "		E ν	-1 tσpmq"n, σpnq"mu
	m‰nP N	pi 1 ,...,i k qPA k				jP k

Projections of Markov chainsWe present in this short section a general procedure of projection of Markov chains. We will restrict our attention to finite state spaces to simplify the exposition and since latter we will work only with such sets, but the underlying principle is much more general.
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Replacing this expression in the definition of the first associated birth and death kernel r P (defined in [START_REF] Diaconis | On fixed points of permutations[END_REF]), we will deduce the following expression for the reversible probability π:

Proposition [START_REF] Holley | Applications of the stochastic Ising model to the Gibbs states[END_REF] We have

Proof

From Lemma 14, we get for any x ‰ y P V ,

, if x " N ´2 and y " N N pN ´1q

, if x " N and y " N ´2 0 , otherwise where A N " e{f pN q. This quantity is also the normalization factor, since π is a probability, so we compute

From this formula, we recover an upper bound on the total variation distance between π and P almost as good as that of ( 1), but which is not going through a coupling. Indeed, we compute:

(where we used the alternance of the terms of the series ř kě0 p´1q k k! ). The last term is also equal to

Note that for any fixed T P r A l and r P 0, k ^pN ´lq , we have