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Towards data-driven predictive control of active
upper-body exoskeletons for load carrying

Alexandre Oliveira Souza1, 2, Jordane Grenier2, François Charpillet1, Pauline Maurice1, Serena Ivaldi1

Abstract—Upper-limb active exoskeletons are a promising
technology to reduce musculoskeletal disorders in the context
of load-carrying activities. To assist the user on time, it is
crucial to predict the assistance torque required for the future
intended movement. In this paper, we propose to predict such
a torque with predictive models trained on simulated data. We
generate exoskeleton sensor data for training learning-based
prediction models from human motion capture data. We design
a Quadratic Programming control problem for the exoskeleton
to track the human body across its movements. From the data
generated using this simulation method, we train two torque
command prediction methods for transparent control and load
carrying. We show that exoskeleton torque command can be
predicted with a relative error below 5% at a horizon of 100ms.

Index Terms—Exoskeleton, Predictive control, LSTM

I. INTRODUCTION

Exoskeletons are a promising solution to reduce work-
related musculoskeletal disorders [1] since they provide ad-
ditional torque to assist users in their movements at work.
Exoskeletons can be active or passive: the active ones are
actuated, whereas passive ones usually use springs to restitute
energy at a suitable moment of movement, making them useful
for specific postures and tasks only. The main advantage of
active exoskeletons is the higher amount of assistance they can
provide, which makes them particularly interesting to assist
humans in tasks involving high payloads and higher com-
plexity of movements (such as agonist/antagonist sequences).
However, their main challenge is to design controllers that
assist the user as needed, detecting the user’s intent of motion
and adapting to different payloads. Predicting the user’s inten-
tion is required by the exoskeleton to provide a suitable torque
on time: any delay in the prediction may cause the exoskeleton
to be perceived as a constraint in the motion rather than a help.

Electromyography (EMG) sensors are traditionally used to
infer the human intention of motion. Since the excitation-
contraction coupling takes delay and a considerable amount
of electrical potential, EMG sensors can be used to detect the
beginning of a movement in advance. But they are invasive,
noisy, and hardly compatible with real-world exoskeletons
worn on clothes. An alternative approach to predict user inten-
tion is to use data-driven models that use as input the onboard
sensors on the exoskeleton (e.g., torque sensors, IMUs), but
their use on exoskeletons is constrained by the fact that they
require a lot of data to be trained. Acquiring data from a
real exoskeleton worn by a human is difficult, expensive, and
potentially unsafe if the controller has not yet been validated.
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Fig. 1: An upper-body active exoskeleton “worn” by a virtual
human. Contact points between the exoskeleton and the body
are fed to a Quadratic Programming problem to simulate a
transparent motion tracking. This method enables to generate
synthetic exoskeleton data for data-driven prediction as well
as test exoskeleton controllers in simulation.

Typically, in other areas of robotics, these problems are ad-
dressed by data augmentation with simulated data, or directly
learning from simulated data. We posit that a similar approach
should be applied to active exoskeletons. Therefore, we also
need a physical simulator of the exoskeleton worn by a human
that enables us to collect data, test and validate controllers.

This paper has two main contributions. First, we propose
a simulation of the exoskeleton allowing the generation of
virtual sensor data from abundant human motion capture
data. We present a method based on Quadratic Programming
(Quadratic Programming (QP)), where the exoskeleton tracks
the human movement as if it were worn by the human, to
generate a physical simulation of the exoskeleton (see Fig.
1). Second, we propose and compare two possible ways of
predicting the joint torques necessary to assist a human in load
carrying:

1) Predicting the future joint positions of the exoskeleton
from past observations and calculating the correspond-
ing joint torque using a dynamical model of the ex-
oskeleton

2) Calculating the past torques from past observation of
joint positions and predicting the future joint torque.

To predict these values, we choose to use LSTM-based neu-
ral networks for their known performance in predicting future
motion [2]. We use the simulation method to generate the data
necessary to train our two LSTM-based joint torque predic-



tion methods and compare their performances in simulation.
Our work practically demonstrates how physical simulation
is necessary to prototype and study predictive controllers for
active exoskeletons, before deployment on real platforms. We
believe that it can accelerate the development of exoskeleton
controllers, with benefits in the long term for workers.

II. RELATED WORK: HUMAN INTENTION PREDICTION
FOR EXOSKELETON CONTROL

Detecting human intention usually requires reading biolog-
ical signals or interpreting dynamic or kinematic signals. A
popular approach for upper-limb exoskeleton control is to use
EMG sensors to infer human motor intention and generate a
command for exoskeleton control [3] [4] [5]. They can infer
the human motion intention 50-100ms before the movement
[6], which allows synchronizing the human movements and
the exoskeleton assistance. However, using EMG sensors
outside of the lab is challenging as it varies depending on
experimental conditions such as temperature, sweat, or fatigue
[6]. Control strategies of exoskeletons deployed in the real-
world (logistics, service, civil. . . ) should rely on less inva-
sive sensors, ideally only on internal sensors of the robotic
exoskeleton.

In lower-limb exoskeletons, instead of EMG sensors, it is
standard to use Inertial Measurement Units (IMU), positional
encoders, or force-sensitive insoles to detect the stride fre-
quency of the user [7], [8]. Once the stride frequency is known,
a control law can be defined as a function of the percentage
of the stride. Human in the Loop optimization can improve
metabolic performance and assist walking, both in the lab [9]
and in the real world [10]. However, this technique heavily
relies on the cyclic pattern of the human walk, which makes it
hard to use for upper limb assistive exoskeleton control where
actions are varied and do not follow cyclical patterns.

Another way of predicting for exoskeleton control is to
use motion capture data and infer the future kinematic and
dynamic behavior of the human from past observations. Sev-
eral machine learning methods for motion prediction can be
used such as Probabilistic Movement Primitives (PROMPS),
Recurrent Neural Networks (RNNS) and Encoder-Recurrent-
Decoder networks to predict short and long-term human mo-
tion from motion capture data and video [2], [11], as well
as Generative Adversarial Networks (GANS) [12], [13]. To
the best of our knowledge, few works use motion prediction
methods to control upper-limb assistive exoskeletons, with
few exceptions for an upper-limb rehabilitation exoskeleton
[14].

III. METHODS

A. Problem formulation

Our goal is to find the torque command to send to the
motor to control the exoskeleton, complying with the human’s
motion and compensating for a payload. We want the human
to move as if they were not wearing the exoskeleton: so the
exoskeleton should compensate for its weight and dynamics.
The exoskeleton should not constrain human movements, so it
should move in perfect ”symbiosis” with them, which requires

predicting the human motion intention with accuracy. Finally,
the exoskeleton should assist in carrying payloads, which
requires knowledge of the payload itself. In the following,
we will assume it is known. The torque commanded to the
exoskeleton motors, τc, must then combine the torque to
compensate for the exoskeleton’s motion, τE and the torque
to carry the payload, τP . We consider the inverse dynamics
for our problem:

τc = τE + τP (1)

With
τE = M(q)q̈ + C(q, q̇)q̇ + g(q) (2)

and
τP = JTWP (3)

Where τc is the joint torque command, q, q̇, q̈ the exoskeleton’s
joint position, velocity, and acceleration; τP the contribution
of the external payload; JT the jacobian transpose of the
exoskeleton expressed at the end effector; WP the wrench
applied by the payload; M(q) the inertial matrix, C(q, q̇)
the Coriolis effects and g(q) the gravity effects. To make
the exoskeleton transparent to the user, we compensate for
τE and for a part of the payload. The payload’s contribution
is calculated as an external force applied at the end-effector
of the exoskeleton’s arms, which is an approximation of the
reality as all the dynamics of the load are not computed,
just its mass contribution. We want to predict τct+1→t+h

=
(τct+1

, τct+2
, . . . , τct+h

) the vector of future joint torques. As
explained in section II, data-driven methods are classically
used to make such predictions but require examples of past
data. In the next sections, we detail how to generate such data
with a simulated exoskeleton. The overview of the proposed
method is presented in Fig. 2: to generate examples of the
exoskeleton’s motion, we define an optimization problem that
makes the exoskeleton track a simulated human replicating
human demonstrations of several tasks, recorded via motion
capture. The dataset generated from this method is used to
train predictive models. Here, we use models based on LSTM
[14]. Online, the model is queried to generate predictions of
future torques, according to two methods that will be shown
in section III-C.

B. Generating synthetic exoskeleton data from motion cap-
ture

Motion capture data of humans are used as references for
Quadratic Programming (QP) tasks, which allows animating
the simulated exoskeleton moving as if it were worn.

1) Exoskeleton Description: We use an upper body active
exoskeleton (Designed by Safran Electronics & Defense). It
is composed of 4 active actuators, located on the shoulders
and elbows joints (respectively in red and green in Fig. 1).
There are multiple passive DoFs from the hips to the elbows,
to ensure anthropomorphic kinematics with as few constraints
as possible while moving. However, in our simulation, all the
DoFs need to be controlled as the exoskeleton is not attached
to a human that generates the movements of the passive DoFs.

In Fig. 1, we show how we extract from the motion capture
data, the Cartesian trajectories of the expected contact points
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Fig. 2: Pipeline of the torque prediction methods, relying on simulated exoskeleton data. q and τ are respectively the joint
positions and the joint torques of the human (H) or the exoskeleton (E), and τc the torque command.

between the exoskeleton and the user. For each contact point
k, a frame is placed on the Digital Human Model (DHM) <
Ck,H > and another frame on the exoskeleton < Ck,E >.

2) An optimization approach: To mimic the transparent
behavior of the exoskeleton, i.e., the exoskeleton following the
human’s movement, we formulate the exoskeleton control as
a motion-tracking problem. The objective is to minimize the
distance between the contact points on the exoskeleton and the
trajectories extracted from the motion capture. The problem
consists in solving at every time step of the simulation the
following QP optimization problem:

argmin
q̈,τ

∑
k

wk∥ÿk − ÿdk∥2, (4)

s.t. dynamics constraints and joints limits

With q̈ the generalized joint angular acceleration, and τ the
actuation joint torque. We denote by yk the current Cartesian
positions of frames linked to the parts of the exoskeleton
where there should be contact points between the exoskeleton
and the DHM (Fig. 1). ÿk are their corresponding accelera-
tions. ÿdk is the desired acceleration. The quantity ∥ÿk − ÿdk∥2
is the acceleration error associated with the Cartesian task k.
wk represents the weight of the task k, i.e. the tasks can be
prioritized. ÿdk is calculated using PD control :

ÿd = ÿgoal +Kd(ẏ
goal − ẏ) +Kp(y

goal − y) (5)

with ygoal the desired Cartesian position of the task.
At each time step, the position, and orientation of the

contact points frames of the human (extracted, in our case,
using the motion capture data) are given to the QP controller
as an objective, i.e., the position and orientation of the human
frame < Ck,H > are given as ydk and the position and
orientation of the corresponding current state of the frame
linked to the exoskeleton < Ck,E > are given to the controller
as yk, as explained in Fig. 2. The torque calculated from the
resolution of the problem allows controlling the exoskeleton
in the physics-based simulation. The motion and torque data
from the simulation are saved to be used in the training phase.

C. Predicting the exoskeleton torque from past observations

In this section, we present two possible methods for predict-
ing the exoskeleton’s torque commands to assist the human.
We remind that the exoskeleton must ”follow” the human’s
intended movements and assist with the payload. The first
method consists in predicting the future joint positions and
feeding these predicted positions to the inverse dynamics to
compute the torques. The second method consists in applying
first the inverse dynamics on the joint positions, to compute
the current and past torques, and then predict the future torque
from the past computation. Note that this is similar to having
”Virtual torque sensors” and computing predictions out of
their estimation, which is often done in humanoid robotics
[15].

We expect that the second method will give better results
as the number of predicted values is smaller, since only the
torques of the motor joints need to be predicted, whereas all
the joint positions need to be predicted to perform the inverse
dynamics.

1) PJ+ID: Torque from joint position prediction and in-
verse dynamics: Predicting the future torque of the actuated
joints of the exoskeleton is decomposed into several subprob-
lems: predicting the future angular position of all the joints
of the exoskeleton, using inverse dynamics to compute the
torques of the exoskeleton when no payload is added and
adding the torque corresponding to the payload. The problem
of predicting the future state of the exoskeleton’s joints based
on their history is formulated as follows:

q̂Et+1→t+h
= f(qEt−p→t

) (6)

With qE the angular position vector of the exoskeleton, f
the function to determine, h the prediction horizon and p the
amount of history used to make the prediction.

An LSTM-based model is used to predict the future angular
position of the joints of the exoskeleton based on their past
positions. The model is composed of a single-layer LSTM cell
and a 3-layer fully connected analyzer. To compute the torques
of the actuated joints, we need to predict the future angular
positions of all the joints (passive and active). Thus, the input
of the neural network is a matrix containing the history of all



the joints of size (j× p), with j the number of joints and p the
amount of history.

The output of the neural network is a matrix of size (j ×
h) with h the prediction horizon to make the prediction. The
neural architecture is voluntarily light because it is meant to
be used on an embedded computer.

To get the torque from the joint angular positions, a nu-
merical derivation is performed to get the angular velocity
ˆ̇qEt+1→t+h

, and the angular acceleration ˆ̈qEt+1→t+h
. The Jaco-

bian matrix is calculated using the predicted joint positions.
Using Eq. 1 we get τ̂Et+1→t+h

the estimated future torque
contribution of the exoskeleton and the future contribution
of the load τ̂Pt+1→t+h

. Thus, we get the future joint torque
trajectory over horizon h.

2) ID+PT: Inverse dynamics and torque prediction: In-
stead of predicting the joint’s future positions, we can use the
joint’s past observations and calculate the past joint torques
τ̂ct−p→t

using the same method as in the previous section.
From this calculated torque, we can predict the future joint
torque τ̂ct+1→t+h

. The input of the neural network is the
torques from the four actuated joints, and the output is their
future values over the next steps. In this case, the objective is
to find the function f that solves:

τ̂ct+1→t+h
= f(τct−p→t

) (7)

We use an LSTM-based model, similar in architecture to the
model of PJ+ID. It predicts the future torque of the actuated
joints of the exoskeleton based on their past values. The model
is composed of a single-layer LSTM cell and a 3-layer fully
connected analyzer. As we are directly predicting the joint
torque, we only need to predict the torque of the actuated
joints. Thus, the input of the neural network is a matrix
containing the torque history of the motor joints of size (j×p),
with j the number of joint torques and p the number of past
timesteps taken into account to make the prediction.

The output of the neural network is a matrix of size (j × h)
with h the prediction horizon to make the prediction.

IV. EXPERIMENTS

A. Dataset

The AndyDataset [16] is a dataset of motion capture move-
ments acquired from 13 individuals performing a variety of
industrial-like movements using the Xsens MVN system. It
is composed of several trials of 6 industry-like activities
performed successively, for each individual (carrying boxes,
setting screws at different heights, untying knots. . . ).

A DHM is used to replay motion capture data. The DHM
is a rigid-body human model with 66 DoFs, inspired by
humanoid robots [17]. Differently from other works, here
the DHM is a non-physical kinematic puppet, used to replay
motion capture data and to calculate interaction points with the
exoskeleton, displayed in Fig. 1. The simulation engine used
in this work is RobotDart, a C++11 robot simulator based on
the DART physics engine [18], [19]. We run inverse dynamics
in real-time from the URDF model of the exoskeleton and the
angular position, velocity and acceleration of its joints.

The implementation of our QP controller is based on the
TSID framework [20], which uses the Pinocchio rigid-body
dynamics library [21]. For the QP parameters of Eq. 5, we
consider ÿgoal = 0, ẏgoal = 0, Kd = 2

√
Kp and Kp a

parameter that we manually tune to maximize the tracking
performances.

We acquire a dataset of motion and torque values from the
exoskeleton that is supposed to follow a human performing the
movements from the AndyDataset. For each motion, we also
acquire the value of the load contribution to the joint torque
for different loads. It results in the calculation of torques
corresponding to the same movements with weights, without
influencing the motion. The dataset contains loads ranging
from 0.0kg to 6.0kg with increments of 0.5kg. This dataset
was obtained when replaying motion capture movements from
the AndyDataSet from 6 individuals, doing 3 types of move-
ments, 5 times each, hence 90 trials overall, corresponding to
10 minutes of movements for each individual.

B. Model training

The input of our neural networks are matrices of size (j×p);
we set p corresponding to a history of 500ms. The j value is
different for both methods: for the first method of prediction,
all the joint’s positions are predicted, thus j = 20. For the
second method, only the actuated joint torques are predicted,
so j = 4. The output of our neural networks are matrices
of size (j × h) We choose to use a prediction horizon h
corresponding to 100ms in the future, which corresponds to
the upper bound of the predicting capacities of an EMG-based
predictive controller for exoskeleton [22].

The dataset was divided into training, validation and testing
datasets. The testing dataset contains 2 sequences of 2 minutes
of motion for each individual, i.e 24min of movement. These
24 minutes are multiplied by the number of weights contained
in the dataset, i.e 12 more sets of 24 minutes, i.e 312 minutes
of motion for the testing.

C. Comparing prediction methods

The two methods are compared for motion with and without
loads in two experiments.

In the first experiment, we compare the prediction methods
for torque prediction without payload. We compare the torque
relative error between the ground truth and the predicted
values for each motor joint for the two methods.

In a second experiment, we compare the prediction methods
for torque prediction with a load. We use testing datasets
taking into account a known random load for the comparison.
We compare the torque error between the ground truth and the
predicted values for each actuated joint for each method.

V. RESULTS

A. Dataset quality

The quality of the dataset can be assessed by measuring the
tracking performances estimated through the distance between
corresponding frames at each time step. The mean distance
for the 90 trials is 2.74 ± 2.32cm. As shown in Fig. 3, the
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Fig. 3: Distance distribution between the corresponding con-
tact points set on the DHM and the exoskeleton at each time
step for every trial. The outliers are not displayed to increase
readability and the whiskers correspond to 5% and 95%
of the distribution (LE/RE=left/right elbow, LS/RS=left/right
shoulder, B=Back).

PJ+ID
Ground Truth

ID+PT

Fig. 4: Continuous prediction. Every 100ms, the past 500ms
allow computing predictions of the future 100ms, for the
left elbow motor joint. By concatenating the predictions, we
get prediction curves that we can compare with the ground
truth. (PJ+ID = Predicted Joint Positions + Inverse Dynamics,
ID+PT= Inverse Dynamics + Predicted Torques)

overall median is around 2 cm, which means the exoskele-
ton is following the human but sometimes it makes a small
”tracking error”. In reality, this could be equivalent to feeling a
constrained interaction (e.g. the exoskeleton pushing/pulling).

B. Results of the proposed prediction methods

We present the results of the proposed prediction methods
using the dataset gathered from the AndyDataSet and de-
scribed in the previous section. Fig.4 represents a continuous
prediction for a test of 2 minutes of motion. The results of the
first experiment are displayed in Fig. 5 where we show the
distribution of relative errors compared to the ground truth.
The results of this second experiment are displayed in Fig. 6
where we display the distribution of relative errors compared
to the ground truth.

PJ+ID
ID+PT

PJ+ID
ID+PT

Fig. 5: Comparison of the distribution of the torque prediction
errors of the different methods for each motor for a load of
0.0kg. The outliers are not displayed to increase readability
and the whiskers correspond to 5% and 95% of the distri-
bution (LE/RE=left/right elbow, LS/RS=left/right shoulder,
PJ+ID = Predicted Joint Positions + Inverse Dynamics,
ID+PT= Inverse Dynamics + Predicted Torques).

PJ+ID
ID+PT

PJ+ID
ID+PT

Fig. 6: Comparison of the distribution of the torque prediction
errors of the different methods for each motor for a weight of
5.5kg. The outliers are not displayed to increase readability
and the whiskers correspond to 5% and 95% of the distri-
bution (LE/RE=left/right elbow, LS/RS=left/right shoulder,
PJ+ID = Predicted Joint Positions + Inverse Dynamics,
ID+PT= Inverse Dynamics + Predicted Torques).

VI. DISCUSSION

A. Generating synthetic exoskeleton data from motion cap-
ture

Generating synthetic data of exoskeletons worn by ”virtual
humans” is a fundamental challenge to enable to train data-
driven prediction algorithms in an application where real-
world data are scarce and expensive to obtain. Our method
enables us to simulate an exoskeleton ”attached” to a human
and re-use existing human motion capture datasets, easier to
obtain and readily available. The exoskeleton and the digital
human are not physically coupled, thus human movements are
not influenced by the exoskeleton, which is not the case in real
life. In that respect, the dataset generated from this method
corresponds to a human wearing an exoskeleton in a ”perfect”
transparent mode, i.e. without interaction between the human
and the exoskeleton.

The quality assessment of the generated dataset enables to
train neural networks for exoskeleton torque prediction, the
tracking error being smaller than 5 cm 75% of the time for all
the frames.

However, this method has several limitations: the tracking
errors seem to come mostly from fast movements. The track-
ing of these fast movements could be improved by adding



a feedforward term in Eq. 5. Moreover, adding a physical
human, and physical interaction with the exoskeleton could
improve the data as the dynamics of the exoskeleton would
impact human movements.

B. Torque prediction

We find that LSTM-based methods can predict torque from
past observations with promising results. We compare two
possible ways of predicting the future torque needed to control
the exoskeleton. The predictions allow overcoming the latency
between measurement and action, thus possibly achieving a
better transparent control mode. We compare two methods of
prediction and show that direct prediction of torque (ID+PT)
gives better results than computing the torque associated with
joint position prediction (PJ+ID) with external forces (Fig.
6) and without external forces (Fig. 5). These figures show
that the ID+PT method has a median error smaller than
3% for all joints and a smaller standard deviation than the
PJ+ID method. This difference comes most likely from the
higher number of values to predict: for PJ+ID, 20 joint values
need to be predicted, whereas in ID+PT only the torques
of actuated joints are predicted. Moreover, PJ+ID undergoes
two numerical derivations to get velocities and accelerations,
which increases the error made in the predictions and leads to
noisy torque predictions.

The main limitation of this method is that it relies heavily
on the quality of the simulated model of the exoskeleton.
Moreover, the model is trained on data that do not take into
account interactions between the human and the exoskeleton.
Similarly, the load does not modify the movements of the
human, which would most likely be the case in reality.

VII. CONCLUSION

In this work, we developed and compared two techniques
of torque prediction for exoskeleton control. These techniques
rely on kinematic data, inverse dynamics and an LSTM-based
neural network to predict the future joint torque needed to
control an exoskeleton. We find that predicting the torque from
past torque observations gives better results than calculating
the torque from predicted motion based on past positions. To
achieve these results, we implemented a physical simulation
of the exoskeleton that attempts to track precisely the motion
of a human, represented by a DHM. This technique has great
potential to be used to test controllers and AI-based methods
for exoskeletons before deployment on real platforms.

In future work, the possibility of using this technique should
be assessed on a real exoskeleton robot. Fine-tuning of models
with real data acquired from the exoskeleton will be studied.
The reaction of a human wearing an exoskeleton powered by
our controller will be investigated as our predictors are trained
without knowledge of a possible reaction of the user.
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[16] P. Maurice, A. Malaisé, C. Amiot, N. Paris, G.-J. Richard, O. Rochel,
and S. Ivaldi, “Human movement and ergonomics: an industry-
oriented dataset for collaborative robotics,” The International Journal
of Robotics Research, 2019.

[17] W. Gomes, P. Maurice, E. Dalin, J.-B. Mouret, and S. Ivaldi, “Multi-
Objective Trajectory Optimization to Improve Ergonomics in Human
Motion,” IEEE Robotics and Automation Letters, 2022.

[18] K. Chatzilygeroudis and J.-B. Mouret, “Robot dart.” [Online].
Available: https://github.com/resibots/robot dart

[19] J. Lee, M. X. Grey, S. Ha, T. Kunz, S. Jain, Y. Ye, S. S. Srinivasa,
M. Stilman, and C. K. Liu, “DART: Dynamic Animation and Robotics
Toolkit,” Journal of Open Source Software, 2018.

[20] A. Del Prete, N. Mansard, O. E. Ramos, O. Stasse, and F. Nori,
“Implementing torque control with high-ratio gear boxes and without
joint-torque sensors,” in Int. Journal of Humanoid Robotics, 2016.

[21] J. Carpentier, G. Saurel, G. Buondonno, J. Mirabel, F. Lamiraux,
O. Stasse, and N. Mansard, “The pinocchio c++ library – a fast and
flexible implementation of rigid body dynamics algorithms and their
analytical derivatives,” in IEEE International Symposium on System
Integrations (SII), 2019.

[22] T. Lenzi, S. M. M. De Rossi, N. Vitiello, and M. C. Carrozza,
“Intention-Based EMG Control for Powered Exoskeletons,” IEEE
Transactions on Biomedical Engineering, 2012.

https://github.com/resibots/robot_dart

	Introduction
	Related Work: Human intention prediction for exoskeleton control
	Methods
	Problem formulation
	Generating synthetic exoskeleton data from motion capture
	Exoskeleton Description
	An optimization approach

	Predicting the exoskeleton torque from past observations
	PJ+ID: Torque from joint position prediction and inverse dynamics
	ID+PT: Inverse dynamics and torque prediction


	Experiments
	Dataset
	Model training
	Comparing prediction methods

	Results
	Dataset quality
	Results of the proposed prediction methods

	Discussion
	Generating synthetic exoskeleton data from motion capture
	Torque prediction

	Conclusion
	References

