
HAL Id: hal-04087535
https://hal.science/hal-04087535v1

Submitted on 3 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Comprehensive Review on Energy Management
Strategies for Electric Vehicles Considering Degradation

Using Aging Models
Ahmad Alyakhni, Loic Boulon, Jean-Michel Vinassa, Olivier Briat

To cite this version:
Ahmad Alyakhni, Loic Boulon, Jean-Michel Vinassa, Olivier Briat. A Comprehensive Review on
Energy Management Strategies for Electric Vehicles Considering Degradation Using Aging Models.
IEEE Access, 2021, 9, pp.143922-143940. �10.1109/access.2021.3120563�. �hal-04087535�

https://hal.science/hal-04087535v1
https://hal.archives-ouvertes.fr


Received August 24, 2021, accepted September 16, 2021, date of publication October 15, 2021, date of current version October 27, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3120563

A Comprehensive Review on Energy Management
Strategies for Electric Vehicles Considering
Degradation Using Aging Models
AHMAD ALYAKHNI 1,2, LOÏC BOULON1, (Senior Member, IEEE),
JEAN-MICHEL VINASSA 2, (Member, IEEE), AND OLIVIER BRIAT2
1Institut de Recherche sur l’Hydrogène, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada
2CNRS, Bordeaux INP, IMS UMR 5218, University of Bordeaux, 33400 Talence, France

Corresponding author: Ahmad Alyakhni (ahmad.alyakhni@uqtr.ca)

This work was supported in part by the Natural Sciences and Engineering Research Council of Canada under Grant RGPIN-2018-06527.

ABSTRACT Electrification in the transportation industry is becoming more important to face global
warming and replace fossil fuels in the future. Among the available energy sources Li-ion battery and proton
exchange membrane fuel cell (PEMFC) are the most promising energy sources. Therefore, employing them
in fuel cell hybrid electric vehicles (FCHEVs) to combine their advantages is one of the favorable solutions.
However, they still face a major challenge residing in their aging that cause the drop of system performance.
On one hand, the degradation is the result of the interaction between several aging mechanisms that react
differently with various operating conditions. On the other hand, a hybrid system requires an essential energy
management strategy (EMS) for fuel economy and optimal power share. At the end, this EMS has an
important impact on the lifetime of sources in term of reducing or favorizing the degradation. Therefore,
it is important to consider the degradation in the objectives of the designed EMS. Since the degradation is
usually neglected when designing an EMS, this paper tends to review the possible methods for designing a
health-conscious EMS. Hence, this paper presents a summary of the main fuel cell (FC) and Li-ion battery
aging mechanisms as well as the useful degradation models for state of health estimation. In addition,
the existing works that consider the degradation of on-board energy sources in their approaches for increasing
their durability are classified and analysed. Remaining challenges are detailed along with a discussion and
outlooks about current and future trends of health-conscious EMS.

INDEX TERMS Battery and PEMFC aging, degradation modeling, energy management strategy, reliability.

I. INTRODUCTION
Global concerns over greenhouse emission, environmental
awareness increase, and stringent vehicle emission regula-
tions have encouraged the use of sustainable and greener
solutions in the automobile industry. Therefore, the traction
system has been electrified and many automotive manu-
facturers are offering hybrid electric vehicles (HEVs) and
full electric vehicles with different powertrain topologies as
shown in Fig. 1 [1]. This would reduce fuel consumption and
CO2 emissions [2]. Battery electric vehicles (BEVs) are pro-
posed as a zero emission solution to replace the conventional
internal combustion engine (ICE). However, they still have
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long charging time, and high price of their energy storage
system. While, HEVs permit a good driving range as they are
still equipped with an ICE. However, their emissions depend
on their usages as they have a short electric driving range.
In this context, hydrogen which can be produced through a
water electrolysis process can be used as a form of energy
storage to store generated renewable energy. Then it can be
reused to produce electricity using fuel cell. Consequently,
FCHEVs are gaining interest for their zero emissions and
good driving range compared to ICE and HEVs. In addition
to their high-driving range and quick refueling time (minutes)
compared to battery based EVs. Fuel cell has high perfor-
mance at stable loading conditions, while its sensitivity to
high dynamic loading, as in automotive sector, is regarded
as a weakness. Therefore, fuel cell is hybridized with battery
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FIGURE 1. Classification of powertrain topologies for EVs.

and/or supercapacitor (SC) to overcome the weaknesses of
FC [3]. The FC is regarded as the primary energy source for
the requested energy while the battery and/or the supercapac-
itor is regarded as the secondary energy source providing the
peak power demand and storing regenerated energy. Among
the available types of batteries, Li-ion batteries are the most
promising one that are being used in electric vehicles. Com-
pared to other types as lead-acid, sodium, lithium and nickel,
they have long cycle life, high energy and power density,
and low self-discharge [4], [5]. Therefore, this paper focus
on Li-ion battery based multi-source vehicles.

Relying on more than one source of energy rises up the
issue of managing their power. Hence, the EMS has an impor-
tant function in allocating the power share for each source
along the operation of the system while meeting several
operating constrain. In addition, the EMS could include many
objectives to fulfill as total fuel consumption, emissions,
degradation and durability. . . Ideally, all the objectives are
met, but in reality meeting all of them could be compli-
cated and a compromise should be achieved [6]. Despite all
the advantages of Li-ion batteries and FCs they still suffer
from performance degradation, accelerated by many factors,
during their lifetime. This is a major challenge because the
vehicle performance depends on its source’s performance.
Therefore, the importance of designing a health-conscious
energy management that take the degradation of sources into
consideration [7]. In this case, the EMS would give good
performance, improve the reliability and the lifetime of the
on-board sources so electric vehicles could compete in the
market. Fig. 2 shows an example of a powertrain topology of
a FCHEV with a fuel cell/battery system. Where the battery
management strategy (BMS) and the FC controller estimate
the state of health (SOH) of the battery and the FC respec-
tively. Different estimation methods exist that can be grouped
into three main categories namely experimental, model-based
or machine learning method. Noting that model-based and
machine learning based are the only one suitable for real time
applications while the model-based method shown in Fig. 2.
The interaction between the EMS control layer and both
the BMS and the FC controller to communicate the SOH
estimation is crucial to have a health-conscious EMS.

Several methods are applied to quantify the degradation as
prognostics and health management (PHM), machine learn-
ing, modelization and identification. The PHM could assess

the health of energy sources and estimate their SOH and
remaining useful life (RUL) but the post decision still need
more study [8]–[10]. Machine learning based methods as
support vector machine [11] and neural network (NN) [12],
[13] are suitable for complex nonlinear systems, as they are
model-free. They build the degradation by mapping exter-
nal characteristics into battery capacity loss. However, they
require huge high-quality data sets that take time for training.
On the other hand, a health management that consider a
trade-off between the complexity and accuracy can be based
on integrating a quantitative degradation model. They are for-
mulated based on conducted accelerated aging experiments
that emulate the driving conditions of electric vehicles. How-
ever, it is still challenging because despite all the effort made
there is still no accurate degradation model that combine
all the aging factors. Several literature reviews focused on
classifying and comparing EMSs for EVs but the degradation
effect is neglected [1]–[14], [15]. In addition, others focused
on battery degradation modeling [16]–[19]. However, this
work focus on useful degradation model in terms of EMSs.
Moreover, it differs from existing works by reviewing also FC
degradation models that could be used for health-conscious
EMSs in vehicular applications. The methods and works
that took into consideration the sources degradation in their
strategy are also discussed.

The rest of the paper is organized as follows: first in
part II a brief review on batteries and fuel cells degra-
dation is presented while based on their analysis differ-
ent degradation models that could be used for the health
management are reviewed in part III. In addition, different
health-conscious EMSs that took the degradation into con-
sideration are reviewed and classified in part IV. Finishing
by a discussion and conclusion sections.

II. LI-ION BATTERY AND FUEL CELL DEGRADATION
A. A BRIEF REVIEW OF LI-ION BATTERY DEGRADATION
Li-ion batteries have been developed and improved for many
years to reach a better performance than other types of bat-
teries such as sodium, nickel and lead [20]. Making them
suitable for different application such as EVs. Despite their
advantages they still suffer from challenges such as cost,
safety [21], recycling [22], and degradation. They have differ-
ent degradation level under various external (environmental)
and internal (electrochemical) operating conditions. In addi-
tion, monitoring their aging state is still considered challeng-
ing as the parameter indicating the degradation level, SOH,
is difficult tomeasure during the battery operation. Therefore,
the BMS estimate/calculate the battery degradation indica-
tor, capacity and/or internal resistance, from the continuous
monitoring of cell charge/discharge current, voltage, and tem-
perature using lifetime models or estimation methods. Then
they are correlated to the battery SOH. Consequently, besides
charge control, thermal management, cell balancing, and bat-
tery diagnosis, the BMS provide a reasonable assessment of
the battery SOH and transfer it to the EMS for designing a
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FIGURE 2. One of the multi-energy sources configurations.

health-conscious EMSwith better reliability. The degradation
of the battery affects its ability to store energy and meet the
requested power [23]. In fact, many factors affect its degrada-
tion such as the battery temperature, current magnitude, SOC,
and depth of discharge (DOD) [17]–[24], [25]. These factors
cause different aging mechanisms that interact as they are not
independent causing capacity fade and/or resistance growth.
This interaction make it difficult to understand the aging pro-
cess [24]. In addition, it should be distinguished between two
origins of aging, the calendar aging and the cycle aging [26].
They refer to deterioration caused by different uses of the
battery. In reality, they always occur in combination as the
calendar aging always occurs no matter if the cell is in use
or not, while the cycle aging is related to the usage of the
cell [27].

For vehicular applications, the battery is considered unus-
able and should be replaced when its capacity fade reaches
20% [25]. The main components of a battery cell are the
anode, cathode, electrolyte, and separator. They are inter-
connected and subjected to aging [28]. The aging of one
component affects the other components operation leading
to cell aging. Therefore, cell aging leads to the battery pack
aging composed of modules combining number of cells. The
aging mechanism origin is chemical or mechanical degrada-
tion[30]. The reaction between the anode and the electrolyte
at the electrode/electrolyte interface produces with time a
protective layer. It covers the surface of the electrode and
it is considered as the main aging source of the anode elec-
trode [31]. The protective layer known as Solid Electrolyte
Interface (SEI) is naturally created mainly during the first
charges [32], [33]. The reaction causes the electrolyte decom-
position as well as the consumption of the Li+. Initially,
the SEI layer role consists of protecting the negative electrode
from corrosion and the electrolyte from further reductions.
However, the steady growth of the SEI during the life of the
cell lead to the loss of an active area of the electrode due to
its penetration into the pores of the electrode. It will result in
internal resistance increase associated with power fade and

capacity fade [32]. The SEImay also form at the cathode side.
However, it is much thinner than the one formed on the anode.

Lithium plating is also a very known degradation mecha-
nism for Li-ion batteries that occur at low temperature [34]
or at high-charging rates [35]–[30]. Slow diffusion of lithium
ions into the graphite or/and in the electrolyte, or high lithium
ions transport to the surface of the electrode overlay the
electrode with metallic lithium plating [36]. In addition, den-
drite growth of the metallic lithium can cause internal short
circuit and the failure of the battery by tearing the separator
and reaching the positive electrode [37]. SEI formation and
growth beside the lithium plating are accountable for the loss
of cyclable lithium [34]. The effect of temperature on the per-
formance and the aging of the battery is significant specially
at low temperature (subzero) and at high temperature as they
accelerate the degradation rate of batteries [37]. The thermal
management system controlled by the BMS is important to
regulate the temperature of the battery to guarantee a good
operation condition. Hence, several methods of heating such
as internal and external heating for fuel cells [38] and batter-
ies [39]–[40] are considered.

There are other anode aging phenomena as current col-
lector corrosion, contact loss. . . In addition, the cathode side
faces aging despite the fact that the aging of the negative
electrode is predominant [17]. Fig. 3 presents an overview
of all the aging mechanisms inside a Li-ion cell. They are
not independent and according to the electrode materials
they may interact differently. Consequently, the complexity
of the aging and the interaction of several factors make the
estimation and the modeling of the degradation even more
complex.

B. A BRIEF REVIEW OF PEMFC DEGRADATION
Fuel cells differ in their operating temperature, efficiency,
costs. . . etc, but among the different type of FCs proton
exchange membrane fuel cell is now extensively used in
FCHEVs [41]. It is characterized by low operating tem-
perature (< 90◦C), low pressure (from ambient to 5 atm),
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FIGURE 3. Degradation mechanisms in Li-ion cells [29].

high efficiency, and high starting speed [42]–[43]. Its inte-
gration will increase the vehicle autonomy while refueling
hydrogen takes only several minutes. A fuel cell has several
components from polymer membrane electrolyte, electrodes,
bipolar plates, gas diffusion layers (GDL), and active catalyst
layers. Similarly to the battery, all those components could
suffer from different rates of degradation. A brief review of
their degradation mechanisms is described in this section.

First, catalyst degradation is affected by the reduc-
tion of the electro-chemical active surface area (ECASA)
that depends on the degree of dispersion and the particle
sizes [44]. Over time, the ECASA will decrease through
the sintering and/or dissolution of some platinum particles
and the corrosion of the carbon support [45]. This process
could be more prevalent at fuel starvation [46]. It happens
under transient load changing, during the shutdown/start-up
procedures or when failing to supply enough reactant at high
loading. In addition, running at very low current will cause
the catalyst layer degradation.

Second, the membrane that separates the fuel from the
air, transport the protons and support the anode and cathode
catalyst layer [47]. It will face mechanical degradation due to
mechanical stress and/or thermal stress. In addition, themem-
brane could break down under a chemical attack caused by
the chemical reaction of foreign elements like the precipitated
platinum [48]. Its degradation could be reduced by limiting
the high temperature operation and operating the fuel cell at
its best operating point and conditions. Other actions could
also be done as improving the water management [45].

Third, the GDL that allows the reactant and the product
gases to diffuse to and from the catalysts respectively. Also it
forms an electrical connection for electrons transfer between
the catalyst layer and the bipolar plates [45]. Its degradation

is difficult to differentiate for that of membrane-electrode
assembly. However, its degradation includes deterioration
in water management due to the loss of hydrophobic-
ity and surface change. In addition, the loss of conduc-
tivity caused by the carbon corrosion, thermal expansion
or shrinking [49]–[47]. Finally, regarding other components
degradation as the bipolar plate that collect the gener-
ated current, isolate the individual cells, separate reactants
and coolants, and uniformly distribute reactant and product
streams [45]. Its typical degradation consists of corrosion and
formation of a resistive surface layer on the plates leading
to higher ohimic resistance and loss of conductivity [48].
While over long operating time the thickness of gaskets will
reduce leading to more pressure on the GDl thus causing its
porosity loss and higher reactant transport resistance. In addi-
tion, they may cause damage to the membrane due to their
crossover leakage [47], [48]. In addition, the electrodes will
suffer from loss of performance due to the loss of active
area caused by the degradation of carbon support and catalyst
layer.

The EMSs decisions contribute to some of these degra-
dations directly or indirectly. Therefore, the EMSs should
target the unfavorable operating conditions contributing to
the degradation. Especially the fuel cell loading which are
start-up/shutdown, very low or high requested power, and
large transient power change rates as shown in Fig. 4, that
contribute to mentioned aging mechanisms.

III. DEGRADATION MODELING
A. BATTERY DEGRADATION MODELING
Based on the analysis of different battery aging mechanisms,
the type of battery life to be considered (calendar or cycle
life), and the performance to be studied (resistance increase
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FIGURE 4. Degradation mechanisms regarding to PEMFC loading [50].

or capacity fade) there are different ways to model and
estimate the degradation of Li-ion batteries [16]. Usually,
they are divided into three types. Electrochemical models
which are accurate as they depend on understanding the
internal chemical reaction, but they are complex for real
application implementation. Empirical models are based on
fitting collected experimental aging data. Although their sim-
plicity, they require a significant amount of time and data sets
which are valid only under some experimental conditions.
To overcome the disadvantages and combine the advantages
of those two models semi-empirical models are introduced.
They combine some of the theoretical principal with the
collected experimental results. Therefore, they are simpler
and more implementable than the electrochemical models
and they are more accurate than the empirical models for
a wider range of conditions. In the following subsections,
battery degradation models that can be integrated in the EMS
are reviewed.

1) ELECTROCHEMICAL MODEL
The SEI film growth due to the irreversible side reactions
between the electrolyte and the electrode cause the loss of
lithium ions to the SEI which is the common source of
capacity fade. Therefore, the SEI film growth model could be
used tomodel the battery’s degradation [51], [52]. The change
in the film thickness, δfilm, during charging is calculated
by [53]:

∂δfilm

∂t
= −

Mp

anρPF
JS (1)

where Mp is the average molecular weight of the constituent
compounds of the SEI layer, ρP is the average density of the
constituent compounds, an is the specific surface area, F is the
Faraday’s constant and JS is the side reaction current density
described using the Tafel equation as:

JS = −anios exp
(
−
αcF
RgT

ηs

)
(2)

where ios is the exchange current density, T is the temperature,
Rg is the universal gas constant, Rfilm is the overall film

resistance, and ηs the side reaction over-potential calculated
as:

ηs = φs − φe − Uref ,s −
Jtotal
an

Rfilm (3)

where φs, φe represent the solid and the electrolyte potentials
respectively; and the local volumetric transfer current density
Jtotal is given by a sum of the intercalation current density JI
and the side reaction current density JS as follows:

Jtotal = JI + JS (4)

JI is calculated as:

JI = ani0,n

[
exp

(
αa,nF
RgT

ηn

)
− exp

(
αc,nF
RgT

ηn

)]
(5)

finally, this would allow the overall film resistance to be
calculated as:

Rfilm = RSEI +
δfilm

κp
(6)

where RSEI is the initial film resistance, and κp is the con-
ductivity of the film. The complexity of this model imposes
challenges for its implementation on real-time applications.
To overcome these challenges simplifying the model is pro-
posed [54], [55] without losing the accuracy.

2) SEMI-EMPIRICAL MODELS
These models are based on mathematical relationships that
links some stress factors as the discharge rate, Ah-throughput,
DOD, temperature, and SOC to the capacity loss or inter-
nal resistance increase. In these degradation models, some
parameters are fitted to the experimental battery aging data.
Wang et al. introduced a cycle life model for lithium iron
phosphate (LiFePO4) that take into account the discharge
C-rate, temperature, and charge throughput after running
several aging test while varying three parameters, tempera-
ture (−30 to 60◦C), DOD (90 to 10%), and C-rate (C/2 to
10C) [56]. However, the model needs more validation at
subzero temperature and it is represented by:

Qloss = B · exp
(
−31700+ 370.3 · Crate

Rg · T

)
· (Ah)0.55 (7)

where Qloss represent the percentage of capacity loss, B is
a pre-exponent factor that depends on the C-rate, T is the
absolute temperature, R is the gas constant, and Ah is the
total charge throughput. The model is also validated under
different C-rates and temperatures in [57]. However, this
model dismiss the effect of the battery SOC as an aging factor.
Hence, this model is improved for predicting the battery’s
degradation in the field of HEV [58]. The pre-exponent factor
B is introduced as a function of the SOC as shown in (8)
below:

Qloss = (α · SOC+β) · exp
(
−Ea + η · Ic
Rg(273.15+ θ )

)
· Ahz̄ (8)

where α and β define the SOC dependence presented in the
Table 1, and z̄ is the average value of power law exponent.
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TABLE 1. Optimal values of α and β [58].

To show better the degradation of the battery a severity
factor could be used to quantify the aging effects under dif-
ferent operating conditions [59] based on the battery ageing
model [58] giving by:

σ (t) =
Ahnom

(
SOCnom,Crate,n om,TK ,n om

)
Ahcyc (SOC,Crate,TK )

(9)

It represents the ratio of the total Ah-throughput under
nominal cycles conditions, Ahnom, to the total Ah-throughput,
Ahcyc, under given pattern of SOC , Crate, and T until the end
of life (EOL) is reached. Therefore a severity map could be
estimated as shown in Fig.5.

FIGURE 5. Severity factor map for the battery under three different
current rate [59].

Similarly, Cui et al. tried to build a cycle lifetime model
that couples muti-stress factors for Li-ion batteries under
shallow-depth discharge [60]. It considers temperature T ,
time t , charge/discharge rate C , DOD and the tapper voltage
Vt as stress factors to extend the model applicability repre-
sented by:

A (DOD,C,Vt)

= −157.671+ 3.624 DOD+ 14.190 C

+2.721 exp (0.938 Vt) (10)

Qloss (T ,C,D OD,Vt, t)

= A (DOD,C,Vt) exp
(
−
Ea(C)
8.314T

)
t0.740 (11)

When considering the calendar aging three main fac-
tors (battery SOC, temperature, and storage time) are con-
sidered in the model. Sarasketa-Zabala et al. proposed a
semi-empirical model for the calendar aging validated under
dynamic operating conditions [61]:

Qloss = α1 · exp
(
β1 · T−1

)
· α2 · exp (β2 · SOC) · t0.5

(12)

where α1, β1, α2, β2 are fitting parameters, T is the tempera-
ture, and t is the storage time in days. Also, they proposed a

cycle life model that take into account the charge throughput
and the DOD as shown below [62]:

Qloss

=

(
γ1 · DOD2

+ γ2 · DOD+ γ3
)
· k · Ah0.87

for 10% ≤ DOD ≤ 50%

Qloss

= (α3 · exp (β3 · DOD)+ α4 · exp (β4 · DOD)) · k · Ah0.65

for DOD < 10% and DOD > 50% (13)

where γ1, γ2, and γ3 are fitting parameters while k is a
correction factor for the dynamic operating conditions and it
is considered 1 for constant DOD.

On the other hand, Ah-throughput representation could
lead to mistakes in separating the two battery life model
(cycle and calendar life) [63]. Therefore, based on theDakin’s
degradation approaches a total degradationmodel is proposed
by Baghdadi et al. after running several aging experiments
test. For the calendar aging, three different temperatures (30,
45, and 60◦C) with three different SOCs (30, 65, and 100%)
are considered. While for power cycling aging four aging
factors (magnitude of the current, charge throughput, cell
temperature, and DOD) are considered. The total degradation
rate ktot consider the power cycle as an amplification to the
calendar aging:

ktot = kcyc . kcalendar (14)

ktot = exp(a(T )I )︸ ︷︷ ︸
Cycle part

. exp(
cSOC
a

) . exp(
d
a
) . exp(

−b
aT︸ ︷︷ ︸

Calendar part

) (15)

the instantaneous performance studied is calculated by:

ξ (t) = ξ (0) exp(±kt
α) (16)

where ξ represents the battery capacity or resistance, the neg-
ative sign is for the battery capacity while the positive is
for the resistance, t is the aging time (days), and α is a
time-dependent factor determined by fitting the double loga-
rithms of capacity fade and resistance according to:

ln
(
± ln

(
ξ (t)
ξ0

))
= α ln t + ln k (17)

The two battery life models are also considered separately,
where the contribution of the calendar aging is subtracted
from the total aging to have the power cycling [64]–[65].
Schmalstieg et al. considered for the calendar aging only
one temperature 50◦C for 12 different SOCs ranging from
0% to 100% and 3 temperatures (35, 40, 50◦C ) for 50%
SOC. While for the cycle aging, only one current magnitude
(1C) and one temperature (25◦C) with different variations of
SOC are considered [65]. They express capacity and internal
resistance using the following equations:

C = 1− αcap · t0.75︸ ︷︷ ︸
Calendar part

−βcap ·
√
Q︸ ︷︷ ︸

Cycle part

R = 1+ αres · t0.75 + βres · Q (18)
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where α and β are ageing coefficients related to (voltage,
temperature) and (DOD, average voltage V ) respectively, t is
time in days, and Q is the charge throughput (Ah). Besides,
Wang et al. also build a complete degradation model consid-
ering 5 different DODs (10 to 90%), four different temper-
atures (10 to 43◦C), and five discharge rates (0.5 to 6.5C)
for the cycle test in their studies. However, they considered
the cycling at low conditions (current at 0.5C and 10% of
DOD) for approximating the calendar loss which is a huge
assumption. Hence, they build a single equation [64] to model
the battery degradation as:

Qloss

=

(
a · T 2

+ b · T+c
)
exp [(d · T+e) · Irate ] · Ahthroughput

+f · t0.5 · exp [−Ea/RT ] (19)

where the model parameter and coefficient values are pre-
sented in table 2. Despite the fair accuracy of semi-empirical
model and incorporating some physical interpretation, they
still depend on the designed accelerated aging experiment.

TABLE 2. The model coefficient values and units[64].

3) EMPIRICAL MODELS
In prognostics and health management, they are used to esti-
mate the SOH which could be defined as the ratio between
the actual capacity to the initial capacity and estimate the
RUL defined as the time left from the present observation to
the EOL when the full battery capacity reaches 80% of its
initial value [66]. The empirical model is established based
on fitting large amount of collected battery degradation data.
As example two empirical regression models, a polynomial
model (20) and an exponential model (21), are established by
fitting the experimental degradation data [67]–[68].

Qpk = β1 . k2cyc + β2 . kcyc + β3 (20)

Qek = α1 . exp
(
α2 . kcyc

)
+ α3 . exp

(
α4 . kcyc

)
(21)

k is the cycle number, αi and βi are the model parame-
ters. The exponential model showed a better fit compared
to the polynomial. Additionally, Xing et al. [67] proposed an
ensemble model from the previous models that showed a
better regression characteristic over the entire battery life.

QCk = γ1 · exp (γ2 · k)+ γ3 · k2 + γ4 (22)

Instead of predicting the capacity fade, Eddahech et al.
used the increase of the internal resistance of the battery

during calendar ageing to estimate the RUL considering the
SOC, temperature and storage time [69] using:

Re(t,T ,SOC) = A(T ,SOC) · t1/2 + B(T ,SOC) (23)

In addition, recursive filtering methods are appropriate for
online parameter identification [70]. Therefore they are used
to estimate and track the changes of the internal resistance
based on the equivalent circuit model [71]. However, they
depend on the accuracy of the battery model.

4) PARTIAL SYNTHESIS
As it is explained, the battery aging is hard to quantify due to
the complexity of the battery, interaction of several factors,
and diversity of operating modes during the battery life. This
aging cause a significant decay in the battery performance.
In addition, the laboratory controlled conditions and the
accelerated aging experiments (time consuming) cannot guar-
antee the same use and behavior of the battery as the operating
conditions and the load profile are completely random and
constantly changing for automotive applications. Therefore,
a well-designed model and a good degradation estimation
are critical for developing a health-conscious EMS. Table. 3
represents the performance comparison between the different
degradation estimation based on different criteria such as
their precision, their applicability in real application, and their
complexity. The different models can be complementary as
none of the models can perform enough while respecting
all the constraints. However, semi-empirical models seem to
be the most promising models for battery health-conscious
EMSs due to their fair accuracy, complexity, and applicability
in real applications.

B. FUEL CELL DEGRADATION MODELING
Proton exchange membrane fuel cell, the prominent technol-
ogy used in the automotive industry face different degree
of degradation compared to batteries. Currently, they suf-
fer from low lifetime duration around 3000h whereas a
5000h lifetime duration is required to compete in the vehicle
markets [46]–[73]. Dynamic operating conditions in trans-
portation applications compared to constant load operations
in stationary applications impose difficulties in water, gas and
thermal management leading to fuel cell degradation [74].
Therefore, adding a secondary source for example a bat-
tery to the fuel cell powertrain can improve the dynamic
performance. In addition, the degradation is affected by the
powertrain design and the control strategy. To avoid this
effect a control strategy that limit the FC system power
change and the number of start-stop can increase the system
durability [75].

1) EMPIRICAL MODELS
Regarding the SOH indicators for fuel cell, the variation
of the output voltage, internal resistance and output power
are considered as reliable indicators. However, most of the
researchers use the FC voltage, as it is simple to measure, for
estimating its degradation. The best-known model is based
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TABLE 3. Comparison of different battery lifetime models (5 stars: excellent, 1 star very poor).

FIGURE 6. Performance degradation rate of PEMFC caused by different
operation conditions [74].

on the actual operating condition that causes degradation as
shown in Fig. 6. Pei et al., developed an empirical model
that used the output voltage decay as a degradation indicator,
where a 10% drop is considered the end of life, presented
as [76]:

Tf =
1P

kp
(
P′1n1 + P′2n2 + P′3t1 + P′4t2

) (24)

where1P is the limited performance decrease, P′1, P
′

2, P
′

3 and
P′4 are the performance deterioration rate respectively caused
by large-range load change cycling, start–stop cycling, idle
condition and high power load condition while n1, n2, t1 and
t2 are their cycle time respectively per hour. In addition to the
decay suffered under undesired conditions, a normal decay
caused by the normal operating condition is added to the
previous model presented as [77]:

1φFCdegrad = 1φFCaddition +1φFCnomal

= Kp ((k1t1 + k2t2 + k3t2 + k3t4)+ β) (25)

where 1φFCdegrad donates the performance decline in per-
centage, 1φFCaddition is the performance degradation under
unpleasant operating conditions, while 1φFCnomal is a con-
stant value for normal decay under normal operating condi-
tions; t1, t2, t3, and t4 are idling time, the number of start-stop,
duration of heavy loading, and heavy load time, respectively.
Idling is where the output power is lower than 5% of the
maximum power, heavy loading is a variation greater than
10% of maximum power per second, while high power is
considered when it exceeds 90% of maximum power. The
model coefficients are presented in table 4.

TABLE 4. Coefficient of the degradation model [76].

In the same concept, Fletcher et al. also considered penalty
coefficient related to the operating conditions and more pre-
cisely linked to the requested power [46]. The degradation
due to operating at low/high current and transient operations
are considered as a function of the fuel cell operating power
and the rate of power change respectively.

Dpower = f (PFC) , & Dtransients = f
(
dPFC
dt

)
(26)

In addition, start/stop degradation is presented by:

Dcycle =


1

nmax
, if PFC,t+1 ≥ 0 ∧ PFC,t < 0

0, otherwise
(27)

where nmax represent the maximum number of start/stop
switches estimated by the manufacturer. The sum of these
degradation metrics, that represents a proportion of perfor-
mance drops, will penalize the stack voltage depending on
the power change.

In the same context, but considering only the frequent over-
load as the main reason for fuel cell degradation. Lin et al.,
used the standard deviation of the five-second sequence of
output power to calculate the output voltage decay rate in
order to limit and restrict the FC power to reduce the degra-
dation. Based on test results, the decay rate per standard
deviation of output power is 225 µvh−1 and 10 µvh−1 under
steady-state condition. Therefore the voltage decline rate
∂udecay /∂t(µV/s) is calculated as [78]:

∂udecay
∂t

=

225× stdev
(
Pkfc,P

k−1
fc ,Pk−2fc ,Pk−3fc ,Pk−4fc

)
+ 10

3600
(28)
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afterward the FC output power is adjusted dynamically using
the following equation:

1Pf =

(
1−

∂udecay
∂t

max ∂udecay
∂t

)
1Pf max (29)

where 1Pf max is the maximum change in the output power
and 1Pf is the increment of fuel cell working power.

2) OTHER MODELS AND TECHNIQUES
Beside the empirical models, FC degradation models are also
classified into electrochemical models [79] and data driven
models [80]. As for electrochemical models Wang et al.
as example quantified the fuel cell degradation by building
an electrochemical surface area (ECSA) decay model [81].
Hence, the FC degradation is included in the formulated
objective function while the DP is used to solve the optimiza-
tion problem. As for the data driven methods, this category
focus on the trend of FC aging and based on its operating data
the degradation model is established [82]. They don’t require
a full understanding of FC aging mechanisms. However, they
face some limitation because of their need for large exper-
imental data-sets. For example based on wavelet analysis,
extreme learningmachine and genetic algorithm (GA) a novel
PEMFC degradation model is proposed in [83]. This model
considers the influence of several factors from PEMFC load
current, relative humidity, temperature, to hydrogen pres-
sure. Moreover, it can be combined with the EMS durability
improvement. Additionally, the electrochemical impedance
spectroscopy (EIS) is a powerful tool to assess and evaluate
the state of health of fuel cell [84] and battery [69]. The
impedance spectra can show the effect of different levels of
degradation [85], [86].

3) PARTIAL SYNTHESIS
Most of the available FC degradation models are empirical
models based on experimental data. This is due to the dif-
ficulties in modeling the FC and its complexity. Therefore,
their accuracy is questioned under different operating condi-
tions. Regardless of the care given to the aging test bench,
the accelerated aging test that cannot fully emulate the actual
behavior in real field conditions. For example, air pollution
and vibrations accelerate the fuel cell degradation. While
other approaches as PHM for FC could solve the degradation
modeling problem. Therefore, assess its SOH and estimate
the RUL but the post-decisions still need more investigations
in the field of energy management.

IV. ENERGY MANAGEMENT STRATEGIES
Optimal power splitting between the multi-sources is the
main task of the supervisory control also known as energy
management strategy. In addition, other objectives could be
included such as the reduction of degradation especially
considering the high prices of FCs and batteries. Generally,
in the literature EMSs are classified into two main categories,
rule-based (RB) and optimization based [87], [88]. Today,

the majority of the efficient EMSs are going toward opti-
mization based [15]. Therefore, the interest in this section
is to review the existing works and strategies that consider
the degradation of sources mainly for FCHEVs using opti-
mization based methods. They can be performed off-line to
have a global optimal solution or extract and tune other rule-
based methods. Moreover, they can be applied on-line to have
a local optimal solution. Regardless of the type of EMS used,
from the energetic point of view if the sources degradation
aspect is neglected the performance would be the best only
for given state of health. Moreover, the lifespan of sources
could be highly affected.

A. RULE-BASED: EFFICIENT CONDITION OF OPERATIONS
To mitigate the degradation of energy sources RB methods
could target the unfavorable operating conditions based on
human expertise from SOC and current for batteries to star-
tups/shutdown, low/high power and high power change rate
for FCs. They promote good operating condition as in the
safe zone for FC shown in Fig.7. Thermostat (on/off), power
followers control strategy, state machines [89], frequency-
based approach, and fuzzy logic control (FLC) are popularly
used RB strategies [87]. They are formulated in terms of
preset fixed rules and operations to split the requested power.
Frequency decoupling using low-pass filter (LPF) [90] or
time-frequency representation tool like wavelets transform
(WT) [7] mitigate the FC degradation by assigning the high
frequency content of the requested power to the battery.While
the low frequency is assigned for the fuel cell to increase its
lifetime as it has a slow dynamic response [91], [92]. FLC are
well known especially for real-time applications as they are
model free and suitable for handling complex nonlinear sys-
tems. They can consider the SOH as input beside the SOC and
the requested power for durability improvement. Yue et al.
used the SOH, estimated by themeans of particle filter, beside
the SOC and the requested power as input for the FLC [94].
Therefore, the battery degradation is reduced by limiting its
current and SOC. Similarly, Noura et al. used the recursive
least square (RLS) to estimate the battery internal resistance
and its SOH based on the thevenin equivalent circuit model

FIGURE 7. Hydrogen flow (mol.s−1.W −1) of a 20 h aged PEMFC [93].

143930 VOLUME 9, 2021



A. Alyakhni et al.: Comprehensive Review on Energy Management Strategies for Electric Vehicles

leading for an appropriate FLC [71]. The optimality of FLC
could be improved by optimizing the membership functions
offline using for example GA [10]. The tuned controllers
showed a good performance compared to the optimal solution
of dynamic programming (DP) that took into account the
degradation cost of the battery and the fuel cell in their
cost function [95]. Further improvement could be achieved
using traffic conditions prediction. In [96], neural network is
used for driving pattern recognition. Other optimization algo-
rithms could be utilized as the particle swarm optimization
(PSO) [97] or bees algorithm [98] as an example.

B. OPTIMIZATION: INDIRECT AND EXPLICIT CONSCIOUS
DEGRADATION
Optimization based strategies are having more attention in
researchwith 56.7% in comparisonwith 32.9% for rule-based
strategies and 10.4% for reviews and analysis in the last recent
years [15]. Their objective is to minimize the operating cost
over a considered time span while meeting some inequality
and equality constraints. The objectives are quantified by
a cost function that can differ by taking into consideration
fuel consumption, hydrogen consumption, degradation. . . etc.
They are divided into two categories indirect and direct inte-
gration of degradation.

1) INDIRECT CONSCIOUS OF DEGRADATION
The degradation is not calculated and introduced in the
formulated cost function for indirect methods. However,
the constraints of optimization play part in operating the
sources in the safe zone and limiting the degradation factors
that trigger their degradation. Therefore, the constraints tend
to target the parameters that cause electrical abuses such
as min/max SOC, DOD, power, and current. For example,
the lifetime of the battery is improved by imposing constraints
on its SOC and current while reducing the fuel consumption
using the Pontryagin’s minimum principle (PMP) [99]. In the
same context, the battery degradation is limited by putting
constraints on its SOC and for FC by setting a minimum
FC power threshold and a time limit between its startup
and shutdown while the model predictive control (MPC)
track the power demanded of the FCHEV [100]. In addi-
tion, the FC current change rate is limited to reduce the
degradation caused by high and frequent load change [101].
Such approach has a non-optimal solution as the degradation
behavior is not modeled. Therefore, the explicit conscious
method is becoming more and more employed.

2) EXPLICIT CONSCIOUS OF DEGRADATION
Having a degradation model or SOH estimation help to esti-
mate the cost of degradation depending on its aging factors
and operating condition. Therefore, in addition to the cost of
fuel consumption, the degradation is included in the objec-
tive function as an economic cost to minimize. Normally,
it is based on the replacement cost at their end of life.

For example, the objective function J is defined by

J =
N∑
k=0

(
CH2 + Cδb + CδFC

)
(30)

where CH2 represent the fuel cost based on hydrogen con-
sumption rate and cost, Cδb & CδFC represent the battery
and FC degradation cost based on their replacement cost and
degradation rate. On the other hand, instead of allocating
an economic cost equivalent for degradation, the objective
function can be formulated based on equivalent hydrogen
consumption for degradation, defined as follows

J =
N∑
k=0

(
1mH2 +1mH2equ3 +1mH2equ2 +1mH2equ1

)
(31)

where first and second part, 1mH2 & 1mH2equ3, are
for hydrogen consumption and equivalent hydrogen con-
sumption of the battery. While the third and fourth part,
1mH2equ2 & 1mH2equ1, account for the equivalent hydro-
gen consumption of the performance degradation as shown
in (32) [102]–[77]. It is based on the price of FC and battery
MFC and MBat, the price of hydrogen CH2 , in addition to
the degradation level of the Fc and battery 1φFCdegrad and
1φBatdegrad .

1mH2equ2=
1φFCdegradMFC

10%CH2

1mH2equ1=
1φBatdegradMBat

20%CH2

(32)

a: OFFLINE OPTIMIZATION
Dynamic programming is the most famous algorithm for
having a global optimization. The cost-to-go function is cal-
culated for each sample time and the optimal control policy
is achieved by proceeding backward. It has a high computa-
tional burden and requires prior road information but it can
serve as a benchmark solution. First, for health-conscious
energy management, where the cost function consider only
the battery degradation based on its severity factor, it has
been used to reduce the battery degradation for a battery/ultra-
capacitor hybrid system [103]. The same concept is applied
but using the battery dynamic degradation based on the
Ah-throughput model and according to the cumulative dam-
age theory [6], [104] as follows:

Qloss ,p+1 − Qloss ,p = 1AhzA
1
z e
−

(
Ea+BCRatex

zRTbat

)
Q

z−1
z

loss, p (33)

whereQloss ,p+1 andQloss ,p are the accumulated capacity loss
at time tp+1 and tp, and 1Ah is the Ah throughput from tp+1
to tp which is defined as:

1Ah =
1

3600

∫ tp+1

tp
|Ibat| dt (34)

Therefore, the cost function contains the cost of accu-
mulated capacity loss. Secondly, the cost function consider
the total operating cost. Therefore, a trade-off between fuel
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TABLE 5. Advantages and disadvantages of EMS algorithms.

consumption and battery degradation is considered using
DP [105]–[106]. Similarly, for battery/fuel cell system a
trades off will be between the hydrogen consumption and the
degradation of the energy sources. Martel et al., considered
the degradation of the fuel cell based on the voltage loss
model and also introduced their battery degradation model
for calendar and cycle life. Lastly, building the cost function
based on hydrogen. Hu et al. considered the system durability
and fuel economy for a FCHEV using DP [77]. Degradation
models (7) and (25) are employed to convert the sources
degradation into equivalent hydrogen consumption based on
the price of FC, battery and hydrogen as shown in Equ. 32.

On the other hand, as a benchmark Song et al. used the
DP solution, considering the battery degradation, during two
different driving cycles in order to extract control rules from
them and to propose a near-optimal rule-based strategy [104].
However, the DP is highly sensitive for changing the driving
cycle as a 13% change in the optimal lifetime is obtained
when the driving cycle is changed in [108] as an example.
Therefore, the extracted rules are applicable only for specific
driving cycle andmay not guarantee a high level of optimality
for different driving cycles. Furthermore, regarding training
other methods, DP results are used to train an intelligent
artificial neural networks for real time implementation that
extends the battery life compared to rule-based method [109].

Stochastic dynamic programming (SDP) is used to
allow real-time implementation where future conditions
are predicted using Markov chain models or neural
networks [87]–[110]. For example, Fletcher et al. used the
SDP to minimize the fuel consumption, fuel cell and battery
degradation by setting voltage constraints on the battery and
penalizing the FC stack voltage depending on its power
change [46]. Other SDP application for PHEV considering
battery degradation and consumption is found in [51] and for
HEV in [111].

b: ONLINE OPTIMIZATION
A prior knowledge of the upcoming driving cycle is not
required. The global optimization problem is reformulated
and its cost function is replaced with an instantaneous
cost function to overcome the computation time limitation,
memory resources in addition to the driving cycle knowledge

in advance. Equivalent cost minimization strategy (ECMS),
PMP, and MPC are the best known strategies for online
implementation in health management.

The ECMS was first introduced for hybrid electric vehicle
working under charge-sustaining [112]. The energy used dur-
ing discharging the batterymust be replenished at a later stage
using the engine. Hence, virtual or equivalent fuel consump-
tion is associated with the electric energy, using an equivalent
factor (EF), to obtain an instantaneous equivalent fuel con-
sumption that should be minimized [14]. Optimization based
ECMS with a constant EF is presented in [113] considering
battery degradation using the SEI film growth model lead-
ing for longer lifetime while sacrificing fuel consumption.
In addition, sequential quadratic programming (SQP) and
PMP are the most common used in ECMS approach. The
EF and the fuel cell dynamic change rates are changed based
on the SOH of the battery and the fuel cell to insure charge
sustenance and prolong fuel cell lifetime [114]. In addition,
Zhou et al. showed how the penalty factor, of the ECMs
based on PMP, using the severity factor model (8) can affect
the battery degradation [115]. He concluded that a proper
penalty factor can significantly extend the battery lifetime
while sacrificing a slight fuel efficiency in a hybrid electric
vehicle. Zhang et al. considered the lifetime of the battery
and the fuel cell using SQP based ECMs for a fuel cell
hybrid ship with a battery/ultra-capacitor as an energy stor-
age system [102]. The multi-objective function is formulated
considering fuel consumption, battery and UC equivalent
hydrogen consumption in addition to battery and fuel cell
degradation equivalent hydrogen consumption. The strategy
showed better performance compared to wavelet-based and
rule-based control strategy. Similarly, only the lifetime of the
fuel cell is considered along with the fuel consumption for a
range extender FCHEV in [116].

The PMP is based on a local minimization of the Hamil-
tonian function characterized by an electrical usage factor
the co-state also known as adjoint state. The first attempt to
investigate the capacity degradation of the battery in energy
management for HEVs was presented in [117]. Where a bat-
tery degradation cost interpretation based on a severity factor
map is added to the Hamiltonian function of the PMP for
balancing the fuel consumption and the battery degradation.
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However, experimental validation is missing especially for
the aging model so additional improvement is made using
the severity factor map based on the Ah-throughput capacity
degradation model [118]. In the same concept, experimental
data corresponding to HEV driving conditions are used to
parameterize the aging model that takes into account the
SOC dependency (Equ.8) [58]–[119]. Then, the objective
cost function include the fuel and degradation cost while the
optimal control is solved by the means of PMP. Even fuel
cell performance drift caused by the degradation could be
tracked and integrated in the objective function to formulate
the Hamiltonian of the PMP. In [120], the fuel cell power
fluctuation was penalized by adding a damping factor to the
Hamiltonian function. Thereby, the lifetime is improved with
just scarifying slight hydrogen consumption raise. Moreover,
Jiang et al. considered the degradation cost of the battery
and the fuel cell using (Equ.7 & Equ.24) with the energy
consumption cost in their objective function [121]. The opti-
mized solution is obtained using two-dimensional DP and
PMP. On the other hand, hybridization can play a role to
improve the lifetime and reduce the total operating cost. The
performance of a plug-in hybrid electric bus and a single
battery bus are presented in [122]. The PMP is used to find a
trad-off between the equivalent battery life loss cost and the
energy consumption.

The MPC anticipate future events and take accordingly the
best control action. It is an optimization based on receding
horizon control strategy using three main steps: (i) calculate
the optimal control input over a prediction horizon that mini-
mize the cost function subjected to constraints (ii) implement
the first element of the derived optimal inputs to the physical
plant, and (iii) move the entire prediction horizon one step
forward and repeat from step (i) [1]. Therefore, the computa-
tional burden compared to DP and PMP is reduced but the
solution becomes sub-optimal due to dividing the problem
into several time steps. In this regard, an appropriate size
of prediction horizon should be adapted as it can affect the
accuracy and the computational burden. For health-conscious
EMS, the MPC is used to extend the lifetime of the battery
by limiting the rate of change of the current and insuring
operating within the operating constraints for a battery/ultra-
capacitor system [123], [124]. Instead of using the battery
degradation in the objective function, a novel MPC is pro-
posed considering the optimal DOD [125]. Therefore the total
cost is reduced including fuel consumption and degradation
cost. On the other hand, the first attempt to consider both
fuel cell and battery degradation explicitly in a cost-optimal
predictive manner for a FCHEV is presented in [50]. The
SQP is used in the spectrum of MPC to minimize the total
operating cost including the cost of degradation sources.

c: OTHER METHODS: FILTERS AND MACHINE LEARNING
Extremum seeking could be used to find the best operat-
ing points in real time. For fuel cells, as an example, their
energetic performance change depending on the operating
conditions and aging. Hence, the best performance should be

FIGURE 8. General comparison of EMSs [1].

tracked by determining the maximum efficiency and power
range. This will lead to efficiency, performance and dura-
bility improvement for the fuel cell system and decrease the
equivalent hydrogen consumption of the battery [126], [127].
For example, Ettihir et al. tracked the fuel cell performance
deterioration caused by its degradation using an adaptive
recursive least square algorithm [93]. Therefore, the updated
performance is integrated in the PMP for fuel consumption
and degradation reduction. Similarly, a new novel degrada-
tionmodel was proposed combine the polarization curves and
FC efficiency with different state of health [128]. Therefore,
the power distribution is adaptively tuned during the whole
lifetime of the stack. On the other hand, learning based strate-
gies (LB) are intelligent control strategies that use massive
historical data and real-time information to obtain an optimal
control law. They don’t rely on a precise model as an advan-
tage to be used for complex nonlinear systems, but they could
be time consuming for training data sets. There are several
LBS as neural network learning, supervised/unsupervised
learning, reinforcement learning, support vector regression
(SVR). Higher DOD of the battery induces more degradation.
Therefore, defining an optimal DOD for a plugin hybrid
vehicle with different initial SOC of the battery can reduce the
total cost of operating including the degradation equivalent
cost. Xie et al. used the generated data of the PMP during
different initial battery SOC to train an artificial neural net-
work (ANN) for better power distribution [129]. The ANN
has comparative results to the PMP that include the battery
degradation and with much improvement compared to rule-
based method. In addition, reinforced learning methods are
gradually used in real-time application as in HEVs for their
optimality compared to DP [130]. Some of the mentioned
strategies are compared in Table 5 and Fig. 8. Despite the
difficulty to describe the evolution and differences between
these methods, they present an explicit evolution in their way
to consider the degradation and improving the durability as
shown in Fig. 9.

C. PARTIAL SYNTHESIS
The EMS is regarded as a high supervisory control that meet
the requested power by distributing the power on the avail-
able sources while respecting safety constraints. However,
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FIGURE 9. Tentative evolution of EMS considering degradation reduction.

multi-objectives EMS could be formulated to improve the
system reliability and durability. Consequently, it is gain-
ing interest to develop a health-conscious EMS as shown
in Fig. 9. It started with simple rule-based methods (FLC &
deterministic rules) that reduce the degradation based on
safety constraints and limiting the degradation factors based
on human expertise. They were improved by the mean of
optimization algorithm (DP, GA. . . ) to tune some parameters
off-line. For their simplicity and online implementation, they
were and are still used in vehicular applications. Then the
indirect conscious degradation continued with the offline
optimization-based methods using their constraints to target
the degradation factors. They have the advantage of finding a
global solution. However, they require a prior knowledge of
the driving cycle. As result, the real time application is limited
unless the driving cycle is predicted (railway applications as
example). Lately, the interest increased into considering the
degradation explicitly in the formulated cost function. There-
fore, the degradation equivalent cost or hydrogen consump-
tion is directly included in the cost function. On one hand,
global optimizations are used to have the optimal solution as
a benchmark to evaluate other solutions. On the other hand,
online optimization (PMP, ECMS. . . ) are used to overcome
the limitation of global solution and allow real time imple-
mentation. The next trend could go towards investigating the
post decision of the PHM as it still lack investigation for
both batteries and FCs. In addition, the connected vehicles,
the availability of traffic data, and GPS could improve the
driving cycles prediction in addition to the use of machine
learning based methods.

V. CHALLENGES AND OUTLOOKS
Developing an optimum FCHEV, capable of competing with
conventional ICEs, requires many considerations especially

source reliability as they have high cost for replacement.
In addition, an appropriate sizing of the energy sources is
important not only to reduce the initial capital cost but also
to reduce the running cost and achieve a higher lifetime.
However, this is still challenging as they are highly depending
on the type of driving cycle which leads to more investiga-
tion under any arbitrary drive cycle. Furthermore, system to
system degradation is another challenge that still need more
investigation. As reducing the degradation of one source can-
not guarantee that the degradation of the second source will
not be accelerated. Besides extending the developed EMSs
from simulation level to experimental setup or hardware in
the loop.

Consideringmulti-objective cost function that incorporates
fuel consumption minimization, sources health, emissions,
thermal management. . . is one of the future research direc-
tions. Therefore, the challenge relies in proposing a reli-
able model that describes those concerns without increas-
ing significantly the computational burdens as some hard-
ware and time limits are imposed for real-time imple-
mentation. For example, the temperature is an impor-
tant factor that affect the performance of the energy
sources and yet it is not well investigated in terms of
the EMS. Therefore, incorporating the thermal manage-
ment in addition to the degradation in the design of a
health-conscious EMS has the potential of improving both
performance of the vehicle and the lifetime of the energy
sources.

As example, despite all the effort made in the degrada-
tion modeling there isn’t a single degradation model that
consider all the aging mechanisms that occur in automotive
application. However, each model can perform well under
its own particular controlled conditions. In addition, most
of the studies focus on one aging effect at a time either
capacity fade or internal resistance raise. While both have
different impact on the performance of the system related
to the available energy and the deliverable power. Moreover,
the accelerated aging experiments helped in understanding
the different aging mechanisms and collecting aging data.
However, they have their own drawbacks related to neglecting
the real environmental variables that occurs in real life. For
example, investigating how the degradation of the FC is
affected by air pollution and vibration. Therefore, the acceler-
ated aging test cannot emulate fully the actual behavior in real
field conditions leading to some errors. Other aspects should
be considered are the complexity of the developed model and
its precision to overcome the on-board computational limits
and enable online implementation. Temperature is another
important factor that affect the performance of the energy
sources and yet it is not well investigated in terms of the
EMS. Therefore, incorporating the thermal management in
addition to the degradation in the design of a health-conscious
EMS has the potential of improving both performance of the
vehicle and the lifetime of the energy sources.

Besides, the difficulty of having a Pareto optimization
solution increases as the objectives are normally conflicting.
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Therefore, less important objectives could be replaced by
some constraints. Another promising opportunity rise from
the rapid development of intelligent transportation system,
accessibility to traffic data, global positioning systems (GPS)
and geographical information. Hence, EMS based artificially
intelligent can learn from past scenarios and adapt to new
changes for better real-time performance. Additionally, cloud
computing based EMS can process massive collected data
and solve the on-board hardware limitation while using the
internet for communicating.

VI. CONCLUSION
FCHEVs are a hot subject today for their zero emissions,
fast hydrogen refilling time and high efficiency. However,
the degradation of their energy sources is inevitable and it
is accelerated by the operating conditions as well as the
control strategy causing drop in the system performance
and durability. Therefore, firstly the aging mechanisms of
the battery and the fuel cell are presented. Their complex-
ity and interaction justify the variety of degradation model
described secondly. In this context, a special focus was made
toward finding and analyzingmodels that can be incorporated
with the EMSs for a health-conscious energy management.
In addition to highlighting the useful degradation models
and their characteristics, a review and an analysis of the
existent health conscious energy management strategies that
took the degradation of energy sources in their approach is
presented. Consequently, this work tries to give an insight
on improving source durability issue and developing a health
management strategy. While challenges and issues are high-
lighted from degradation modeling, validation and evalua-
tion, optimality to real-time implementation. In addition to
a future research direction based on multi-objective prob-
lem using practical models, estimation methods or intelligent
based EMSs.

NOMENCLATURE
ABBREVIATIONS
ANN Artificial neural network.
BMS Battery management strategy.
DOD Depth of charge.
DP Dynamic programming.
ECASA Electro-chemical active surface area.
ECMS Equivalent cost minimization strategy.
EF Equivalent factor.
EMS Energy management strategy.
FC Fuel cell.
FCHEV Fuel cell hybrid electric vehicle.
FLC Fuzzy logic control.
GA Genetic algorithm.
GDL Gas diffusion layer.
GPS Global positioning systems.
HEV Hybrid electric vehicle.
ICE Internal combustion engine.

LB Learning based.
LPF Low pass filter.
MPC Model predictive control.
NN Neural network.
PEMFC Proton exchange membrane fuel cell.
PHM Prognostics and health management.
PMP Pontryagin’s minimum principle.
PSO Particle swarm optimization.
RB Rule-based method.
RLS Recursive least square.
RUL Remaining useful life.
SC Supercapacitor.
SDP Stochastic dynamic programming.
SEI Solid Electrolyte Interface.
SOC State of charge.
SOH State of health.
SQP Sequential quadratic programming.
SVR Support vector regression.
WT Wavelets transform.

VARIABLES
1Pf FC power variation.
Vt Tapper voltage.
α,β,η,z̄ Battery degradation coefficients.
α1...4, β1...4 Fitting degradation parameters.
αcap, αres Aging coefficient.
αa, αc Anodic and cathodic transfer coefficients

of electrochemical reaction.
1φFCdegrad Total FC performance decline.
1φFCnomal Natural FC performance decay.
1mH2equi Degradation’s equivalent hydrogen

consumption.
1mH2 Cost of hydrogen consumption.
1mHi Equivalent hydrogen consumption.
1P FC percentage decay at EOL.
1φFCaddition FC performance drop for specific condi-

tions.
δfilm SEI film thickness.
a Activation energy.
η Local over potential.
γi Fitting degradation parameters.
κp Conductivity of the film.
∂udecay FC voltage decline.
φs, φe Solid and the electrolyte potentials.
ρP Density of active material.
σ (t) Severity factor for the battery degradation.
ξ (t) Battery capacity or internal resistance.
an Specific surface area of porous electrode.
Cδb Battery degradation cost.
CδFC Fuel cell degradation cost.
CH2 Cost of consumed hydrogen.
Dcycle FC degradation during switching.
Dpower FC degradation under high power.
Dtransients FC degradation under transient loading.
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ios Exchange current density.
JI Current density for intercalation reaction.
JS Current density for side reaction.
Jtotal Sum of the current density.
Kcyc Number of cycles.
kcyc, kcalendar Cycle and calendar degradation rate.
ktot Total degradation rate.
ni, ti FC operating time during various condi-

tions.
Pkfc FC power at instant time t.
QCk Combined capacity fade models.
Qpk ,Qek Combined capacity fade models.
Rfilm Overall film resistance.
Rg Universal gas constant.
RSEI Initial film resistance.
P′i FC degradation coefficient.
Tf FC degradation percentage.
Ah Amper hour throughput.
F Faraday’s constant.
Irate Rated current.
J The objective cost function.
K Correction factor.
kp Accelerating coefficient.
Q Charge throughput Ah.
Qloss Capacity loss.
Re Internal battery resistance for calendar

aging.
T Temperature.
t Time.
U Local equilibrium potential.
z Value of power law exponent.
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