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Abstract: Photovoltaic research activities are related to material innovation that can be obtained at a
comparatively low cost. Semiconductor p-type multi-crystalline Czochralskyc (CZ)-grown silicon
wafers were used in this study. The effects of front surface recombination velocities and base thickness
in solar cells’ quantum efficiency are theoretically calculated. The results denote that both the surface
recombination velocities and the base widths significantly impact the quantum efficiency. The results
are of universal technical importance in designing solar cells and their surface structures. The main
goal of this paper was to confirm the validity of the above theoretical calculations; for this purpose,
silicon solar cells with front-thin porous silicon and rear interdigitated contact have been produced.
A good agreement was obtained between experimentally obtained solar cells’ quantum efficiency
data and the theoretical results. Therefore, the quantum efficiency of the mc-Si solar cells with porous
silicon and rear interdigitated contact was enhanced up to 25% at 580–1100 nm wavelength range and
up to 50% at short wavelength (400–570 nm), compared to reference mc-Si solar cells. The obtained
results indicate that the rear interdigitated contact maximizes the surface area of the metal contact
and improves the current collection. At the same time, the porous silicon layer passivates the front
surface and reduces recombination losses.

Keywords: semiconductors; silicon; solar cells; porous silicon; interdigitated contact; quantum efficiency

1. Introduction

The research activities on silicon solar cells are related to the material development
that can be achieved at low cost, focusing on improving the conversion efficiency of multi-
crystalline silicon (mc-Si), which is a very attractive material for solar cell processing due
to its low wafer cost compared to crystalline silicon.

Notably, the specific doping levels for n-type and p-type regions in n-p homo-junction
multi-crystalline silicon solar cells consisting of a single type of semiconductor material
are 1016 and 1018 cm−3, respectively. The p-type serves as the base of the solar cell of a
few hundred microns’ thickness, while the n-type region is typically used as the front
region having a thickness of a few microns, as it facilitates the efficient collection of photo-
generated carriers [1]. Thicker p-type regions can increase light absorption and carrier
lifetime but also increase recombination losses and reduce efficiency [2]. The fabrication of
PN devices such as PIN and how to investigate the doping level or geometrical parameters
were obtained [3,4].

On the other hand, the photo-generated current strongly relates to the solar cells’ quan-
tum efficiency. One has to raise the solar cells’ quantum efficiency to enhance conversion
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efficiency. The front-thin porous silicon layer serves to reduce the surface recombination
velocities (Sf) and reduce the reflectivity of the cell, thereby increasing the amount of
incident light absorbed by the active region of the cell [5]. Furthermore, thick silicon
solar cells suffer from unavoidable losses in power conversion efficiency due to the non-
radiative recombination of photo-generated charge carriers during their relatively long
path to electrical contacts at the extremities of the cell. It means that varying the base
width affects the bulk recombination and the collection probability of the photo-generated
charge carriers. Based on this fact, the structure’s electrical and optical performance will
change. In addition, the grooving structure is designed to maximize the surface area
of the contact with the metal electrodes, reducing the series resistance and improve the
current collection, leading to higher efficiency. Silicon grooves can be created using a
variety of techniques. The choice of technique depends on the specific application and the
desired groove characteristics, such as aspect ratio, depth, and width. The most common
techniques are the wet electrochemical [6,7], mechanical grooving [8,9], and laser [10,11]
used to create very precise grooves but these are slower than other techniques and require
refining or polishing.

Combining the front-thin porous silicon layer and rear interdigitated contact structure
in a silicon solar cell can have several benefits. The porous silicon layer improves light
trapping, passivates the front surface, and reduces recombination losses at the front [12–14],
where the interdigitated contact structure is designed to maximize the surface area of the
contact with the metal electrodes and improve the current collection [15], leading to higher
efficiency. Applications for this type of silicon solar cell include various kinds of solar
energy systems.

This work was developed in two parts. The first part was dedicated to the theoretical
calculation of the effect of front surface recombination velocities (Sf) and base thickness (Hb)
in solar cells’ quantum efficiency of p–n homo-junction silicon solar cells. Hence the second
part was dedicated to confirming the validity of the theoretical calculations with experiment
one. For this purpose, silicon solar cells with front-thin porous silicon and rear interdigitated
contact were systematically investigated and compared with reference multi-crystalline
silicon solar to explain the effect of this treatment on photovoltaic performances. Scanning
electron microscope, Fourier-transform infrared spectroscopy, and quantum efficiency were
performed to investigate the manufactured multi-crystalline silicon solar cells.

2. Theoretical Calculation of Sf and Hb Effect in Solar Cell Quantum Efficiency

Next, we calculate the separate regions of a flat silicon solar cell donations in the
quantum efficiency based on the structure where the sketch and the schematic of n-p
homo-junction solar cell were separately shown in Figure 1a,b. Yang et al. [16] are also
investigating the effect of the size structure of the cell on the solar cell’s quantum efficiency.
The front (emitter) contribution of the QE is given by [17–19]:

QEFron(λ) =
αL f

(α2l f
2−1)

αL f exp(αxj) +
(

S f L f
D f

+αL f ) exp(αxj)(
S f L f

D f
)ch(

xj
L f

)+sh(
xj
L f

))

(
S f L f

D f
)sh(

xj
L f

)+ch(
xj
L f

)


(1)

where: λ, α, Lf, Sf, and Df denote the wavelength of sunlight, the absorption coefficient, the
diffusion lengths, the surface recombination velocity, and the diffusion coefficient of the
front (emitter), respectively.

The base impact was obtained by Y. Kuo-Hui, Y. Jaw-Yen [16], and M. Wolf, M.B.
Prince [19]. The calculations of the solar cells’ quantum efficiency in the base region were
first given by the following equation [20]:

QEBase(λ) =
αLb exp(−αA)
(α2lb2−1)

[
αLb −

(
Sb Lb
Db

)ch(B)−exp(−αC)−sh(B)+αLb exp(αC)

(
Sb Lb
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)ch(B)+sh(B)

]
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where: Lb is the base diffusion lengths; Db is the diffusion coefficient of the base; Sb is the
back recombination velocity.

A = Xj + W; B =
(Hb − Xj − W)

Lb
and C = Hb − XJ − W

Related to the above process, the influence of the space-charge region to the solar cells’
quantum efficiency is given by following expression:

QEScr(λ) = exp(−αxj)[1 − exp(−αw)] (3)

The total QE is the sum of the contributions of the separate parts and is given by the
resulting formula:

QE(λ) = QEFront(λ) + QEBase(λ) + QEscr(λ)
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Figure 1. (a) Sketch and (b) schematic of n-p homo-junction solar cell (Xj, W, and Hb represent the
thicknesses of the front, space-charge, and base regions, respectively).

To study the impact of the base width on the separate parts of the solar cells’ quantum
efficiency, we consider a cell structure with fixed electrical cell parameters and vary only
the base widths (400, 300, and 200 µm). For the following discussion the cell parame-
ters from Table 1 are considered to calculate the solar cells’ quantum efficiency in the
different regions.

Table 1. Fixed electrical cell parameters used theoretical calculation of front surface recombination
velocities and base thickness in solar cells quantum efficiency.

Region Diffusion Coefficient
(cm2/s)

Diffusion Lengths
(µm)

Recombination Velocity
(cm/s)

Front Df = 6 Lf = 10 Sf = 0.5*E4

Base Db = 20 Lb = 100 Sb = 1*E8

As shown in Figure 2a for different base widths, different quantum efficiency results
can be seen. Once the base width rises, the contribution of the base to the quantum
efficiency also increases, meaning that the quantum efficiency is a function of the base
width. However, the contributions of the emitter (front) and space-charge region are
practically unchanged. The variation of the base thickness (400, 300, and 200 µm) affects
the quantum efficiency in the wavelength ranging from 530 to 1100 nm. The total quantum
efficiency can be enhanced up to 20% at this wavelength, as shown in Figure 2a. The
quantum efficiency versus the front surface recombination velocities Sf is presented in
Figure 2b. One can notice the contribution of the front surface recombination velocities
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Sf to the silicon solar cell quantum efficiency drops significantly in the short wavelength
range [400–530 nm] when the Sf rises, while not influenced by the quantum efficiency of
the base and Scr. Therefore, the total silicon solar cell quantum efficiency decreases with
increasing Sf in wavelength interval [530, 1100 nm].
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Figure 2. (a) Base width and (b) front surface recombination effects in the multi-crystalline silicon
solar cell quantum efficiency.

3. Experimental Procedure

In this study, industrial p-type mc-Si Czochralskyc (CZ)-grown crystalline wafers
having a thickness of about 400 µm, an effective area of 4 cm2 and a resistivity in the range
of 0.5–2.0 Ω cm, were used. A simple, effective, and developed vapor etching process
was employed to perform rear silicon grooves and thin porous silicon. The vapor etching
practice is achieved in a Teflon Cell located in a special hood taking a filter exhaust fan
system seen in Figure 3.
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Figure 3. Experimental set-up for the vapor etching technique.

In reality, at volume proportion higher than 1
4 of HNO3 (65%) and HF (40%), the CVE

performance leads to the (NH4)2SiF6 powder formation [21,22], the powder dissolved in
H2O solution leaving grooved areas in the silicon wafer afterward. On the other hand, at a
volume proportion lower than 1

4 of HNO3 (65%) and HF (40%), the CVE method leads to
the realization of thin porous silicon [23,24]. In this investigation, the volume proportion of
HNO3 and HF were fixed to 1

2 and 1/7 to achieve grooves and porous silicon, respectively,
seen in Figure 4a,b. In both cases, the solution of HNO3 and HF and the silicon wafer
temperatures were fixed at 25 and 45 ◦C, respectively. This temperature modification is
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necessary to evade the vapor condensation on the silicon surface in the vapor etching
process. After forming the grooves on the Si wafer, the phosphorus diffusion process was
achieved to realize the n-p junction at 920 ◦C. In this case, the average sheet resistance was
25–35 Ω cm, indicating the formation of a relatively homogeneous N+ layer. Front and rear
contacts were performed by screen printing a silver paste and an aluminum/silver paste,
respectively. After achieving the rear interdigitated contact, a thin PS layer was formed
on the front surface of the mc-Si solar cell. There are several reasons why this design may
be more stable than other types of solar cells. First, the porous silicon layer is known to
be relatively stable over time and is not prone to degradation or other forms of damage.
These characteristics means that the cell’s performance is less likely to degrade over time
due to changes in the properties of the porous silicon layer. Second, the rear interdigitated
contact design allows for more efficient charge carrier extraction, which can help reduce
the likelihood of charge carrier recombination or other loss mechanisms that can degrade
the cell’s performance over time. These cells may be well-suited for large-scale deployment
in a variety of applications.
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Figure 4. Experimental set-up for the vapor etching technique (a) to achieve grooves and (b) to
achieve porous silicon.

The SEM cross-section view of an mc-Si wafer grooved on the rear region is shown
in Figure 4. Figure 4a proves that the grooves’ spacing and width were produced apart
from the grain orientation of the mc-Si wafer. Moreover, the vapor etching-based groov-
ing method does not require silicon washing as is the case for other methods, such as
mechanical processing [25].

4. Results and Discussion

Thick silicon solar cells suffer from unavoidable losses in quantum efficiency due to
the non-radiative recombination of photo-generated charge carriers during their relatively
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long path to electrical contacts at the extremities of the cell. It means that varying the base
width affects the bulk recombination and the collection probability of the photo-generated
charge carriers. Based on this fact, the structure’s electrical and optical performance will
change. The first point is interesting to investigate the effect of rear interdigitated contact
on the mc-Si solar cells quantum efficiency, especially in the long wavelength range (base
region). Figure 5a illustrates mc-Si solar cells’ quantum efficiency for a reference cell with
a width base of 400 µm compared to mc-Si solar cells having a width base of 300 and
200 µm. It can be observed that the achievement of rear-buried metallic contacts affects the
mc-Si solar cells’ quantum efficiency in the 530 to 1100 nm wavelength range by reducing
the effective thickness of the base, leading to an increase in the collection probability of
the minority carrier at long wavelengths (580–1100 nm spectral range), and then to an
enhancement of the mc-Si solar cells quantum efficiency in this spectral region. As a results,
the mc-Si solar cells’ quantum efficiency can be enhanced up to 25% at the 530–1100 nm
wavelength range. The rear interdigitated contact design allows for more efficient charge
carrier extraction by providing a large surface area for contact and reducing the distance
traveled by the charge carriers to reach the contacts. In summary, the base width is an
essential parameter in the design and optimization of silicon solar cells, and it significantly
impacts the cells’ performance and quantum efficiency. A thinner base width generally
leads to higher efficiency and better performance.
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Figure 5. Experimental quantum efficiency of mc-Si solar cells (a) with rear interdigitated contact
(b) with PS/rear interdigitated contact combination compared to ref mc-Si solar cell.

Using a front-thin porous silicon layer on a silicon solar cell can have several benefits,
including improved light trapping, passivating the front surface, and reducing recombi-
nation losses on the front side of the silicon cell. Additionally, as can be seen in Figure 5b,
the application of a thin PS layer by vapor etching method in the front surface of the mc-Si
solar cells enhanced the quantum efficiency at a short wavelength range (400–530 nm),
where this improvement could be due to the surface recombination velocity diminution via
the hydrogen-rich PS layer (Figure 6a) front surface passivation [26–29] and validated by
the presence of Si-H bands in the PS layer showed in Figure 6b. Consequently, the quantum
efficiency of the mc-Si solar cells was enhanced by over 50% at a short wavelength range
compared to mc-Si solar cells without PS. Moreover, the front-thin porous silicon layer
serves to reduce the reflectivity of the cell, thereby increasing the amount of incident light
that is absorbed by the active region of the silicon solar cell [30]; where observed in Figure 7,
the surface reflectance decreased from 29% for the reference device to around 9% for the
developed device.
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In summary, one may notice that to improve a solar cell’s spectral response and
overall quantum efficiency, decreases in front surface recombination velocities and a base
thickness of the silicon solar cell are needed, e.g., by front-thin porous silicon and rear
interdigitated contact [31]. To conclude, the combination of front-thin porous silicon and
rear interdigitated contact-based mc-Si solar cell design is relatively simple and easy to
manufacture, which means that the cells can be produced in large quantities and at a
relatively low cost. This finding can help to ensure that the cells are more widely adopted
and can be deployed on a larger scale, which can, in turn, helps to improve their stability
by reducing the likelihood of manufacturing defects or other issues. Finally, the newly
developed devices of front-thin porous silicon and rear interdigitated contact-based mc-Si
solar cell generally leads to higher quantum efficiency and better reflectance compared to
the reference one (see Table 2). Using porous silicon and rear interdigitated contact-based
mc-Si solar cell structures could more efficiently, and cost-effective exploit solar energy.
However, challenges remain to be addressed, such as improving the stability and durability
of porous silicon and optimizing the rear interdigitated contact-based mc-Si solar cell
structure for maximum efficiency.
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Table 2. The characteristics of the newly developed devices compared to the reference one.

Devices Reference Device Developed Device

Quantum efficiency (%) 20 80

Base width (µm) 400 200

Reflectivity (%) 29 9

5. Conclusions

The effect of front surface recombination velocities and base thickness in solar cells’
quantum efficiency were theoretically calculated. The results denote that both the surface
recombination velocities and the base widths significantly impact the quantum efficiency.
A good agreement was obtained between the experimental solar cells’ quantum efficiency
data and the theoretical results. Accordingly, the quantum efficiency of the mc-Si solar
cells with porous silicon and rear interdigitated contact was enhanced up to 25% at a long
wavelength range and up to 50% at a short wavelength compared to reference mc-Si solar
cells. The obtained results indicate that the rear interdigitated contact reduced the base
thickness and improved the charge carrier collection via larger contact rear areas, while the
PS layer reduced the reflectance and diminished the front surface recombination velocities
via the hydrogen-rich PS layer front surface passivation validated by the presence of Si-H
bands. These results are of universal technical importance in designing solar cells and
their surface structures. Overall, silicon solar cells with front-thin porous silicon and rear
interdigitated contact have several perspectives (low cost, stability, and good efficiency)
that make them an attractive option for developing efficient and cost-effective solar cells.
With further research and development, these cells have the potential to play a significant
role in the transition to a more sustainable and renewable energy future.
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