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Coded Caching in Networks with Heterogeneous
User Activity

Adeel Malik, Berksan Serbetci, Petros Elia

Abstract—This work elevates coded caching networks from
their purely information-theoretic framework to a stochastic
setting, by exploring the effect of random user activity and
by exploiting correlations in the activity patterns of different
users. In particular, the work studies the K-user cache-aided
broadcast channel with a limited number of cache states (i.e.,
the content stored at the cache of a certain user), and explores
the effect of cache state association strategies in the presence
of arbitrary user activity levels; a combination that strikes
at the very core of the coded caching problem and its crip-
pling subpacketization bottleneck. We first present a statistical
analysis of the average worst-case delay performance of such
subpacketization-constrained (state-constrained) coded caching
networks, and provide computationally efficient performance
bounds as well as scaling laws for any arbitrary probability
distribution of the user-activity levels. The achieved performance
is a result of a novel user-to-cache state association algorithm
that leverages the knowledge of probabilistic user-activity levels.

We then follow a data-driven approach that exploits the
prior history on user-activity levels and correlations, in order to
predict interference patterns, and thus better design the caching
algorithm. This optimized strategy is based on the principle that
users that overlap more, interfere more, and thus have higher
priority to secure complementary cache states. This strategy
is proven here to be within a small constant factor from the
optimal. Finally, the above analysis is validated numerically using
synthetic data following the Pareto principle. To the best of
our understanding, this is the first work that seeks to exploit
user-activity levels and correlations, in order to map future
interference and design optimized coded caching algorithms that
better handle this interference.

Index Terms—Coded caching, shared caches, load balancing,
heterogeneous networks, femtocaching.

I. INTRODUCTION

THE volume of mobile data traffic is rapidly growing, and
soon existing networks will not have enough bandwidth

resources to support this dramatically increasing demand [1].
In this context, caching offers a promising means of increasing
efficiency by proactively storing part of the data at the network
edge [2], including at wireless communication stations as well
as on end-user devices [3], [4].

While generally caching is based on the idea that storing
data can allow a receiving node to have easy access to its own
desired file, recent work has shown the powerful effects of
exploiting the existence of the aforementioned desired file at
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the caches of other receiving users [5]–[16]. In interference-
limited scenarios — such as in downlink settings exemplified
by the broadcast channel where each user has access to their
own cache and requires their own distinct file — the findings
in [5] suggest that a proper use of caching can allow for single
multicast transmissions to simultaneously serve many users
each having their own distinct demands. This breakthrough
in the way caching is perceived, is based on the ideas of
index coding which tells us that when the stored content
in one user’s cache overlaps with other users’ requests, one
can design multicast transmissions (in the form of XORs or
other linear combinations of desired data), that allow for rapid
delivery of any possible set of demands. Index coding —
which is generally a computationally hard problem [17] — has
received significant attention in a literature that has explored its
performance limits [18], [19], as well as its strong connections
to the network coding problem [20], [21]. One main difference
between index coding and network coding is that index coding
specializes on cache-related cases in the sense that it considers
receivers that benefit from side-information, which in our case
can be found, for example, in the caches.

Motivated by index coding and its ability to exploit re-
ceivers’ side information to create coded multicasting oppor-
tunities for users requesting different files, the seminal work
in [5] has introduced the concept of coded caching. This work
revealed that — under some theoretical assumptions, and in
the presence of a deterministic information-theoretic broadcast
framework — the use of caching at the receivers can allow
the simultaneous delivery of an unlimited number of user-
requests, with a limited delay. This astounding conclusion was
achieved by carefully designing a combinatorial clique-based
cache placement algorithm, and a synergistic delivery scheme
that enables transmitting independent content to multiple users
at a time. In essence, coded caching associates each receiving
user to its own cache state in a manner that allows for the
custom design of a long sequence of high-capacity index
coding problems that are served one after the other. Each cache
state defines the content stored at the cache of a certain user.
As we will see soon though, this requirement that each user
has their own cache state, is an assumption that — in essence
— cannot hold.

To see this, let us quickly recall that in its original setting,
coded caching considers a unit-capacity single-stream broad-
cast channel (BC), where a transmitting base station (BS) has
access to a library (catalog) of N unit-sized files, and serves
K receiving users each equipped with a cache of size equal
to the size of M files, or equivalently equal to a fraction
γ = M

N of the library. In this context, the work in [5] provides
a novel placement and delivery scheme that can serve any set
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of K simultaneous requests with a worst-case delivery time
of T = K(1−γ)

1+Kγ ≈
1−γ
γ . This ability to serve a theoretically

ever-increasing number of users with a bounded delay, is
a direct result of exploiting the cache-enabled multicasting
opportunities that allow for delivery to Kγ + 1 users at a
time.

As suggested above though, coded caching has a serious
Achilles’ heel. In particular, for the above performance to be
guaranteed, coded caching requires that each user be allocated
their own specifically-designed cache state (cache content),
which — without delving into the esoteric details of coded
caching — effectively requires the partitioning of each library-
file into

(
K
Kγ

)
subpackets. This number scales exponentially in

K, and thus requires files to be of truly astronomical sizes.
Thus given any reasonable constraint on the file sizes, the
number of cache states is effectively forced to be reduced,
and the aforementioned coding gains are indeed diminished to
gains that are considerably less than Kγ + 1. What this file-
size constraint (also known as the subpacketization bottleneck)
effectively forces is the reduction of the number of cache
states1 to some Λ ≪ K, which — under the basic principles
of the clique-based cache-placement in [5] — allows for a
smaller subpacketization level

(
Λ
Λγ

)
≪
(
K
Kγ

)
at the expense

though of a much reduced coding gain Λγ+1≪ Kγ+1 and
a much larger delay T = K(1−γ)

1+Λγ which is now unbounded. As
a consequence, this reflects the case of having the normalized
cache size γ at the end users being typically very low, which is
consistent with the common assumption considered in standard
wireless cellular settings [7], [22]. Even though there are
several alternative solutions in the literature that deal with
the subpacketization bottleneck [23], [24], we consider the
aforementioned setting i) for its simplicity, and ii) for its
versatility, e.g., for its applicability in practical and promising
coded caching enabled settings, c.f., [22].

Another important —perhaps rather oversimplified— as-
sumption that detracts coded caching from practical settings
is that an overwhelming majority of aforementioned coded-
caching studies solely focus on the deterministic information-
theoretic broadcast framework, which are mostly based on the
assumption of deterministic topologies. We believe that it is
of utmost importance to transcend this boundary, and study
coded caching in more realistic wireless communication net-
works, which are random in nature. In this context, this work
elevates coded caching from their purely information-theoretic
framework to a stochastic setting where the stochasticity of the
networks originates from the heterogeneity in users’ request
behaviors. Analyzing the coded caching in the presence of
such heterogeneity can help us understand the actual gains of
the coded caching in stochastic network settings. In addition,
these studies are poised to play a vital role in resolving the
bottlenecks of coded caching. Let us see an example of how
incorporating the users’ request behavior in coded caching can
help us resolve the subpacketization bottleneck.

1This simply means that even though there are K different users, each with
their own physical cache, in essence, there can only exist Λ distinct caches,
that must be shared among the users. This effectively means that groups of
users are forced to have identical, rather than complementary, cache contents.

Example 1. Let us assume that we want to design a coded
caching system for K = 200 cache-enabled users, each with
a normalized storage capacity of γ = 0.1. Now consider that
we study the users’ request behavior, and find a pattern that
users are divided into four groups, where each group consists
of 50 distinct users, and at any given instance, only 50 users
belonging to the same group request a file, while the other
150 users are inactive. With this knowledge, for each group,
we can design a separate coded caching system. As at any
instance only one of the groups is active, from [5], the worst-
case delivery time takes the form = 50(1−0.1)

1+5 = 45
6 = 7.5,

and the required subpacketization rate is
(
50
5

)
≈ 2.12 × 106.

However, if we do not exploit this knowledge, and design a
single coded caching system for all K = 200 users, then at
any instance, when only 50 users are requesting, from [11],
the corresponding worst-case delivery time takes the form
(20021 )−(

150
21 )

(20020 )
= 8.558, and the required subpacketization would

be
(
200
20

)
≈ 1.61× 1027. We can see that exploiting the users’

request behavior allows us to not only reduce the delivery
time, but also reduce the required subpacketization rate by a
factor of 7.6× 1020.

In practice, users’ request behavior will be stochastic, and
we may not see such clear patterns as we observed in the
simplistic scenario illustrated above. However, this example
serves as a baseline to underline the need of exploring the
user activity patterns in the design of coded caching in realistic
wireless communication networks.

A. Exploiting the connection between coded caching, comple-
mentary cache states, user-activity levels and user-activity
correlations

The performance of coded caching in the presence of an
inevitably reduced number of cache states, has been explored
in various works that include the work in [25] which intro-
duced a new scheme for this setting, and the work in [26]
which established the fundamental limits of the state-limited
coded caching setting, by deriving the exact optimal worst-
case delivery time as a function of the user-to-cache state
association profile that represents the number of users served
by each cache.

As we witness in the above works, in order to maintain
the ability to jointly exploit multicasting opportunities, users
must be associated to complementary cache states that are
carefully designed and which cannot be identical. The above
findings reveal that a basic problem with the state-limited
scenario (where Λ ≪ K) in coded caching is simply the
fact that if two or more users are forced to share the same
cache state (i.e., the same content in their caches), then these
users generally do not have the ability to jointly receive a
multicasting message that can be useful to all. Such state-
limited scenario results in a large deterioration in performance,
irrespective of the user-to-cache association policy. What we
additionally learn from the work in [27] is that if the users
are assigned to cache states at random, then this randomness
imposes an additional unbounded performance deterioration
that is a result of ‘unfortunate’ associations where too many
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users share the same cache state. That is why the task of user-
to-cache state association is important.

At the same time though, coded caching experiences a
certain synchronization aspect, which is a direct outcome of
the fact that users are expected to be partially asynchronous in
their timing of requesting files. Hence, the notion of time is of
essence. This asynchronicity has a negative aspect, but also a
positive one; both of which we explore here. On the one hand,
having only a fraction of the users appear simultaneously,
implies a smaller number of users that can simultaneously
participate in coded caching and thus implies potentially fewer
multicasting opportunities and thus a smaller coding gain. On
the other hand, such asynchronicity implies less instantaneous
interference. This is where user activity levels come into the
picture, and this is where user activity correlations can be
exploited. In essence — as it will become clearer later on
— any users that are correlated in terms of their activity
in time, should be associated to different cache states, as
this is essential in using caches for handling their mutual
interference. Therefore, having the information of some users
rarely request data at the same time, allows us to allocate
them the same cache state resource. In essence, users that
overlap more, interfere more, and thus have higher priority to
secure complementary cache states. This optimization effort is
particularly important because, as we recall, these resources
are indeed scarce. By exploring user activities and learning
from their history, we are able to predict interference patterns,
and then we are able to assign cache states accordingly.

Recently, [28] presented a work to find the optimal cache
placement and delivery strategies in the presence of user
inactivity. This work considers identical inactivity levels for
all users, i.e., at any transmission instance, each user is
inactive with the same constant probability, and the place-
ment strategy follows standard centralized and decentralized
policies. The work in [28] provides an optimization-oriented
delivery scheme, and compares the proposed scheme with the
standard and genie-aided (i.e., assuming full knowledge of
user activity in the placement phase) scheme presented in [5].
Differently from [28], our work focuses on both identical
and arbitrary activity levels, and also considers a data-driven
approach for user activities. We consider the subpacketization-
constrained uncoded cache placement scheme, and we provide
the fundamental bounds, and characterize the scaling laws of
the average delay. In a nutshell, our work, to the best of our
knowledge, is the first work that seeks to exploit arbitrary
user-activity levels and correlations, in order to map future
interference and provide optimized caching algorithms that
better handle this interference by presenting the fundamental
bounds and the scaling laws of the problem.

B. Notations

Throughout this paper, for n a positive integer, we use the
notation [n] ≜ [1, 2, . . . , n] ,∀n ∈ Z+. We use A/B to denote
the difference set that consists of all the elements of set A not
in set B. Unless otherwise stated, logarithms are assumed to
have base 2. We also use the following asymptotic notation:
i) f(x) = O(g(x)) will mean that there exist constants a

Active User Inactive User Cache BS BC-link Library

Fig. 1: An instance of a cache-aided wireless network.

and c such that f(x) ≤ ag(x),∀x > c, ii) f(x) = o(g(x))

will mean that limx→∞
f(x)
g(x) = 0, iii) f(x) = Ω(g(x)) will

be used if g(x) = O(f(x)), iv) f(x) = ω(g(x)) will mean
that limx→∞

g(x)
f(x) = 0, and finally v) f(x) = Θ(g(x)) will be

used if f(x) = O(g(x)) and f(x) = Ω(g(x)). We use the term
polylog(x) to denote the class of functions

⋃
k≥1 O((log x)k)

that are polynomial in log x.

II. SYSTEM MODEL & MAIN CONTRIBUTION

In this section, we present the system model and the
communication process that consists of placement and delivery
phases in detail. We then propose our metrics of interest, and
finally wrap up the section by listing our contributions.

A. Network setting

We consider a cache-aided wireless network, which consists
of a base station and K cache-enabled receiving users. The
base station (BS) has access to a library of N equisized files
F = [F1, F2, . . . , FN ] and delivers content via a broadcast link
to K receiving users. Each user k ∈ [K] is equipped with a
cache of normalized storage capacity of γ ≜ M

N ∈ [0, 1], and
requests a file from the content library with probability pk.
We use p = [p1, p2, . . . , pK ] to denote the users activity level
vector. At any instance, if a user k is requesting a file, then we
say that the user k ∈ [K] is an active user. Naturally Kp =∑K

k=1 pk is the expected number of active users. Figure 1
depicts an instance of our cache-aided wireless network.

The communication process consists of two phases; the
placement phase and the delivery phase. During the placement
phase, each user’s cache is filled with the content from the
library, and this phase is oblivious to the upcoming number
of users in the delivery phase, as well as is oblivious to
the upcoming file demands. The delivery phase begins with
the active users simultaneously requesting one file each, and
continues with the BS delivering this content to the users. This
phase is naturally aware of the demands of the active users,
as well as is aware of the content cached at each user.
Placement phase: We consider the subpacketization-
constrained uncoded cache placement scheme based on [5].
The placement phase consists of two parts. In the first part,
we generate the cache states based on the maximum allowable
subpacketization Bmax of a file. Each cache state defines the
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content stored in the cache of a certain user. For a maximum
allowable subpacketization Bmax of a file, we define the
maximum number of cache states as follows

Λ = argmax
k≤K

{(
k

kγ

)
≤ Bmax

}
.

Two users assigned to the same cache state must store the exact
same content in their caches. We will see later that having
fewer cache states generally implies a smaller DoF. Given the
number of cache states Λ, each file Fi ∈ F is partitioned
into

(
Λ
t

)
distinct equisized subpackets, where t ≜ Λγ, and

where t ∈ [Λ] holds2. Then we index each subpacket of
a file by a distinct subset τ ⊆ [Λ] of size t. The set of
indexed subpackets corresponding to file Fi ∈ F is given by
{Fi,τ : τ ⊆ [Λ], |τ | = t}. The content corresponding to each
cache state λ ∈ [Λ] is then given by

Cλ = {Fi,τ : i ∈ [N ], λ ∈ τ, τ ⊆ [Λ], |τ | = t} ,
where each cache state consists of |Cλ| = N

(
Λ−1
t−1

)
subpackets,

which abides by the cache-size constraint since N
(Λ−1
t−1)
(Λt)

= M .

In the second part, each user’s cache is filled with the con-
tent of one of the cache states λ ∈ [Λ]. The employed user-to-
cache state association is defined by a matrix G = [0, 1]Λ×K ,
of which the (λ, k) element gλ,k takes the value 1 if user k is
storing the content of cache state λ ∈ [Λ], else gλ,k = 0. We
denote by Gλ the set of users caching the content of cache
state λ ∈ [Λ].
Delivery phase: The delivery phase commences with each
active user requesting a single file from the content library.
In line with the common assumptions in coded caching,
we assume that requests are generated simultaneously by
active users, and that each active user requests a different
file. During this phase, the BS is aware of the user-to-cache
state association matrix G. Once the BS receives the users’
requests, it commences delivery of the coded subpackets over
a unit-capacity3 error-free broadcast link. Here, together with
the aforementioned optimal placement, we also consider the
optimal4 multi-round delivery scheme of [25], [26]. At any
instance of the problem, the cache load vector given the user-
to-cache state association G is denoted by V = [v1, . . . , vΛ],
where vλ represents the number of active users that are
associated with cache state λ ∈ [Λ]. Additionally, we use
L = [l1, . . . , lΛ] = sort(V) to be the profile vector, which
is the sorted (in descending order) version of the cache load
vector V.

For any cache load vector V such that sort(V) = L, multi-
round delivery scheme in [25], [26] proposes to complete the
delivery in l1 rounds, where the content is delivered to at most
one user from each cache state λ ∈ [Λ] in each round. The
delivery time corresponding to each round j ∈ [l1] is given as
( Λ
t+1)−(

Λ−Aj)

t+1 )
(Λt)

, where Aj denotes the number of users being

2In this work t = Λγ is a function of maximum allowable subpacketization
Bmax of a file and it represents the reduced achievable coded caching gain
of t + 1 = Λγ + 1 as compared to Kγ + 1 of conventional coded caching
setting with no limit on the subpacketization of a file.

3Here the capacity is measured in units of file.
4Optimality here refers to the performance of the scheme over the traditional

(deterministic) coded caching problem with constant user activity.

served in delivery round j. Then, for any cache load vector
V such that sort(V) = L, the delivery time takes the form∑l1

j=1

( Λ
t+1)−(

Λ−Aj)

t+1 )
(Λt)

.

Example 2. For K = 7, Λ = 4, and γ = 0.5, each file is
divided into

(
Λ
Λγ

)
=
(
4
2

)
= 6 subpackets. The set of indexed

subpackets corresponding to each file Fi ∈ F is given by{
Fi,(1,2), Fi,(1,3), Fi,(1,4), Fi,(2,3), Fi,(2,4), Fi,(3,4)

}
.

The content corresponding to each cache state is given by

C1={Fi,τ :τ ∈ [(1, 2),(1, 3),(1, 4)], i∈ [N ]} ,
C2={Fi,τ :τ ∈ [(1, 2),(2, 3),(2, 4)], i∈ [N ]} ,
C3={Fi,τ :τ ∈ [(1, 3),(2, 3),(3, 4)], i∈ [N ]} ,
C4={Fi,τ :τ ∈ [(1, 4),(2, 4),(3, 4)], i∈ [N ]} .

Now, let us move to the content delivery phase. Let us
consider the case of V = [3, 2, 1, 1], i.e., the case where
users 1, 2 and 3 are associated to cache state 1, and request
the content F1, F2, and F3, respectively; users 4 and 5
are associated to cache state 2, and request F4 and F5,
respectively; user 6 is associated to cache state 3, and requests
F6; and user 7 is associated to cache state 4, and requests
F7. Following the multi-round delivery scheme of [25], [26],
the BS delivers the content in three rounds.

In the first round of delivery, the BS serves user 1 associated
to cache state 1, user 4 associated to cache state 2, user 6
associated to cache state 3, and user 7 associated to cache
state 4. For this round, the BS transmits the following four
subpackets.

F1,(2,3) ⊕ F4,(1,3) ⊕ F6,(1,2),

F1,(2,4) ⊕ F4,(1,4) ⊕ F7,(1,2),

F1,(3,4) ⊕ F6,(1,4) ⊕ F7,(1,3),

F4,(3,4) ⊕ F6,(2,4) ⊕ F7,(2,3).

After this round user 1, 4, 6, and 7 can successfully decode
their requested files using the content received from the BS
and the content stored in their own caches. The delivery time

corresponding to this round is (43)−(
(4−4)

3 )
(42)

= 4
6 .

Then, in the second round of delivery, the BS serves user 2
associated to cache state 1, user 5 associated to cache state 2.
As there is no active user associated to cache states 3 and 4,
for this round, the BS transmits the following four subpackets

F2,(2,3) ⊕ F5,(1,3), F2,(3,4),

F2,(2,4) ⊕ F5,(1,4), F5,(3,4).

After this round user 2 and 5 can successfully decode their
required file using the content received from the BS and
the content stored in their own caches. The delivery time

corresponding to this round is (43)−(
(4−2)

3 )
(42)

= 4
6

Then, in the final round of delivery, the BS only serves
user 3 associated to cache state 1. As there is no active user
associated to cache states 2, 3, and 4, for this round, the BS
transmits the following three subpackets

F3,(2,3), F3,(2,4), F3,(3,4).

After this round user 1 can successfully decode the required
file using the content received from the BS and the content



IEEE/ACM TRANSACTIONS ON NETWORKING 5

stored in their own cache. The delivery time corresponding

to this round is (43)−(
(4−1)

3 )
(42)

= 3
6 . This completes the content

delivery phase, which results in a delivery time of 11
6 .

Remark 1. For the case where multiple users request common
files, a reduced delivery time can be obtained by using the
delivery strategy proposed in [11] at each delivery round.

B. Metrics of interest

To capture the randomness in user activity, we consider —
for any given user-to-cache state association matrix G — the
averaging metric

T (G) ≜ EV[T (V)] =
∑
V

P (V)T (V), (1)

where P (V) is the probability of V given the user-to-cache
state association G, and where T (V) is the delivery time5

needed to complete the delivery of requested files given a
certain cache load vector V associated to matrix G. For any
cache load vector V such that sort(V) = L, the information-
theoretically optimal delivery time — achieved with the multi-
round delivery scheme [25], [26] — takes the form

T (L) =

Λ−t∑
λ=1

lλ

(
Λ−λ
t

)(
Λ
t

) . (2)

Thus, the average delay takes the form

T (G) =
∑
L∈L

P (L)T (L) =

Λ−t∑
λ=1

∑
L∈L

P (L)lλ

(
Λ−λ
t

)(
Λ
t

)
=

Λ−t∑
λ=1

E[lλ]

(
Λ−λ
t

)(
Λ
t

) , (3)

where L describes the set of all possible profile vectors L,
where P (L) is the probability of a profile vector L given
the user-to-cache state association G, and where E[lλ] is the
expected number of active users in the λ-th most loaded cache,
again given G.

Our interest is in finding the optimal user-to-cache associa-
tion that minimizes the average delay. This corresponds to the
following optimization problem.

Problem II.1:
min
G

T (G) (4)

subject to
Λ∑

i=1

gi,k = 1 ∀k ∈ [K]. (5)

C. Our contribution

In this work, we analyze a state-constrained coded caching
network of K cache-aided users with Λ cache states, when
users have different activity levels, and the association between
users and cache states is subject to an arbitrary grouping

5The time scale is normalized such that a unit of time corresponds to the
optimal amount of time needed to send a single file from the BS to the user,
had there been no caching and no interference.

strategy G. Our aim is to provide analytical bounds on the
performance. We will do so either in a manner that is numer-
ically tractable, or in the form of asymptotic approximations
that offer direct insight. The following are our contributions,
step by step.

• In Section III-A, for any arbitrary user activity level
vector p and any arbitrary user-to-cache state association
G,
– We derive upper and lower bounds on the average

delay T (G). These bounds can be evaluated in a
computationally efficient manner.

– We characterize the scaling laws of T (G) which take
clear and insightful forms.

– Based on the insights from the derived bounds, we
propose a new user-to-cache association algorithm that
seeks to minimize the average delay.

• In Section III-B, we analyze the special case of uniform
user activity statistics, and uniform user-to-cache state
association G. For this setting, we provide analytical
upper and lower bounds on the performance, and show
that the bounds have a bounded gap between them and
thus a bounded gap to the optimal. Then, we proceed to
characterize the exact scaling laws of T (G).

• In Section IV, we extend our analysis to the data-driven
setting, where — in designing the caching policy —
we are able to learn from the past S different demand
vectors. Using this bounded-depth user-request history,
we propose a heuristic user-to-cache state association
algorithm which is simple to implement and which we
prove here to be at most at a factor of logS

log log S from the
optimal. This factor, as we argue later below, remains less
than 3-4 for any reasonable scenario6, which is validated
numerically using synthetic data following the Pareto
principle.

• In Section V, we perform extensive numerical evaluations
that validate our analysis.

III. MAIN RESULTS: STATISTICAL APPROACH

In this section, we present our main results on the perfor-
mance of a coded caching network of K cache-aided users
and Λ cache states, where the user-activity levels follow an
arbitrary probability distribution p and where the association
between users and cache states is subject to an arbitrary
association strategy G.

We can see from (3) that for any given user-to-cache
state association G and user-activity statistics p, the exact
evaluation of (3) is computationally expensive especially for
large system parameters, as the creation of L is an integer
partition problem, and the cardinality of L is known to be
growing exponentially with system parameters K and Λ [29].

6If we consider a scenario where we assign caches to users once a day, and
assuming that independent demand vectors appear once every 30 minutes, then
the number S is at most 2× 24 = 48 which implies a gap of approximately
2.3. If instead we assign caches once a week, S becomes 7× 2× 24 = 336
and the gap is approximately 2.7. If this depth changes to a much larger
S = 12× 336 corresponding to a history window of 4 weeks, and a demand
vector — for those same K co-located users — every 10 minutes, then the
gap is bounded at 3.3.
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Motivated by this complexity, we here proceed to provide
computationally efficient bounds on the performance. After
doing so, we resort to asymptotic analysis of the impact of
G and p on the performance, and provide an insightful char-
acterization of the scaling laws of this performance. Finally,
based on the insights from these scaling laws, we propose a
heuristic user-to-cache state association algorithm that aims to
minimize the worst-case delivery time.

A. Performance analysis with arbitrary activity levels

In this subsection, we present the statistical analysis of our
problem for the general setting of an arbitrary user-to-cache
state association strategy G and an arbitrary activity level vec-
tor p. Crucial to our analysis for this setting will be the mean
µλ =

∑
k∈Gλ

pk and the variance σ2
λ =

∑
k∈Gλ

pk(1 − pk)
of the number of active users that are caching the content of
cache state λ ∈ [Λ]. Now we proceed to present our first result
which is the characterization of faster-to-compute analytical
bounds on the performance.

Theorem 1. In a state-constrained coded caching network of
Λ cache states, K cache-aided users with normalized cache
capacity γ and activity level vector p, the average delay
T (G) for a given user-to-cache state association strategy G
is bounded as follows

T (G)≤ Λ−t
1+t

(
A−

A−1∑
x=0

max

(
0, 1−Λ+

Λ∑
λ=1

F1(λ, x)

))
, (6)

T (G) ≥ Λ− t

1 + t

t

Λ− 1

(
A−

A−1∑
x=0

∑Λ
λ=1 F2(λ, x)

Λ

)
+

Λ− t

1 + t

Kp

Λ

Λ− t− 1

Λ− 1
, (7)

where t = Λγ, A = max
(
{|Gλ|}Λλ=1

)
, where Gλ is the set

of users caching the content of cache state λ,

F1(λ, x) =


0 if 0 ≤ x ≤ µλ − 1

Fbin

(
|Gλ|, µλ

|Gλ| , x
)

if µλ ≤ x ≤ |Gλ|
1 if x > |Gλ|,

(8)

F2(λ, x) =

{
Fbin

(
|Gλ|, µλ

|Gλ| , x
)

if 0 ≤ x ≤ µλ − 1

1 if x > µλ − 1,

(9)

where Fbin (n, q, x) =
∑x

i=0

(
n
i

)
qi (1− q)

n−i and where
µλ =

∑
k∈Gλ

pk.

Proof. The proof is deferred to Appendix A.

Remark 2. The bounds in Theorem 1 can be computed
in a computationally-efficient manner, as for each λ ∈ [Λ],
their evaluation only requires to compute the binomial cu-
mulative distribution function Fbin

(
|Gλ|, µλ

|Gλ| , x
)

for all
x ∈ [0, 1, 2, · · · , |Gλ|] of a random variable with |Gλ|

independent trials and µλ

|Gλ| success probability7.

Next, we proceed to our next result, which provides the
asymptotic analysis of the average delay T (G), in the limit
of large Λ and K. Let us quickly recall that µλ =

∑
k∈Gλ

pk
and σ2

λ =
∑

k∈Gλ
pk(1 − pk) are respectively the mean and

variance of the number of active users that are associated with
cache state λ.

Theorem 2. In a state-constrained coded caching network of
Λ cache states, K cache-aided users with normalized cache
capacity γ and activity level vector p, the average delay T (G)
for a given association strategy G scales as

T (G) = O

Kp

Λ
+

√√√√ Λ∑
i=1

(σ2
i + (µi − µ)2)

 Λ− t

1 + t

 ,

(10)
and

T (G) = Ω

(
Kp

Λ

Λ− t

1 + t

)
, (11)

where µ = 1
Λ

∑Λ
λ=1 µλ =

Kp

Λ .

Proof. This proof is deferred to Appendix B.

Furthermore we have the following.

Corollary 1. Any association strategy G that satisfies√∑Λ
i=1(σ

2
i + (µi − µ)2) = O

(
Kp

Λ

)
is order-optimal.

Proof. Since the lower bound in (11) is independent of the
association strategy G, this implies that the optimal average
delay T

∗
(corresponding to an optimal association Ĝ) is lower

bounded by

T
∗
= Ω

(
Kp(1− γ)

1 + t

)
. (12)

Therefore any association G for which the gap factor√∑Λ
i=1(σ

2
i + (µi − µ)2) scales as O

(
Kp

Λ

)
would be order

optimal as the scaling order of (10) yields O
(

Kp(1−γ)
1+t

)
, thus,

giving the exact scaling law of T (G) = Θ
(

Kp(1−γ)
1+t

)
.

Following the insights from Corollary 1, we now propose
an algorithm that solves Problem II.1.

1) Algorithm 1:
The algorithm aims to heuristically minimize

∑Λ
i=1(σ

2
i +

(µi − µ)2), and it works in K iterations, where for each
iteration the algorithm finds a user and cache state pair (k̂, λ̂)
in accordance to step 02 of this algorithm. Consequently user
k̂ is assigned cache state λ̂.

7In theory, Fbin

(
|Gλ|, µλ

|Gλ| , x
)

needs to be calculated for all values of
x ∈ [0, |Gλ|]. However, it is known that there exists a x̃ ∈ [0, |Gλ|], where
Fbin

(
|Gλ|, µλ

|Gλ| , x̃
)

≈ 1. By De Moivre-Laplace Theorem, it is known
that binomial distribution can be approximated by the normal distribution
in the limit of large |Gλ|, and the well-known 68–95–99.7 rule states that
x̃ << |Gλ|. Since Fbin

(
|Gλ|, µλ

|Gλ| , x
)

≈ 1 for any x ≥ x̃, both (8)
and (9), and consequently (6) and (7) can be quickly evaluated with high
accuracy.
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Algorithm 1
Input: p, K, and Λ
Output: G
Initialization: G← 0; K ← [K]
Step 01: while K ̸= ∅ do
Step 02: [λ̂, k̂]← arg min

λ∈[Λ],k∈K

∑Λ
i=1(σ

2
i + (µi − µ)2)

Step 03: gλ̂,k̂ ← 1

Step 04: K ← K\k̂
Step 05: end while

In Section V, we will verify that the bounds presented in
Theorem 1 are valid for any user-to-cache state association
strategy. We will also show that Algorithm 1 provides an effi-
cient user-to-cache state association that yields a performance
very close to the performance of optimal user-to-cache state
association.

B. Performance analysis with uniform activity level

In this subsection, we analyze a special setting where
users have a uniform activity level p, corresponding to the
equiprobable case of p1 = p2 · · · = pK = p. As is common,
we will also assume that I ≜ K

Λ is an integer8.

Lemma 1. In the presence of uniform activity level probabil-
ities p, the optimal user-to-cache state association policy is
the uniform one where each cache state is allocated to K/Λ
users.

Proof. We first note that (3) implies that the average delay
is minimized when [E[l1], E[l2], . . . , E[lΛ]] is uniform. In the
case where we have uniform activity levels, setting |Gλ| = I
∀λ ∈ [Λ] provides uniformity.

We now proceed to provide computationally efficient an-
alytical bounds on the average delay T (G) achieved by the
uniform association policy, and subsequently to provide the
exact scaling laws of this policy.

Theorem 3. In a state-constrained coded caching network of
Λ cache states, K cache-aided users with normalized cache
capacity γ and activity level of p, the average delay T (G)
corresponding to the uniform user-to-cache state association
strategy G is bounded by

T (G) ≤ Λ− t

1 + t
E[l1] (13)

and

T (G) ≥ Λ− t

1 + t

(
E[l1]t

Λ− 1
+

Kp

Λ

Λ− t− 1

Λ− 1

)
(14)

where

E[l1] = I −
I−1∑
j=0

(
j∑

i=0

(
I

i

)
pi (1− p)

I−i

)Λ

. (15)

Proof. The proof is deferred to Appendix C.

8In the case where K
Λ

is not an integer, it was shown in [26] that the
optimal strategy is to set I = ⌊K

Λ
⌋, and associate the remaining K − IΛ

user cache states randomly (without replacement), with the expense of an
additional delivery round.

Furthermore, the following shows that the bounds remain
relatively close to the exact T (G).

Corollary 2. For any fixed γ ≤ 1− 1
Λ , the multiplicative gap

between the analytical upper bound (AUB) in (13) and the
analytical lower bound (ALB) in (14), is at most Λ−1

t < 1/γ.
This allows us to identify the exact T (G) within a factor that
is independent of both Λ as well as K.

Proof. The proof follows directly from the fact that
Λ−t
1+t

E[l1]t
Λ−1 ≤ T (G) ≤ Λ−t

1+tE[l1].

Remark 3. We note that the range of γ ≤ 1 − 1
Λ covers in

essence the entire range of γ and most certainly covers the
range of pertinent γ values.

Our proposed bounds in Theorem 3 identify that E[l1] plays
the main role in defining the performance of the system.
Therefore, it is sufficient to characterize the exact scaling laws
of E[l1] in order to obtain the exact scaling laws of the average
delay. We now proceed to exploit the bounds in Theorem 3,
in order to provide in a simple and insightful form, the exact
scaling laws of performance. The following theorem provides
the asymptotic analysis of the average delay T (G), in the limit
of large Λ and K.

Theorem 4. In a coded caching setting with Λ cache states
and K cache-aided users with equal cache size γ and activity
level p, the average delay T (G) corresponding to the uniform
association strategy G scales as

T (G) =


Θ
(

Kp(1−γ)
1+Λγ

)
if Ip = Ω(log Λ)

Θ

(
Kp(1−γ) log Λ

(1+Λγ)Ip log log Λ
Ip

)
if Ip∈

[
Ω
(

1
polylogΛ

)
,o(logΛ)

]
.

(16)

Proof. The proof is deferred to Appendix D.

In identifying the exact scaling laws of the problem, Theo-
rem 4 nicely captures the following points.

• It highlights that randomness in users activity can bring
an additional reduction in the coding caching gain.

• It reveals that coding caching gain of 1 + Λγ, which
is already less than 1 + Kγ due to subpacketization
bottleneck, is only achievable when Kp

Λ = Ω(log Λ).
• It shows that when Kp

Λ =o(logΛ), we expect an additional
reduction in the coding caching gain. The extent of this
reduction can now be readily computed by using (16).
For example, it scales as Θ

(
(1+Λγ) log log Λ

log Λ

)
at Kp =

Θ(Λ), and as Kp increases, the coding caching gradually
increases, and ceases to scale when Kp = Ω(Λ log Λ).

IV. MAIN RESULTS: DATA-DRIVEN APPROACH

In this section, we will extend our analysis to the data-
driven setting. Unlike in the previous section where we used a
predetermined set of statistics p, we will now exploit the users’
content request histories to define the user activity levels as
well as correlations. To proceed with our analysis we need to
define the time scales involved. In our setting, the entire time
horizon is equal to the time it takes between two user-to-cache
associations. This time horizon will be here subdivided into
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S independent time slots, where one time slot corresponds
to the amount of time that elapses from the appearance of
one demand vector to the next demand vector. This dynamic
time refinement captures the amount of memory of the system,
and will capture how far back in history we can learn from
regarding user activities.

Example 3. In a scenario where users are assigned cache
states once a week, then the time frame is equal to one week
which is equal to 10080 minutes. In this same example, if we
assume that independent demand vectors appear once every
10 minutes, then the number of independent time slots S is
simply S = 10080

10 = 1008.

The main assumption in our data-driven approach is that
each user’s activity is predictable using their content request
history as user’s activity is highly correlated in time. For
example let us suppose that we record the content request
history of an office worker, and find out that the user is mostly
active from 1pm to 2pm (i.e., lunch break) in the week days.
Then, we conclude that we expect a similar activity pattern
in the upcoming weeks from this user. Consequently, our aim
will be to associate users to one of the cache states based on
this prior user activity data.

In our setting, users’ requests are served simultaneously,
starting at the very beginning of each time slot. Any content
request received during a time slot is put on hold, to be served
in the beginning of the next time slot. This justifies the use of
the term dynamic duration of each time slot s ∈ [S], where
this duration will be equal to the time needed to transmit all
files that were requested during the previous time slot from
the BS to the users. We can now proceed with the details of
our data-driven approach.

Let D ∈ [0, 1]S×K denote the user activity matrix, of
which the (s, k) element ds,k is equal to 1 if user k requests
content at time slot s, else ds,k = 0. Then, for a given
user-to-cache state association G, the cache load vector for
time slot s ∈ [S] is denoted as Vs = [vs,1, . . . , vs,Λ], where
vs,λ =

∑K
k=1 gλ,kds,k is the number of active users at time

slot s that are storing the content of cache state λ ∈ [Λ]. The
profile vector at time slot s is denoted as Ls = [ls,1, . . . , ls,Λ],
which is the sorted version of the cache load vector Vs in
descending order. The average delay for a given user-to-cache
state association G and a given user activity matrix D, is given
by

T (G) ≜
1

S

S∑
s=1

Λ−t∑
λ=1

ls,λ

(
Λ−λ
t

)(
Λ
t

) . (17)

Unlike in the statistical approach of Section III, where an
enormous number of possible profile vectors rendered the
exact calculation of T (G) computationally intractable, in this
current data-driven setting, the calculation of T (G) is direct
even for large system parameters. This will allow us to design
an algorithm that will find a user-to-cache association policy
that is provably order-optimal.

An additional difference of the proposed data-driven prob-
lem formulation is that now this formulation inherits a crucial
property of exploiting users’ activity correlation in time.
As previously discussed, users with similar request patterns

will be associated with different cache states as this would
guarantee more multicasting opportunities during the delivery
phase. On the other hand, users that rarely request files at the
same time, can be allocated the same cache state without any
performance deterioration.

We now proceed to find an order-optimal user-to-cache state
association Ĝ corresponding to Problem II.1. At this point we
note that it is computationally intractable to brute-force solve
Problem II.1 for large system parameters K, Λ and S, since
there are ΛK possible user-to-cache state associations, corre-
sponding to an exhaustive-search computational complexity of
O
(
SΛK+1

)
. Under these circumstances, the most common

approach is to use computationally efficient algorithms to
obtain an approximate solution that is away from the optimal
solution within provable gaps. In the following subsection, we
will present two such computationally efficient algorithms.

A. Computationally efficient algorithms & bounds on the
performance

We start with the following lemma which lower bounds the
optimal average delay T

∗
, optimized over all policies G.

Lemma 2. The optimal average delay, optimized over all
association policies, is lower bounded by

T
∗ ≥ 1

S

∑
s∈[S]

(⌊
ds
Λ

⌋
+ 1

)
Λ− t

1 + t
− 1

S

∑
s∈S2

(
Λ−As

t+1

)(
Λ
t

) , (18)

where ds =
∑

k∈[K] ds,k, As = ds−Λ
⌊
ds

Λ

⌋
, and where S2 ⊆

[S] is the set of time slots for which As < Λ− t.

Proof. The proof is deferred to Appendix E.

The bound provided in Lemma 2 will serve as a benchmark
for numerical performance evaluation of various user-to-cache
state association algorithms.

We now proceed to present our computationally efficient
algorithms. In the following, G will denote the set form of the
user-to-cache state association matrix G, where (λ, k) ∈ G if
gλ,k = 1. Similarly, G(λ) = {k : (λ, k) ∈ G} will denote the
set of users that are storing the content of cache state λ ∈ [Λ].
Note that there is a direct correspondence between G and G,
and the two terms can be used interchangeably.

1) Algorithm 2:
Problem II.1 belongs to the family of well-known vector

scheduling problems [30], [31], whose aim is to optimally as-
sign each of the S-dimensional K jobs (i.e., the S-dimensional
K vectors that are drawn from the columns of the user activity
matrix D) to one of the machines λ ∈ [Λ] (i.e., cache states)
with the objective of minimizing the maximum machine load
(i.e., maxs∈[S] ls,1), or with the objective of minimizing the
norm of the machine loads. One can see that the vector
scheduling problem is the generalization of a classical load
balancing problem, where each job has a vector load instead
of a scalar load.

We adopt the vector scheduling algorithm of [31, Section II-
B3] to find the optimal user-to-cache state association within
provable gaps. Algorithm 2 consists of three parts. The first
part is the data transformation, where the user activity matrix
D is scaled according to step 00. The second part (steps 01 to
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08) is the deterministic user-to-cache state association, where
for each user k ∈ [K], we find the cache state λ̂ ∈ [Λ]
according to step 02. If the scaled load (cf. step 03) of cache
λ̂ after the assignment of user k is less than 30 logS

log log S + 1 for
all time slots s ∈ [S], then user k is assigned to cache state
λ̂. Otherwise user k is not assigned to any of the cache states,
and is instead added to a set of residual users denoted by Kr,
and will be associated to a cache state later in the third part
of Algorithm 2. The outcome of the second part is the user-
to-cache state association G1 for users in [K]/Kr. Next, the
third part (steps 09 to 13) completes the association of the
residual users in Kr. Each user k ∈ Kr is assigned to cache
λ̂ ∈ [Λ] according to step 11. The outcome of this part is the
user-to-cache state association G2 for users in Kr. The final
user-to-cache state association strategy for all users is then
given by G = G1 ∪ G2.

Algorithm 2
Input: D, K, Λ, and S
Output: G
Initialization: G1 ← ∅; G2 ← ∅; Kr ← ∅; α = 10 logS

log log S

Step 00: d̄s,k ← min
(

Λ ds,k∑
i∈[K] ds,i

, 1
)
∀ s ∈ [S], k ∈ [K]

Step 01: for k from 1 to K do

Step 02: λ̂← argmin
λ∈[Λ]

S∑
s=1

Λ∑
λ=1

(
1
α

)α
Λ

∑
i∈(G1∪(λ,k))

d̄s,i−
∑

j∈(G1∪(λ,k))λ

d̄s,j

Step 03: if
∑

k∈(G1∪(λ̂,k))λ̂

d̄s,k < 3α+ 1 ∀ s ∈ [S]

Step 04: G1 ← G1 ∪ (λ̂, k)
Step 05: else
Step 06: Kr ← Kr ∪ k
Step 07: end if
Step 08: end for
Step 09: for c from 1 to |Kr| do
Step 10: k = Kr(c)

Step 11: λ̂← argmin
λ∈[Λ]

(
max
s∈[S]

∑
j∈(G2∪(λ,k))λ

d̄s,j

)
Step 12: G2 ← G2 ∪ (λ̂, k)
Step 13: end for
Step 14: G ← G1 ∪ G2

Theorem 5. When there are at least Λ requests at each time
slot s ∈ [S], the average delay T (G) corresponding to the
user-to-cache state association G obtained from Algorithm 2
is bounded by

T (G) = O

(
logS

log logS
T

∗
)
, (19)

which proves that Algorithm 2 is at most a factor O
(

logS
log log S

)
from the optimal.

Proof. The proof is deferred to Appendix F.

Proposition 1. The time complexity of Algorithm 2 is
O(Λ2KS).

Proof. The first part of Algorithm 2 runs for K iterations and
in each iteration, the evaluation at step 02 takes at most Λ2S
basic operations. Then, the second part of Algorithm 2 runs

for at most K iterations and in each iteration, the evaluation
at step 11 takes at most ΛS basic operations. Thus the time
complexity of Algorithm 2 is O(Λ2KS).

Directly from above, we can see that Algorithm 2 is
significantly faster than the exhaustive search algorithm for
which as we recall the time complexity was O

(
SΛK+1

)
.

2) Algorithm 3:
The main intuition behind Algorithm 3 is to exploit the

fact that both
(
Λ−λ
t

)
and ls,λ are non-increasing with λ; a

fact that directly follows from (17). Thus, the optimal user-
to-cache state association strategy is the one that minimizes
the variances of the cache load vectors Vs over all time slots.
Algorithm 3 aims to heuristically minimize the sum of squares
of cache populations over all time slots, which is equivalent
to minimizing the sum of variances of the cache load vectors
over all time slots. Algorithm 3 works in K iterations. At
each iteration, it finds a pair of a user k̂ and a cache state λ̂
according to step 02 of Algorithm 3 and assigns user k̂ to
cache state λ̂.

Algorithm 3
Input: D, K, and Λ
Output: G
Initialization: G ← ∅; K ← [K]
Step 01: while K ̸= ∅ do

Step 02: [λ̂, k̂]← arg min
λ∈[Λ],k∈K

∑
s∈[S]

∑
i∈[Λ]

( ∑
j∈(G∪(λ,k))(i)

ds,j

)2

Step 03: G ← G ∪ (λ̂, k̂)
Step 04: K ← K\k̂
Step 05: end while

Proposition 2. The time complexity of Algorithm 3 is
O(Λ2K2S).

Proof. Algorithm 3 runs for K iterations and in each iteration,
the evaluation at step 02 takes at most KΛ2S basic operations.
Thus the time complexity of Algorithm 3 is O(Λ2K2S).

We can see that the time complexity of Algorithm 3 is
K times higher than the time complexity of Algorithm 2.
However, in Section V we numerically show that Algorithm
3 performs better than Algorithm 2.

V. NUMERICAL VALIDATION

In this section, we numerically validate our analytical
bounds, and evaluate the performance of the different proposed
user-to-cache state association algorithms.

A. Statistical approach
We first evaluate our proposed analytical bounds in The-

orem 1 and Theorem 3 for the statistical setting using
the sampling-based numerical (SBN) approximation method,
where for any given G, we generate a sufficiently large set L1

of randomly generated profile vectors L based on user activity
vector p and where we subsequently approximate T (G) as

T (G) ≈ 1

|L1|
∑
L∈L1

T (L), (20)



10 IEEE/ACM TRANSACTIONS ON NETWORKING

10 20 30 40 50 60 70 80 90 100

20

40

60

80

10 20 30 40 50 60 70 80 90 100

10

20

30

Fig. 2: Analytical upper bound (AUB) from (6) vs. analytical lower
bound (ALB) from (7) vs. sampling-based numerical (SBN) approx-
imation in (20) (for |L1| = 20000, p in (21), and random user-to-
cache state association).

where T (L) is defined in (2). For our evaluations involving
an arbitrary user activity level vector p, we adopt the Pareto
principle to generate the synthetic user activity level vector
p. According to the Pareto principle, 80% of consequences
(content requests) come from 20% of causes (users). To be
exact, each user k ∈ [K] has a request with probability

pk =



1∑5
i=1 i−2.7 if k = [1, 2, · · · , 0.2K]

2−2.7∑5
i=1 i−2.7 if k = [0.2K + 1, 0.2K + 2, · · · , 0.4K]

3−2.7∑5
i=1 i−2.7 if k = [0.4K + 1, 0.4K + 2, · · · , 0.6K]

4−2.7∑5
i=1 i−2.7 if k = [0.6K + 1, 0.6K + 2, · · · , 0.8K]

5−2.7∑5
i=1 i−2.7 if k = [0.8K + 1, 0.8K + 2, · · · ,K].

(21)
The intuition behind (21) is that users are divided into 5
equipopulated groups, and the users that belong to the same
group have the same activity levels.

The activity levels corresponding to these 5 groups then
follow the Power law with parameter α = 2.7, and with these
carefully selected parameters, the user activity pattern satisfies
the Pareto principle (80/20 rule) [32].

In Figure 2, we compare the analytical bounds in (6) and (7)
for an arbitrary activity level vector p, where this compari-
son uses the sampling-based numerical (SBN) approximation
which is done for |L1| = 20000 and random user-to-cache
state association. Subsequently, Figure 3 compares the analyt-
ical bounds in (13) and (14) for uniform user activity level,
where again the comparison is with sampling-based numerical
(SBN) approximation which is done for |L1| = 20000 and
uniform user-to-cache state association. Both figures reveal
the proposed analytical bounds to be very tight, where in
particular, analytical upper bounds are indeed very close to
the exact performance.

Next, we evaluate the performance of our first proposed
user-to-cache state association algorithm (Algorithm 1) by
comparing it with the numerical lower bound (NLB) on the
delay T

∗
corresponding to the optimal user-to-cache state

association Ĝ of Lemma 2. Figure 4 compares SBN approx-
imation (once again done for |L1| = 20000) for the user-
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Fig. 3: Analytical upper bound (AUB) from (13) vs. analytical
lower bound (ALB) from (14) vs. sampling-based numerical (SBN)
approximation in (20) (for |L1| = 20000 and uniform user-to-cache
state association).
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Fig. 4: SBN from (20) of Algorithm 1 vs. Numerical lower bound
(NLB) on T

∗
from (18) (for |L1| = 20000 and p in (21) ).

to-cache state association obtained from Algorithm 1 with
the numerical lower bound (NLB) on T

∗
in (18). Again we

observe that the performance corresponding to the user-to-
cache state association G obtained from Algorithm 1 is very
close to NLB for T

∗
.

Figure 5 emphasizes on how the knowing and exploiting
the user activity can play a positive role in dealing with the
subpacketization bottleneck of the coded caching. Figure 5
compares sampling-based numerical (SBN) approximation
in (20) (for |L1| = 20000 and uniform user-to-cache state
association) for several user activity levels. As expected,
reducing the number of cache states leads to the increase
in the average delay. An important observation that we can
draw from this result is that the actual deterioration due to
the limit on subpacketization is significant when the user
activity level is high. For example when p = 1 (i.e., MAN
setting), reducing the number of cache states from Λ = 1500
(required subpacketization of ≈ 10210) to Λ = 50 (required
subpacketization of ≈ 106) increases the delay by 25.16
times9. However, when p = 0.2, a similar reduction in the
number of cache states increases the delay by only 7.4 times.

9Note that this is equal to the ratio between the DoFs, i.e., 151/6.
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Fig. 5: Sampling-based numerical (SBN) approximation in (20) (for
|L1| = 20000 and uniform user-to-cache state association).
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Fig. 6: T (G) of Algorithm 2 and Algorithm 3 from (17) vs. lower
bound (LB) on T

∗
from (18).

This highlights the importance of analyzing the coded caching
in the presence of such heterogeneity in order to understand
the actual gains of the coded caching.

B. Data-driven approach

For the data-driven approach, we synthetically generate a
user activity matrix D following the Pareto principle. To be
exact, we assume that user k ∈ [K] develops a request (i.e., is
active) with probability pk as in (21) at each time slot s ∈ [S].
Then, for each time slot s ∈ [S], we pick a random number
rk between 0 and 1 for each user k ∈ [K], and set ds,k = 1 if
rk ≤ pk, and ds,k = 0 if rk > pk, which yields a user activity
matrix D satisfying the Pareto principle [32].

In Figure 6, we compare the average delay T (G) in (17)
corresponding to the user-to-cache state association obtained
from Algorithm 2 and Algorithm 3 with the lower bound
(LB) on T

∗
in (18). It turns out that both algorithms yield

performances that are over close to the optimal LB on T
∗
,

with Algorithm 3 having a slight advantage over Algorithm
2.

In Figure 7, we highlight the importance of exploiting the
user-activity patterns and finding an efficient user-to-cache
state association. Figure 7 compares T (G) values for random
user-to-cache state association, and the user-to-cache state
associations obtained from Algorithm 2 and Algorithm 3,
where the lower bound (LB) of (18) serves as a benchmark.
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Fig. 7: T (G) of random user-to-cache state association, the user-to-
cache state associations obtained from Algorithm 2, and Algorithm
3 from (17), and the lower bound (LB) of (18).
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Fig. 8: T (G) of random user-to-cache state association, the user-to-
cache state associations obtained from Algorithm 2, and Algorithm
3 from (17).

It turns out that both algorithms outperform random user-to-
cache state association, and the corresponding delay perfor-
mances perform very close to the optimal LB on T

∗
. If the

time horizon S is subdivided into a small number of indepen-
dent time slots, Algorithm 3 further outperforms Algorithm 2.
As the time complexity of Algorithm 2 is O(Λ2KS), and
the time complexity of Algorithm 3 is O(Λ2K2S), one can
perceive a trade-off between the number of users and the
reduction in the delay by adopting Algorithm 3 instead of
Algorithm 2. Let us also note that increasing S to reflect
having more frequent information on the dynamics of the user
activity patterns, diminishes the performance gap between the
two algorithms. In a nutshell, in the expense of an increase by
a factor of K in the time complexity, it is worth adopting
Algorithm 3 over Algorithm 2 when the time horizon is
divided into a smaller number of independent time slots.

In our final evaluation, we validate our assumption that de-
signing the user-to-cache state associations using past data can
achieve similar performance superiority over random user-to-
cache state association. For the following results, we generate
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two user activity matrices Dtrain and Dtest following the same
Pareto principle approach defined above. We use Dtrain to
obtain the user-to-cache state associations from Algorithm
2 and Algorithm 3. Then, we use Dtest to calculate the
performance. Figure 8 compares T (G) values for random
user-to-cache state association, and the user-to-cache state
associations obtained from Algorithm 2 and Algorithm 3.
We can see that both algorithms outperform random user-to-
cache state association, with once again Algorithm 3 having
a slight advantage over Algorithm 2.

VI. CONCLUSIONS

In this work we analyzed coded caching networks with finite
number of cache states and a user-to-cache state association
subject to a grouping strategy in the presence of heterogeneous
user activity. Even though coded caching techniques rely
on the assumption of having enough number of users to
provide its theoretically promised gains, all the earlier works
ignored the fact of heterogeneity in user activities, which in
our opinion has direct practical ramifications, as it captures
practical wireless networks more accurately.

We first presented a statistical analysis of the average
worst-case delivery performance of state-constrained coded
caching networks, and provided bounds and scaling laws under
the assumption of probabilistic user-activity levels. We also
proposed a heuristic user-to-cache state association algorithm
with the ultimate goal of minimizing the average delay.

Next, we extended our analysis to the data-driven setting,
where we were able to learn from the past S different demand
vectors in designing the caching policy. By exploiting this
bounded-depth user request history, the emphasis then was
placed on finding the optimal user-to-cache state association,
as computing the average delay for any given data is trivial. We
proposed two algorithms for finding the optimal user-to-cache
state association strategy, with the first algorithm providing the
optimal within a constant gap, and with the second algorithm
numerically outperforming the first one.

For both aforementioned settings, the results highlighted the
essence of exploiting the user activity level, and the importance
of carefully associating users to cache states based on their
activity patterns.

APPENDIX

A. Proof of Theorem 1

Exploiting the fact that in (3), both
(
Λ−λ
t

)
and E[lλ] are

non-increasing with λ, the average delay T (G) is bounded by

T (G) ≤
Λ−t∑
λ=1

E[l1]

(
Λ−λ
t

)(
Λ
t

) (a)
= E[l1]

(
Λ

t+1

)(
Λ
t

) = E[l1]
Λ− t

1 + t
, (22)

and

T (G)
(b)

≥
E[l1]

(
Λ−1
t

)
+
∑Λ−t

λ=2
Kp−E[l1]

Λ−1

(
Λ−λ
t

)(
Λ
t

)
(c)
= E[l1]

(
Λ−1
t

)(
Λ
t

) +
Kp − E[l1]

Λ− 1

(
Λ−1
t+1

)(
Λ
t

)
=

Λ− t

1 + t

(
E[l1]t

Λ− 1
+

Kp

Λ

Λ− t− 1

Λ− 1

)
, (23)

where in steps (a) and (c), we inherit the the column-sum
property of Pascal’s triangle yielding

∑n
k=0

(
k
t

)
=
(
n+1
t+1

)
,

while in step (b), we have10 Kp =
∑Λ

λ=1 E[lλ], and the fact
that uniformity in L leads to the minimum T (G).

Next, to complete the proof, we proceed to derive the
expected number of active users that are storing the content
of the most loaded cache state (i.e., E[l1]), which is given by

E[l1] =

A−1∑
x=0

P [l1 > x] =

A−1∑
x=0

(1− P [l1 ≤ x]) , (24)

where A = max
(
{|Gλ|}Λλ=1

)
, Gλ is the set of users caching

the content of cache state λ, and P [l1 ≤ x] is the probability
that number of active users storing the content of the most
loaded cache state are less than or equal to x. From [33,
Proposition 3], we have

P [l1 ≤ x] ≥ max

(
0, 1− Λ +

Λ∑
λ=1

Fvλ(x)

)
(25)

and

P [l1 ≤ x] ≤
∑Λ

λ=1 Fvλ(x)

Λ
, (26)

where Fvλ(x) is the probability that no more than x users that
are caching the content of cache state λ ∈ [Λ] are active (i.e.,
P [vλ ≤ x]). Then E[l1] is bounded by

E[l1] ≤ A−
A−1∑
x=0

max

(
0, 1− Λ +

Λ∑
λ=1

Fvλ
(x)

)
(27)

and

E[l1] ≥ A−
A−1∑
x=0

∑Λ
λ=1 Fvλ(x)

Λ
. (28)

For each cache state λ ∈ [Λ], the corresponding random
variable vλ follows the Poisson binomial distribution. Using
Hoeffding’s inequalities [34, Theorem 2.1], Fvi(x) is bounded
by

Fvλ(x) ≥

{
0 for 0 ≤ x ≤ µλ − 1

Fbin

(
|Gλ|, µλ

|Gλ| , x
)

for µλ ≤ x ≤ |Gλ|
(29)

and

Fvλ(x) ≤

{
Fbin

(
|Gλ|, µλ

|Gλ| , x
)

for 0 ≤ x ≤ µλ − 1

1. for x > µλ − 1,

(30)
where µλ =

∑
k∈Gλ

pk is the expected number active users
that are storing the content of cache state λ ∈ [Λ] and
Fbin (n, q, x) =

∑x
i=0

(
n
i

)
qi (1− q)

n−i is the Binomial cu-
mulative distribution function.

Finally, the upper bound in (6) can be obtained from (22),
(27), and (29); and the lower bound in (7) can be obtained
from (23), (28), and (30).

10It straightforward to see that
∑

λ∈[Λ]

E[lλ] =

K∑
i=0

∑
L∈L:i=

∑
j∈[Λ]

lj

∑
λ∈[Λ]

lλP (L) =
K∑
i=0

∑
L∈L:i=

∑
j∈[Λ]

lj

iP (L) = Kp.
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B. Proof of Theorem 2

From (22) and (23), we have,

T (G) =O

(
E[l1]

Λ− t

1 + t

)
, (31)

and

T (G) = Ω

(
Λ− t

1 + t

E[l1]t

Λ− 1

)
. (32)

As t
Λ−1 ≈ γ is a constant, we get the exact scaling law of

T (G), which is given by

T (G) = Θ

(
E[l1]

Λ− t

1 + t

)
. (33)

We know from [35, Proposition 1] that E[l1] is bounded by

1

Λ

Λ∑
λ=1

µλ ≤ E[l1] ≤
1

Λ

Λ∑
λ=1

µλ

+

√√√√√Λ−1
Λ

Λ∑
λ=1

σ2
λ+

(
µλ−

1

Λ

Λ∑
λ=1

µλ

)2
, (34)

where µλ =
∑

k∈Gλ
pk and σ2

λ =
∑

k∈Gλ
pk(1− pk) are the

mean and the variance of the number of active users that are
caching the content of cache state λ ∈ [Λ] respectively. After
defining a new parameter µ = 1

Λ

∑Λ
λ=1 µλ, we have

T (G) =O

µ+

√√√√ Λ∑
i=1

[σ2
i + (µi − µ)2]

 Λ− t

1 + t

 , (35)

and

T (G) = Ω

(
µ
Λ− t

1 + t

)
. (36)

This concludes the proof of Theorem 2.

C. Proof of Theorem 3

We start our proof by deriving the expected number of active
users that are storing the content of the most loaded cache state
(i.e., E[l1]). Assuming that each user independently requests
a content with probability p, the probability that no more than
x out of I users are active and storing the content of cache
state λ ∈ [Λ] is given by

Fvλ(x) =

x∑
i=0

(
I

i

)
pi (1− p)

I−i
. (37)

Then, the probability that l1 (i.e., max(V), the maximum
number of active users among all caches) is less than or equal
to j, is equal to the probability of the event vλ ≤ j, ∀ λ ∈ [Λ],
and given by

P [l1 ≤ x] =

Λ∏
λ=1

Fvλ(x) =

(
x∑

i=0

(
I

i

)
pi (1− p)

I−i

)Λ

.

(38)
Now, we can characterize E[l1] as follows

E[l1]=

I−1∑
x=0

(1−P [l1 ≤ x])=I−
I−1∑
x=0

(
x∑

i=0

(
I

i

)
pi(1−p)I−i

)Λ

.

(39)
Finally, we obtain the upper and lower bounds in Theorem

3 by combining (22) and (23) with (39), respectively.

D. Proof of Theorem 4

To prove Theorem 4, we will follow a similar approach as
in [36]. For each cache state λ ∈ [Λ], we denote Yλ to be an
indicator random variable, which is equal to 1 if vλ ≥ kα,
and it is equal to 0 otherwise. It immediately follows that
E[Yλ] = P [vλ ≥ kα], ∀λ ∈ [Λ]. Let Y =

∑Λ
λ=1 Yλ be the

sum of the indicators over all cache states. Then, we have

E[Y ] = E

[
Λ∑

λ=1

Yλ

]
=

Λ∑
λ=1

E [Yλ] = ΛP [vλ ≥ kα]. (40)

From [36, Section 2], we inherit the following properties that
are drawn from the outcomes of Markov’s inequality and
Chebyshev’s inequality

P [Y = 0] =

{
1− o(1) if log(E[Y ])→ −∞
o(1) if log(E[Y ])→∞.

(41)

Consequently, the probability that there exists at least one
cache state λ for which the number of active users vλ is at
least kα is given by

P [Y ≥ 1] =

{
o(1) if log(E[Y ])→ −∞
1− o(1) if log(E[Y ])→∞.

(42)

We now proceed with the following results which are crucial
for the derivation of the asymptotics of E[l1].

Lemma 3 ( [36, Lemma 2] - adaptation). For a positive
constant c, if Ip+ 1 ≤ x ≤ (log I)

c, then

P [vλ ≥ x] = ex(log Ip−log x+1)−Ip+O(log(2)I) (43)

and if x = Ip + o
(
(p(1− p)I)

2
3

)
and z = x−Ip√

p(1−p)I
tends

to infinity, then

P [vλ ≥ x] = e−
z2

2 −log z−log
√
2π+o(1) (44)

Proof. The result comes directly from [36, Lemma 2].

Lemma 4. In a K-user Λ-cache state setting where each user
requests a content with probability p, the probability that the
maximum number of active users among all caches is less than
or equal to kα, takes the form

P [l1 ≥ kα] =

{
o (1) if α > 1

1− o (1) if 0 < α < 1,
(45)

for

kα =



Ip+
√
2αIp(1− p) log(Λ), if Ip = ω

(
(log Λ)

3
)(

1+α
√

2 log Λ
Ip

)
Ip, if Ip∈ [ω(logΛ) ,O(polylogΛ)]

(α+ e− 1) Ip, if Ip = Θ(log Λ)

log Λ

log log Λ
Ip

(
1+α

log(2) log Λ
Ip

log log Λ
Ip

)
, if Ip∈

[
Ω
(

1
polylogΛ

)
,o(logΛ)

]
.

(46)

Proof. We begin the proof for the case of Ip=ω
(
(log Λ)

3
)

.

Let kα = Ip +
√

2αIp(1−p) log Λ, then from (40) and (44),
we have

log(E[Y ]) = log Λ− z2

2
− log z − log

√
2π + o(1)

= log Λ

(
1−α− log2α+ log(2) Λ

2 log Λ

)
−log

√
2π+o(1). (47)
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Using (42), we conclude the proof for this case as for Λ→∞,
we have

log(E[Y ]) −→

{
−∞ if α > 1

∞ if 0 < α < 1.
(48)

Next, we proceed with the case of Ip ∈
[ω (log Λ) , O(polylog(Λ))]. We first define g ≜

O (polylog(Λ)). Then, assuming that kα =
(
1 + α

√
2
g

)
Ip

and Ip = g log(Λ), from (40) and (43), we have

log(E[Y ])=log Λ+kα (log Ip−log kα+1)−Ip+O
(
log(2)I

)
= logΛ− kα log

(
1 + α

√
2

g

)
+ kα − Ip+O

(
log(2) I

)
(a)
= logΛ−kαα

√
2

g

(
1−α

√
1

2g
+o

(
α

√
2

g

))
+ αIp

√
2

g

+O
(
log(2)I

)
=logΛ

(
1−α2(1+o (1))+(1−o (1))α3

√
2

g
+O

(
log(2)I

log Λ

))
,

(49)
where in step (a), we used the Maclaurin series expansion of
the logarithm function, i.e., log(1 + x) = x− 0.5x2 + o(x2).
Using (42), we conclude the proof for this case as for Λ→∞,
log(E[Y ]) converges to (1−α2) log Λ, and we obtain

log(E[Y ]) −→

{
−∞ if α > 1

∞ if 0 < α < 1.
(50)

Now, we proceed with the case of Ip = Θ(log Λ). Assuming
that kα = (α+ e− 1) Ip and Ip = logΛ, from (40) and (43),
we obtain
log(E[Y ])=logΛ+kα(log(Ip)−log kα+1)−Ip+O

(
log(2)I

)
= kα (1−log (α+ e− 1)) +O

(
log(2)I

)
= logΛ

(
(α+e− 1) (1−log (α+e−1)) +O

(
log(3)Λ

p log Λ

))
.

(51)
Using (42), we conclude the proof for this case as for Λ→∞,
we have

log(E[Y ]) −→

{
−∞ if α > 1

∞ if 0 < α < 1
(52)

Finally, we consider the case of Ip ∈[
Ω
(

1
polylog Λ

)
, o(log(Λ))

]
. We first define

g ≜ O (polylog(Λ)). Then, assuming that kα =
log Λ
log g

(
1 + α log(2) g

log g

)
and Ip = log(Λ)

g , from (40) and
(43), we obtain

log(E[Y ])=logΛ+kα(log(Ip)−log kα+1)− Ip+O
(
log(2)I

)
=log Λ+kα

(
log(2)Λ−log g−log(2)Λ+log(2)g

−log

(
1+α

log(2) g

log g

)
+1

)
− log(Λ)

g
+O

(
log(2)I

)
(a)
= logΛ+kα

(
1−logg+log(2) g−

[
α
log(2)g

log g
− 1

2

(
α
log(2)g

log g

)2

+ o

((
α
log(2) g

log g

)2)])
− log(Λ)

g
+O

(
log(2) I

)
=

logΛ log(2) g

log g

(
1− α+ α

log(2) g

log g
+

1

log(2) g
− log g

g log(2) g

+O

(
log(2) I log g

log Λ log(2) g

)
+ α2 log

(2) g

(log g)2

[
− 0.5+0.5

(
α
log(2) g

log g

)

− o

(
α
log(2) g

log g

)
− o(1)

])
, (53)

where in step (a), we used the Maclaurin series expansion of
the logarithm function, i.e., log(1 + x) = x− 0.5x2 + o(x2).
Using (42), we conclude the proof for this case as for Λ→∞,
log(E[Y ]) converges to log Λ log(2) g

log g (1− α), and we obtain

log(E[Y ]) −→

{
−∞ if α > 1

∞ if 0 < α < 1
(54)

This concludes the proof of Lemma 4.

With Lemma 4 at hand, we proceed to characterize E[l1].
Let us first consider the case of α > 1, for which we have

E[l1] =

kα−1∑
j=1

P [l1 ≥ j] + P [l1 ≥ kα] +

I∑
j=kα+1

P [l1 ≥ j]

(a)

≤ kα − 1 + o(1) + (I − kα)o(1) = O (kα) , (55)
where in step (a), we use the fact that P [l1 ≥ j] is at most 1 for
j = [1, · · · kα − 1], and if P [l1 ≥ kα] = o(1) then P [l1 ≥ j]
is at most o(1) for j = [kα + 1, · · · I].

Similarly, for 0 < α < 1, we have

E[l1] =

kα−1∑
j=1

P [l1 ≥ j] + P [l1 > kα] +

I∑
j=kα+1

P [l1 ≥ j]

(a)

≥ (kα − 1)(1− o(1)) + 1− o(1) = Ω (kα) , (56)

where in step (a), we use the fact that
∑I

j=kα+1 P [l1 ≥ j] ≥ 0,
and if P [l1 ≥ kα] = 1−o(1) then P [l1 ≥ j] is at least 1−o(1)
for j = [1, · · · , kα − 1]. Combining (46), (55), and (56), we
have

E[l1] =


Θ
(
Ip+

√
Ip(1− p) log(Λ)

)
, if Ip=ω

(
(logΛ)

3
)

Θ
(
Ip+
√
Ip logΛ

)
, if Ip∈ [Ω(logΛ) , O(polylogΛ)]

Θ

(
log Λ

log log Λ
Ip

)
, if Ip ∈

[
Ω
(

1
polylogΛ

)
, o(log Λ)

]
.

(57)
From (13) and (14), we have,

T (G) = O

(
Kp(1− γ)

1 + t

E[l1]

Ip

)
(58)

and

T (G) = Ω

(
Kp(1− γ)

1 + t

(
E[l1]t

Ip(Λ− 1)

))
. (59)

As t
Λ−1 ≈ γ is a constant, we get the exact scaling law of

T (G), which is given by

T (G) = Θ

(
Kp(1− γ)

1 + t

E[l1]

Ip

)
(60)
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Combining (60) with (57), we obtain

T(G)=


Θ

(
Kp(1−γ)

1+t

(
1+
√

(1−p)logΛ
Ip

))
, if Ip=ω

(
(logΛ)

3
)

Θ
(
Kp(1−γ)
1+t

(
1+
√

logΛ
Ip

))
, if Ip∈ [Ω(logΛ),O(polylogΛ)]

Θ

(
Kp(1−γ)
1+t

log Λ

Ip log logΛ
Ip

)
, if Ip∈

[
Ω
(

1
polylogΛ

)
,o(logΛ)

]
,

(61)
which can be further simplified as

T(G)=


Θ
(

Kp(1−γ)
1+t

)
, if Ip = Ω(log Λ)

Θ

(
Kp(1−γ)
1+t

log Λ

Ip log logΛ
Ip

)
, if Ip∈

[
Ω
(

1
polylogΛ

)
, o(logΛ)

]
.

(62)
This concludes the proof of Theorem 4.

E. Proof of Lemma 2

From (17), we know that ls,λ and
(
Λ−λ
t

)
are non-increasing

with λ, which implies that for each time slot s ∈ [S], the
profile vector Ls, which minimizes the delay has components
of the form

ls,λ =

{⌊
ds

Λ

⌋
+ 1 for λ ∈ [1, 2, . . . , As]⌊

ds

Λ

⌋
for λ ∈ [As+ 1, As+ 2, . . . ,Λ] ,

(63)

where ds =
∑

k∈[K] ds,k, and As ≜ ds − Λ
⌊
ds

Λ

⌋
. Conse-

quently, when As ≥ Λ− t, the corresponding best-case delay
Ts for time slot s ∈ [S] is given by

Ts =

Λ−t∑
λ=1

(⌊
ds
Λ

⌋
+ 1

) (Λ−λ
t

)(
Λ
t

) =

(⌊
ds
Λ

⌋
+ 1

)
Λ− t

1 + t
, (64)

while when As < Λ− t, this is given as

Ts =

As∑
λ=1

(⌊
ds
Λ

⌋
+ 1

) (Λ−λ
t

)(
Λ
t

) +

Λ−t∑
λ=As+1

⌊
ds
Λ

⌋ (Λ−λ
t

)(
Λ
t

)
=

⌊
ds
Λ

⌋ Λ−t∑
λ=1

(
Λ−λ
t

)(
Λ
t

) +

As∑
λ=1

(
Λ−λ
t

)(
Λ
t

)
=

(⌊
ds
Λ

⌋
+ 1

) Λ−t∑
λ=1

(
Λ−λ
t

)(
Λ
t

) − Λ−t∑
λ=A+1

(
Λ−λ
t

)(
Λ
t

)
=

(⌊
ds
Λ

⌋
+ 1

) ( Λ
t+1

)(
Λ
t

) − (Λ−As

t+1

)(
Λ
t

)
=

(⌊
ds
Λ

⌋
+ 1

)
Λ− t

1 + t
−
(
Λ−As

t+1

)(
Λ
t

) . (65)

We denote S2 ⊆ [S] to be the set of time slots for which
As < Λ − t. Then, the average delay corresponding to the
optimal user-to-cache state association Ĝ is lower bounded
by

T
∗ ≥ 1

S

∑
s∈[S]/S2

(⌊
ds
Λ

⌋
+ 1

)
Λ− t

1 + t

+
1

S

∑
s∈[S2]

((⌊
ds
Λ

⌋
+ 1

)
Λ− t

1 + t
−
(
Λ−As

t+1

)(
Λ
t

) )

=
1

S

∑
s∈[S]

(⌊
ds
Λ

⌋
+ 1

)
Λ− t

1 + t
− 1

S

∑
s∈[S2]

(
Λ−As

t+1

)(
Λ
t

) . (66)

This concludes the proof of Lemma 2.

F. Proof of Theorem 5

We denote vG1

s,λ, vG2

s,λ, and vGs,λ to be the scaled loads
calculated using transformed user demand matrix D (Step
00 of Algorithm 2) of each cache state λ ∈ [Λ] at time
slot s ∈ [S] following the user-to-cache state association
given by G1, G2, and G respectively. It is straightforward to
see from step 03 of Algorithm 2 that vG1

s,λ = O
(

logS
log log S

)
∀s ∈ [S], λ ∈ [Λ]. By combining Lemma 15 and Lemma 18
of [31], we have vG2

s,λ = O (1) ∀s ∈ [S], λ ∈ [Λ]. Thus, the
combined scaled load of each cache λ ∈ [Λ] at each time slot
s ∈ [S] is given by vGs,λ = O

(
logS

log log S

)
.

To complete the proof, we now proceed to convert the
scaled load of each cache λ ∈ [Λ] at time slot s ∈ [S]
to the actual load. Based on the assumption that for each
time slot s ∈ [S],

∑
k∈[K] ds,k ≥ Λ, we have d̄s,k =

min
(

Λ ds,k∑
i∈[K] ds,i

, 1
)
=

Λ ds,k∑
i∈[K] ds,i

∀ s ∈ [S], k ∈ [K]. Then,
the actual load corresponding to user-to-cache state association
G is given by

vs,λ =

∑
k∈[K] ds,k

Λ
vGs,λ = O

(∑
k∈[K] ds,k

Λ

logS

log logS

)
∀ s ∈ [S], λ ∈ [Λ]. Consequently, from (17), we have

T (G) = O

(
1

S

S∑
s=1

Λ−t∑
λ=1

∑
k∈[K] ds,k

Λ

logS

log logS

(
Λ−λ
t

)(
Λ
t

) )
(67)

= O

(
logS

log logS

1

S

S∑
s=1

∑
k∈[K] ds,k

Λ

Λ− t

1 + t

)
. (68)

We also have from (66) that

T
∗
= Ω

 1

S

∑
s∈[S]

∑
k∈[K] ds,k

Λ

Λ− t

1 + t

 . (69)

This concludes the proof of Lemma 2.
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