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Abstract

This paper is on the power and computability limits of messages patterns in crash-prone asyn-
chronous message-passing systems. It proposes and investigates three basic messages patterns (en-
countered in all these systems) each involving two processes, and compares them to their Read/Write
counterparts. It is first shown that one of these patterns has no Read/Write counterpart.

The paper proposes then a new one-to-all broadcast abstraction, denoted Mutual Broadcast (in
short MBroadcast), whose implementation relies on two of the previous messages patterns. This
abstraction provides each pair of processes with the following property (called mutual ordering): for
any pair of processes p and p′, if p broadcasts a message m and p′ broadcasts a message m′, it is not
possible for p to deliver first (its message) m and then m′ while p′ delivers first (its message) m′ and
then m. It is shown that MBroadcast and atomic Read/Write registers have the same computability
power (independently of the number of crashes).

Finally, in addition to its theoretical contribution, the practical interest of MBroadcast is illus-
trated by its (very simple) use to solve basic upper level coordination problems such as mutual
exclusion and consensus. Last but not least, looking for simplicity was also a target of this article.

Keywords: Asynchrony, Atomicity, Broadcast abstraction, Characterization, Consensus, Crash fail-
ure, Distributed software engineering, Lattice agreement, Message-passing, Message pattern, Mu-
tual exclusion, Quorum, Read/write pattern, Read/Write register, Test&Set, Simplicity, Two-process
communication.

1 Introduction

1.1 On the nature of distributed computing

The aim of parallel computing is to allow programmers to exploit data independence in order to obtain
efficient programs. In distributed computing, the situation is different: there is a set of predefined
computing entities (imposed to programmers) that need to cooperate to a common goal. Moreover, the
behavior of the underlying infrastructure (environment) on which the distributed application is executed
is not on the control of the programmers, who have to consider it as a “hidden input”. Asynchrony
and failures are the most frequent phenomenons produced by the environment that create a “context
uncertainty” distributed computing has to cope with. In short, distributed computing is characterized by
the fact that, in any distributed run, the run itself is one of its entries [45].
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1.2 From send/receive to cooperation abstractions

The operations send() and receive() constitute the machine language of underlying networks. So, in
order to solve a distributed computing problem it is usual to first define an appropriate communica-
tion abstraction that makes easier the design of higher level algorithms. FIFO and Causal message-
ordering [10, 24, 39, 48] are examples of such communication abstractions that make easier the con-
struction of distributed objects such as, for example, the construction of a causal memory on top of an
asynchronous message-passing system [4]. A well-know high level and very powerful communication
abstraction is total order broadcast, which ensures that the message delivery order is the same at all
processes.

Another example is the Set-Constrained Delivery (SCD) communication abstraction introduced in
[30]. This broadcast abstraction allows processes to deliver a sequence of sets of messages of arbitrary
size (instead of a sequence of messages) satisfying a non trivial intersection property. In terms of com-
putability in the presence of asynchrony and process crashes, the power of SCD-broadcast is the same as
the one of atomic read/write registers. SCD-broadcast is particularly well-suited to efficiently implement
a snapshot object (as defined in [1, 5]) with an O(n2) message complexity in asynchronous crash-prone
message-passing systems. Broadcast abstractions suited to specific problems have also been designed
(e.g., [29] for k-set agreement).

d-Solo models consider asynchronous distributed systems where any number of processes may
crash. In these models, up to d (1 ≤ d ≤ n) processes may have to run solo, computing their local
output without receiving any information from other processes. Differently from the message-passing
communication model where up to d ≥ 1 processes are allowed to run solo, it is important noticing
that the basic atomic read/write registers communication model allows at most one process to run solo.
Considering the family of d-solo models, [26] presents a characterization of the colorless tasks that can
be solved in each d-solo model.

1.3 On the read/write side

Read/write (RW) registers (i.e., the cells of a Turing machine) are at the center of distributed algorithms
when the processes communicate through a shared memory. So a fundamental problem is the construc-
tion of atomic RW registers on top of crash-prone asynchronous message-passing system. This problem
has been solved by Attiya, Bar-Noy and Dolev who presented in [7] a send/receive-based algorithm
(ABD) for such a construction, and proved that, from an operational point of view, such constructions
are possible if and only if at most t < n/2 processes may crash. The ABD construction is based on the
explicit use of sequence numbers, quorums and a send/receive pattern (used once to write and twice to
read). The quorums are used to realize synchronization barriers1.

Based on the same principles as ABD, algorithms building RW registers have been designed [50].
Some strive to reduce the size of control information carried by messages (e.g. [6,40]) while others focus
on fast read and/or fast write operations in good circumstances (e.g. [18, 23, 41]). All these algorithms
allow existing RW-based algorithms to be used on top of crash-prone asynchronous message-passing
systems.

The use of RW registers on top of a message-passing system to allow processes to use “for free” ex-
isting shared memory-based distributed algorithms has a cost, which can be higher than the one obtained
with an algorithm directly designed on top of the basic send/receive operations (as shown, for example,
in [15] for the snapshot object defined in [1, 5]). This means that, for some problems (as we will see for
consensus), algorithms based on appropriate communication abstractions can be more efficient than the
stacking of RW-based algorithms on top of simulated RW registers.

1Let us notice that, in the traditional use of the send/receive patterns, a process that broadcasts a message (i.e., sends a
message m to all the processes including itself) is allowed to locally deliver m without waiting for a specific delivery condition
to be satisfied.
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1.4 Content of the article

In the spirit of [21] (which states that computing is “science of abstractions”) the present article intro-
duces a new broadcast abstraction (denoted MBroadcast) that ensures that for any pair of processes p and
p′, if p broadcasts a message m and p′ broadcasts a message m′, it is not possible for p to deliver first its
message m and then m′ while p′ delivers first its message m′ and then m. It is important to notice that
this property is on each pair of processes taken separately from the other processes. It is also shown how,
at the upper layer, this broadcast abstraction allows a very simple design of message-passing algorithms
solving distributed coordination and agreement problems. The main properties of MBroadcast are the
following ones.

• It has the same computability power as RW registers.

• It constitutes the first characterization of RW registers in terms of (binary) message patterns.

• It allows to build higher level coordination abstractions without requiring as prerequisite the con-
struction of an intermediary abstraction level made up of RW registers.

• Its cost is O(n) implementation messages when mutual broadcast delivery concerns only correct
processes.

• It makes quorums useless at the upper layer.

• When looking at a message exchange between two processes p and p′, it shows that the fact that
p′ does not ignore the other process p (because it received a message from p before receiving its
own message) is a powerful control information (more technically, this refers to the patterns MP2
and MP3 defined in Section 3).

An important point of the article is the fact that atomic RW registers can be implemented from two
simple basic message patterns on each pair of processes only. Hence the article is on basic patterns that
allow us to better understand the close relationship between RW registers and asynchronous message-
passing in the presence of process crashes. More generally, it allows for a better understanding of the
strengths and weaknesses of the world of asynchronous crash-prone message-passing systems.

As an important side note, this article also discusses a strengthening of MBroadcast, denoted PBroad-
cast, that ensures that any pair of processes deliver their own messages in the same order (in the terms
of the patterns defined in Section 3, it means that the only possible pattern is MP2). On a computability
viewpoint, it shows that if the only binary message pattern that can occur is MP2, then Test&Set, the
consensus number of which is 2, can be built.

1.5 Roadmap

The article is composed of 8 sections, structured in two parts. The first part consists of sections 2-5,
while the second part consists of sections 6-7. Section 2 presents the underlying computing model.
Section 3 presents three basic binary message patterns (denoted MP1, MP2 and MP3) encountered in
asynchronous message-passing computations, and establishes a “correspondence” linking these message
patterns with read/write patterns on atomic registers. Section 4 introduces the high level MBroadcast
and PBroadcast communication abstractions. Section 5 shows that MBroadcast and atomic read/write
(RW) registers have the same computability power.

The second part illustrates uses of MBroadcast, that show the conceptual gain offered by this
communication abstraction (i.e., simplicity). More precisely, Section 6 presents an MBroadcast-based
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rewriting of Lamport’s bakery algorithm suited to message-passing (i.e., suited to state machine replica-
tion [35]). Section 7 presents a simple version of the well-known Paxos consensus algorithm [34].2 It is
important to state that none of the algorithms built on top of MBroadcast uses quorums (as we will see,
this means if each binary message exchange pattern satisfies the pattern MP2 or the pattern MP3 these
algorithms work correctly even if a majority of processes crashes).

Finally, Section 8 concludes the article (where design simplicity is considered as a first class citizen
property).

2 Distributed Computing Model

The computing model is the classical asynchronous crash-prone message-passing model.

2.1 Process model

The computing model is composed of a set of n sequential processes denoted p1, ..., pn. Sometimes,
when considering two processes, they are denoted p and p′.

Each process is asynchronous which means that it proceeds at its own speed, which can be arbitrary
and remains always unknown to the other processes. A process may halt prematurely (crash failure),
but executes correctly its local algorithm until it possibly crashes. The model parameter t denotes the
maximal number of processes that may crash in a run. A process that crashes in a run is said to be faulty.
Otherwise, it is correct or non-faulty.

2.2 Communication model

Each pair of processes communicate by sending and receiving messages through two uni-directional
channels, one in each direction. Hence, the communication network is a complete network: any process
pi can directly send a message to any process pj (including itself). A process pi invokes the operation
“send TYPE(m) to pj” to send the message m (whose type is TYPE) to pj . The operation “receive
TYPE(m) from pj” allows pi to receive from pj a message m whose type is TYPE.

Each channel is reliable (no loss, no corruption, no creation of messages), not necessarily first-
in/first-out, and asynchronous (while the transit time of each message is finite, there is no upper bound
on message transit times). Let us notice that, due to process and message asynchrony, no process can
know if another process crashed or is only very slow.

It is assumed that, in addition to basic send/receive operations, the network is enriched with FIFO
and causal message deliveries, i.e. it provides the processes with the operations fifo_broadcast(),
causal_broadcast(), causal_send(), and causal_delivery() [10, 24, 32, 39, 45, 48]. Two messages m and
m′ are causally related if (i) they have been sent by the same process and m was sent before m′, or (ii)
a process received m before sending m′, or (iii) there is chain of messages m, m1, ..., mx, m′ such that
each pair of consecutive messages is causally related by (i) or (ii). It is important to note that the addition
of this assumption does not change the computability power of the communication model, since causal
message delivery can always be implemented on top of send/receive channels. It is also important to
note that, while the implementation of these operations requires messages to carry additional control
information, it does not require the use of additional implementation messages.

2It is worth noticing that mutex and consensus are the two most famous distributed computing problems [47]. Additionally,
Appendix B presents a very simple MBroadcast-based algorithm that builds a lattice agreement object.
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2.3 Notation

The acronym CAMPn,t[∅] is used to denote the previous Crash-prone Asynchronous Message-Passing
model without additional computability power. CAMPn,t[H] denotes CAMPn,t[∅] enriched with the
additional computational power denoted by H .

The acronym CARWn,t[∅] is used to denote the n-process asynchronous system where up to t pro-
cesses may crash and communication is through read/write registers. CARWn,t[H] denotes CARWn,t[∅]
enriched with H .

3 Three Basic Binary Message Patterns and their RW Counterparts

3.1 Three basic binary message patterns

Let us consider two processes p and p′ that concurrently exchange messages, namely, p sends a message
m to itself and p′, while p′ sends the message m′ ̸= m to itself and p. Depending on the order in which
messages are delivered at each process, there are exactly three cases to consider (swapping p and p′ does
not give rise to new message patterns).

p

p′

m

m′

(a) Pattern MP1:
forbidden by MBroadcast
and by PBroadcast

p

p′

m

m′

(b) Pattern MP2:
allowed by MBroadcast
and by PBroadcast

p

p′

m

m′

(c) Pattern MP3:
allowed by MBroadcast,
forbidden by PBroadcast

p

p′

x.Write(1)

x′.Write(1)

x′.Read() → 0

x.Read() → 0

(d) Pattern RW1:
forbidden by atomic memory

p

p′

x.Write(1)

x′.Write(1)

x′.Read() → 0

x.Read() → 1

(e) Pattern RW2:
allowed by atomic memory

p

p′

x.Write(1)

x′.Write(1)

x′.Read() → 1

x.Read() → 1

(f) Pattern RW3:
allowed by atomic memory

p

p′

Test-and-set() → 0

Test-and-set() → 0

(g) Pattern TS1:
forbidden by atomic Test&Set

p

p′

Test-and-set() → 0

Test-and-set() → 1

(h) Pattern TS2:
allowed by atomic Test&Set

p

p′

Test-and-set() → 1

Test-and-set() → 1

(i) Pattern TS3:
allowed by atomic Test&Set

Figure 1: The three binary message patterns, versus the three binary atomic memory patterns and the
three binary atomic test-and-set patterns

Message pattern MP1. This case is represented at Figure 1a. It is a symmetric pattern in which p
delivers first the message m it broadcast and then the message m′ broadcast by p′, while p′ delivers
first its message m′ and then the message m broadcast by p. This pattern captures the case where,
when a process delivers its own message, it has no information on the fact the other processes
broadcast or not a message.

Message pattern MP2. This case is represented at Figure 1b. It describes an asymmetric pattern from
a message delivery point of view in which both p and p′ deliver first m broadcast by p and then m′
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broadcast by p′. In this pattern both p and p′ deliver the messages in the same order (an analogous
pattern occurs when we swap p and p′).

Message pattern MP3. This case is represented at Figure 1c. Similarly to MP1 this is a symmetric
pattern in the sense that p delivers first the message m′ from p′ and then its message m, while p′

delivers first the message m from p and then its message m′. The fundamental difference between
MP1 and MP3 lies in the fact that when p (resp. p′) delivers its own message, it has already
delivered the message sent by the other process p′ (resp. p).

3.2 From message patterns to RW patterns

To deeply understand the meaning and the scope of the three previous message-based communication
patterns, let us consider their “counterpart” in a context where p and p′ cooperate through atomic one-bit
RW registers initialized to 0. The RW register x, written by p and read by p′, corresponds to m. The
RW register x′, written by p′ and read by p corresponds to m′. Both registers are initialized to 0. In each
case, the read/write pattern depicted at the bottom of Figure 1 simulates the message exchange pattern
above it. More precisely we have the following.

RW pattern RW1. Figure 1d corresponds to the message pattern MP1: p writes 1 in x and reads the
initial value of x′, namely, the value 0. Concurrently, p′ writes 1 in x′ and reads the initial value
of x, namely, the value 0.

RW pattern RW2. Figure 1e corresponds to the message pattern MP2: p writes 1 in x and then reads
the initial value 0 from x′, while p′ writes 1 in x′ and then reads the value of x, namely, the value
1.

RW pattern RW3. Figure 1f corresponds to the message pattern MP3: each process writes first “its”
variable (x for p, x′ for p′), and then reads the other variable and obtains 1.

3.3 Comparing message patterns and RW patterns

It is easy to see that the RW patterns RW2 and RW3 produce the same cooperation as the message
patterns MP2 and MP3, respectively. Differently, while the message pattern MP1 can occur in an asyn-
chronous message-passing system, the RW pattern RW1 cannot occur in a RW memory. This is due
to the fact that, in RW1, the write of x by p and the write of x′ by p′ are linearized [27, 33] and, as a
process writes a RW register before reading the other register, it is impossible that both read operations
return 0 (it is easy to show that this remains true if the registers are only safe, regular, or part of a se-
quentially consistent memory). This is a fundamental difference between cooperation/communication
through message passing and cooperation/communication through RW registers.

3.4 On the test-and-set side

For comparison, Figures 1g, 1h and 1i consider three communication patterns where the two processes
cooperate through the Test&Set special instruction on an atomic register. In a similar way as with
message patterns and RW patterns, we can define three TS patterns, depending on which processes
obtain 0, the same outcome as in a solo execution; and which processes obtain the same outcome 1 as if
their operation was linearized in second position.

TS pattern TS1. Figure 1g corresponds to the RW pattern RW1, in which both processes obtain 0, and
hence to the message pattern MP1.
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TS pattern TS2. Figure 1h corresponds to the asymmetric RW pattern RW2, in which one process
obtains 0 and the other process obtains 1. Hence, it also corresponds to the message pattern MP2.

TS pattern TS3. Figure 1i corresponds to the symmetric RW pattern RW3, in which both processes
obtain 1, and hence to the message pattern MP3.

This time, only the asymmetric communication pattern TS2 is admitted. The fact that the pattern
TS3 is impossible is a major difference between read/write registers and test-and-set registers, that can
be used to solve consensus between two processes.

3.5 At the core of the approach

The fact that there is no RW pattern corresponding to pattern MP1 is implicitly used to solve many
cooperation/synchronization problems in RW systems. The most famous is the “write first and then
read” pattern used in all mutex algorithms [49]. When a process wants to enter the critical section, it
first raises a flag to inform the other processes it starts competing, and only then it reads the flags (which
are up or down) of the other processes. The total order imposed by the atomicity on the flag risings
prevents RW1 from occurring.

Actually preventing the message pattern MP1 from occurring without bounding the number of pro-
cess crashes is “equivalent” to the assumption t < n/2 without constraints on message exchange pat-
terns, in the sense that both prevent partitioning and consequently allow atomic RW registers to be built
despite crashes and asynchrony.

4 Mutual Broadcast

4.1 Mutual broadcast: Definition

Mutual-broadcast (MBroadcast) is a broadcast abstraction that allows a process to broadcast a message
that will be delivered at least by all the correct processes. This abstraction provides the processes with
two operations denoted mb_broadcast() and mb_deliver(). When a process invokes mb_broadcast(m)
we say “it mbroadcasts the message m”. The invocation of mb_deliver() returns a message m and we
say that a process “mdelivers m” or that “m is mdelivered”. To simplify the presentation (and without
loss of generality), it it assumed that all the messages that are mbroadcast are different. The following
properties define MBroadcast.

Validity. If a process pi mdelivers a message m from a process pj , then pj previously invoked mb_broadcast(m).

No-duplication. A process mdelivers a message m at most once.

Mutual ordering. For any pair of processes p and p′, if p mbroadcasts a message m and p′ mbroadcasts
a message m′, it is not possible that p mdelivers m before m′ and p′ mdelivers m′ before m.

Local termination. If a correct process invokes mb_broadcast(m), it returns from its invocation.

Global CS-termination. If a correct process invokes mb_broadcast(m), all correct processes mdeliver
m. (“CS” is used to stress the fact that the sender is required to be correct.)

Let us notice that, at the user level, the Mutual ordering property prevents the pattern MP1 from
occurring, boils down to the pattern MP2 when a process delivers its message first, and does not prevent
pattern MP3 from occurring (which occurs when each process delivers first the message from the other
process before its own message).
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Additional properties As it is the case with other broadcast abstractions, MBroadcast can be en-
riched with other properties, defined thereafter, that do not change its computing power but add more
usage comfort in some algorithms. We denote by fifo-MBroadcast, causal-MBroadcast and reliable-
MBroadcast the MBroadcast abstraction respectively enriched with the following properties:

FIFO ordering. If a process mbroadcasts a message m and then mbroadcasts a message m′, no process
mdelivers m′ before m.

Causal ordering. If a process mdelivers a message m and then mbroadcasts a message m′, no process
mdelivers m′ before m.

Global CF-termination. If a process mdelivers a message m, all correct processes mdeliver m. (“CF”
is used to stress the fact that the receiver of m can be correct or faulty.)

Remark on reliable broadcast It is easy to see that the classical reliable broadcast communication
abstraction is MBroadcast with the Global CF-termination property and without the Mutual ordering
property. Similarly, the causal broadcast abstraction (denoted causal_broadcast in the following) is
MBroadcast with the Causal ordering and Global CF-termination properties and without the Mutual
ordering property.

4.2 What does MBroadcast do

When looking at MBroadcast from a binary communication point of view between two processes p and
p′, it appears that MBroadcast ensures that, for any message exchanged by p and p′, the message patterns
produced is MP2 or MP3. Moreover, it is possible that some of their message exchange patterns are MP2
while others are MP3, and this remains unknown to the processes.

p1

p2

p3

m1

m2

m3

p1

p2

p3

m1

m2

m3

(a) Pattern MP3
between m1 and m2

p1

p2

p3

m1

m2

m3

(b) Pattern MP3
between m1 and m3

p1

p2

p3

m1

m2

m3

(c) Pattern MP2
between m2 and m3

Figure 2: Example of message deliveries with three processes

Figure 2 presents an example with three processes, that shows MBroadcast message deliveries. As
we can see p1 mdelivers the sequence of messages m2, m3, m1, p2 mdelivers the sequence of messages
m1, m2, m3, and p3 mdelivers the sequence of messages m2, m1, m3. So, the processes mdeliver the
three messages in different orders. Nevertheless, when we consider the projection of these messages
exchange on each pair of processes, we observe that the processes p1 and p2 mdeliver m1 and m2

according to the pattern MP3. As depicted in Figure 2.a each process mdelivers the message from
the other process before its own message. The same message pattern MP3 occurs for the messages
exchanged by p1 and p3 (Figure 2.b). Differently, as shown in Figure 2.c, the messages exchanged
by p2 and p3 obey the pattern MP2: both processes mdeliver first m2 and then m3. The fundamental
point is that the pattern MP1 never occurs: MBroadcast prevents it from occurring, which implicitly
prevents system partitioning and makes the system parameter t useless in the algorithms build on top of
MBroadcast.

4.3 A real-time property

When combined with the fact that a message cannot be received before it has been sent, MBroadcast
ensures that if a process p mdelivers a message m it has mbroadcast before a process p′ mbroadcast a
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message m′, p′ cannot mdeliver m′ before m. This pattern is described in Figure ??. In other words,
sending a “blank” synchronization message and waiting for its delivery is sufficient to “harvest” all the
messages that were already mdelivered by their senders. To benefit from this property, we consider the
synchronized broadcast operation based on a synchronization barrier as defined in Algorithm 1.

operation synchro_mbroadcast(m) is % code for pi
(1) mb_broadcast(m);
(2) wait (m has been mb-delivered from pi)
end operation.

Algorithm 1: Synchronized MB-broadcast

p

p′

•

•

synchro_mbroadcast(m)

synchro_mbroadcast(m′)

Figure 3: A real-time property

The operation synchro_mbroadcast() inherits the properties defining MBroadcast, as well as the
following property.

Property 1 If a process p returns from the invocation of synchro_mbroadcast(m) before p′ invokes
synchro_mbroadcast(m′), p′ cannot return from synchro_mbroadcast(m′) before it has mdelivered m.

Proof Since p mb-delivers m before m′, by the mutual ordering property, p′ must mb-deliver m before
m′. 2Property 1

4.4 Pair Broadcast: MP2 Alone Characterizes Test&Set()

Pair broadcast: Definition Pair broadcast (in short PBroadcast) is a broadcast abstraction that
allows a process to broadcast a message that will be delivered at least by all the correct processes.
This abstraction provides the processes with two operations denoted pb_broadcast() and pb_deliver().
When a process invokes pb_broadcast(m) we say “it pbroadcasts the message m”. The invocation of
pb_deliver() returns a message m and we say that a process “pdelivers m” or that “m is pdelivered”.
To simplify the presentation (and without loss of generality), it it assumed that all the messages that
are pbroadcast are different. PBroadcast is defined as the same Validity, No-duplication, Local termi-
nation and Global CS-termination properties as MBroadcast, and the Pair ordering property (that is a
strengthening of the Mutual ordering property):

Pair ordering. For any pair of processes p and p′, if p pbroadcasts a message m and p′ pbroadcasts a
message m′, and if m and m′ are both pdelivered by p and p′, then p and p′ pdeliver m and m′ in
the same order.

Let us notice that, at the user level, the Pair ordering property only allows the pattern MP2 to occur.
So, it prevents both the patterns MP1 and MP3 from occurring. It follows that PBroadcast is strictly
stronger than Mutual ordering.

On the computability side of PBroadcast. When only two processes participate in an execution,
the pair ordering property implies that all messages are pdelivered by the two processes in the same
order. In other words, PBroadcast boils down to total-order broadcast in a system composed of only two
processes. In particular, it is possible to solve consensus between any pair of processes when PBroad-
cast is available, and consequently the Test&Set() operation whose consensus number is 2 [25] (and
more generally the objects of the class Common2 defined in [3]) can be built on top of PBroadcast.
Appendix C details such a construction. Conversely, Appendix C also presents an algorithm that builds
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operation mb_broadcast(m) is % code for pi
(1) causal_broadcast INIT(m);
(2) wait (ACK(m) received from at least n− t− 1 processes);
(3) mb_delivery of m from pi
end operation.

when INIT(m) is causally-delivered from pj do
(4) if (i ̸= j) then
(5) causal_send ACK(m) to pj ;
(6) mb_delivery of m from pj
(7) end if.

Algorithm 2: MBroadcast on top of CAMPn,t[t < n/2]

PBroadcast in the model CAMPn,t[consensus2] (CAMPn,t[∅] enriched with consensus objects avail-
able between any pair of processes). Therefore, it is easy to see that PBroadcast has consensus number
2, and is part of the equivalence class Common2.

Unsurprisingly, PBroadcast, that only allows the message pattern MP2 to occur, is computationnaly
equivalent to the Test&Set() operation, that only allows the memory pattern TS2 to occur. This is
similar to the fact that preventing the message pattern MP1 from occuring makes MBroadcast equivalent
to shared memory that prevents the memory pattern RW1.

Remark on trivial extension attempts. It seems intuitive that, if imposing an order on the mes-
sages sent by pairs of processes gives a broadcast with consensus number two, imposing an order on the
messages sent by triplets of processes should give a broadcast with consensus number three. Unfortu-
nately, albeit at first glance it seems counter-intuitive, this is not the case. Indeed, let us consider n ≥ 4
processes p1, ..., pn broadcasting respectively messages m1, ..., mn using an abstraction providing the
following guarantee: each triplet of processes (pi, pj , pk) receives the same first message among mi,
mj and mk. In particular, it is impossible that all processes receive their own message first, so there is
a process pi that receives mj sent by pj ̸= pi as its first message. Remark that pj must receive its own
message first since receiving mk ̸= mj first would violate the property for the triplet (pi, pj , pk). There-
fore, any process pk must receive pj’s message first since receiving mℓ ̸= mj first would violate the
property for the triplet (pj , pk, pℓ). This fact can be exploited to solve consensus between n processes. It
follows that imposing an order on the messages sent by triplets of processes provide us with a broadcast
whose consensus number is ∞.

4.5 An implementation of MBroadcast in CAMPn,t[t < n/2]

Description of the algorithm. Algorithm 2 implements the MBroadcast abstraction in the system
model CAMPn,t[t < n/2] (CAMPn,t[∅] enriched with the constraint t < n/2). When pi invokes
mb_broadcast(m) it issues a causal broadcast of the implementation message INIT(m), and waits until
it has received corresponding acknowledgment from (n− t− 1) processes. When this occurs it locally
mdelivers m.

When a process pi causally delivers a message INIT(m) from another process pj , it causally ac-
knowledges its receipt and locally mdelivers m.

Remark on the use of causal ordering. The causal ordering property is only used to force an order
between the ACK messages and the INIT messages. Therefore, practical implementations of MBroadcast
do not need to causally order INIT messages with each other. However, the causal ordering of INIT mes-
sages is preserved by the algorithm, so Algorithm 2 actually implements causal-MBroadcast. It is also
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important to notice that, if the causal_broadcast of line 1 ensures the Global-CF-Termination property
(which characterizes reliable-broadcast, then Algorithm 2 also implements reliable-MBroadcast.

Remark on the use of quorums. The necessary and sufficient condition t < n/2 is an operational
condition stating there is no partitioning. A more abstract necessary and sufficient condition, has been
given in [14], namely the failure detector Σ (see Appendix A) which is the weakest failure detector that
allows to build a RW register despite asynchrony and any number of process crashes. Algorithm 2 can be
easily modified to work with the quorum-based failure detector Σ instead of the operational assumption
t < n/2.

Theorem 1 Algorithm 2 builds MBroadcast in CAMPn,t[t < n/2].

Proof The proof assumes the classical safety and termination properties of causal broadcast. Let mi be
a message mbroadcast by a process pi (line 1). If pi is correct, it follows from the termination property
of causal broadcast that the message INIT(mi) is received by all correct processes, which are at least
(n− t− 1). Hence each correct process causally sends back the message ACK(mi) (line 5) and locally
mdelivers mi (line 6). It then follows from the termination property of causal broadcast that pi receives
at least (n − t − 1) messages ACK(mi) and locally mdeliver mi. It then follows that the Validity,
No-duplication, Local and Global CS-Termination are satisfied.

As far as the mutual ordering property is concerned we have the following. Let mi and mj be
two messages mbroadcast by pi and pj ̸= pi, respectively. Let us suppose by contradiction that pi
mdelivers mi before mj , while pj mdelivers mj before mi. It follows from Lines 4-7 executed by pi
that pi mdelivered mi before it causally delivered INIT(mj). Due to the causal ordering property on the
messages ACK(mi) and INIT(mj), there are at least (n− t−1) processes (different from pi) from which
pi received ACK(mi) that sent ACK(mi) before receiving INIT(mj). Adding pi to these (n − t − 1)
processes, it follows that at least (n − t) processes received INIT(mi) before INIT(mj). With the same
reasoning, at least (n − t) processes received INIT(mj) before INIT(mi) for pj to mdeliver mj before
pi. But, as (n− t) + (n− t) > (n− n

2 ) + (n− n
2 ) = n, this is impossible, which concludes the proof

of mutual ordering. 2Theorem 1

5 MBroadcast versus RW Registers

This section first shows that MBroadcast can be implemented on top of RW registers, and then shows
that RW registers can be implemented on top of MBroadcast. Hence, MBroadcast and RW registers
have the same computability power. It is important to notice that the algorithms described below are
independent of t.

5.1 From regular RW registers to MBroadcast

This section shows that reliable-MBroadcast can be build on top of RW registers in the presence of
asynchrony and process crashes. The algorithm only assumes regular registers, hence it also works on
top of atomic registers [33].

Shared memory and local variables.

• The n processes share an array of n SWMR regular registers denoted SENT [1..n] such that, for
any i, SENT [i] can be read by any process and written only by pi. It contains the (initially empty)
list of messages mbroadcast by pi. The first message deposited in SENT [i] will be in position 1,
the second in position 2, etc.
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operation mb_broadcast(m) is % code for pi
(1) SENT [i]← SENT [i]⊕m;
(2) catch_up();
(3) mb_delivery of m from pi.
end operation.

periodically do catch_up().

internal uninterruptible routine catch_up() is
(4) for j from 1 to i− 1 and then from i+ 1 to n do
(5) msgj ← SENT [j];
(6) for k from deliveredi[j] to |msgj| − 1 do mb_delivery of msgj[k + 1] from pj end for;
(7) deliveredi[j]← |msgj|
(8) end for.

Algorithm 3: MBroadcast on top of CARWn,t[∅]

• Each process pi manages an array of local counters (initialized to 0) denoted deliveredi such that,
for any j ̸= i, deliveredi[j] contains the number of messages mdelivered from pj (deliveredi[i]
is not used).

Description of the algorithm. Algorithm 3 builds reliable-MBroadcast on top of n regular RW
registers. When a process pi invokes mb_broadcast(m) it adds m at the end of the shared list SENT [i]
(⊕ stands for concatenation), invokes the internal uninterruptible routine catch_up() and then locally
mdelivers m.

The internal routine catch_up() is repeatedly invoked to allow pi to mdeliver the messages mbroad-
cast by the other processes.

Theorem 2 Algorithm 3 builds MBroadcast on top of regular RW registers.

Proof Let us consider an execution of Algorithm 3. We prove each property of reliable-mutual-
broadcast.

Proof of the Validity property. Suppose pi mutual-delivers m from pj . If i = j, this happens on
line 3, so m was mbroadcast by pi. Otherwise, it happens on line 6, so m was read on line 5 and written
on line 1 by pj , that mbroadcast m.

Proof of the No-duplication property. Suppose pi mdelivers twice the kth message mbroadcast by
pj . By Lines 6-7, at the second mdelivery we have deliveredi[j] ≥ k, which is impossible by line 6.

Proof of the Local termination property. All operations of Algorithm 3 terminate because they do
not contain while loops or recursive calls, and messages that are mbroadcast by pi are delivered by pi on
line 3.

Proof of the Global CF-Termination property. Suppose pi mdelivers a message m from pj . Then pj
inserted it in SENT [j] and never deleted it. Therefore all correct processes eventually mdeliver m when
later they execute catch_up().

Proof of the Global CS-Termination property. It is a direct consequence of Global CF-Termination.
Proof of the Mutual ordering property. Suppose that pi mbroadcasts mi and pj mbroadcasts mj . At

least one of the two scenarios must happen:

• pi completes its write on SENT [i] (line 1) before pj starts its read on SENT [i] (line 5). In that
case, since SENT [i] is regular, pj reads mi from SENT [i] and mdelivers it during its execution
of catch_up() (line 2), before mdelivering mj on line 3.

• Or pj completes its write on SENT [j] (line 1) before pi starts its read on SENT [j] (line 5), so pi
mdeliver mj before mi.

2Theorem 2
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operation write(v) is % code for pi
(1) synchro_mbroadcast SYNCH();
(2) let ti such that ⟨ti, i⟩ > clocki;
(3) synchro_mbroadcast WRITE(v, ⟨ti, i⟩)
end operation.

operation read() is
(4) synchro_mbroadcast SYNCH();
(5) v ← vali;
(6) synchro_mbroadcast WRITE(v, clocki);
(7) return(v)
end operation.

when WRITE(v, c) is mdelivered from pj do
(8) if c > clocki then vali ← v; clocki ← c end if.

Algorithm 4: Atomic RW register on top of CAMPn,t[MBroadcast]

5.2 From MBroadcast to atomic RW registers

Combined with the previous section, this section shows that MBroadcast and atomic RW registers have
the same computational power. The algorithm, closely inspired from the ABD algorithm, builds an
MWMR atomic register.

Local variables. Each process pi manages three local variables.

• vali contains the current value of the register as known by pi.

• ti is the date of the last write issued by pi.

• clocki is a pair (timestamp) ⟨date, writer⟩ defining the identity of the value in vali as a times-
tamp: writer is the identity of the writer of vali and date the associated Lamport’s logical date.
Let us remind that all the logical dates are totally ordered according to the usual lexicographical
order.

Description of the algorithm. Algorithm 4 implements an MWMR atomic register on top of
MBroadcast, i.e., in the model CAMPn,t[MBroadcast].

When pi invokes write(), it first mbroadcasts a pure control message SYNCH() to resynchronize its
local state with respect to possible write operations that modify the last value of the register (line 1).
Then, it computes the timestamp associated with value it wants to write (line 2), and propagates its write
operation using a synchronized MBroadcast (line 3).

The read operation is similar. Lines 4-5 provide pi with the value it has to return, while line 6
implements the “reads have to write” strategy needed to ensure atomicity of the read operation [7, 9, 38,
44]. Finally, when pi mdelivers a WRITE() message, it updates its local context if the new timestamp is
higher than the one it currently has in its local variables.

Theorem 3 Algorithm 4 implements an atomic RW register on top of CAMPn,t[MBroadcast].

Proof Let us first remark that Algorithm 4 contains no loop, so all its operations terminate.
Let us consider an execution admitted by Algorithm 4. For each operation o, we define the timestamp

ts(o) of o as follows. If o is a write by pi, then ts(o) = ⟨ti, i⟩ at the end of line 2. If o is a read by pi,
then ts(o) = clocki at the beginning of line 6. In other words, ts(o) is the timestamp of the value that
is read or written by o. We also define the binary relation → between operations as o1 → o2 if either 1)

13



o1 was terminated before o2 was started (denoted by o1 →1 o2), or 2) o2 is a write and ts(o1) < ts(o2)
(denoted by o1 →2 o2), or 3) o1 is a write, o2 is a read, and ts(o1) ≤ ts(o2) (denoted by o1 →3 o2).

Let us first notice that, if o1 → o2, then ts(o1) ≤ ts(o2), and if moreover o2 is a write, then
ts(o1) < ts(o2). This is true by definition for →2 and →3. For →1, the first part is a direct consequence
of the blocking-mutual-ordering property between the Write message sent at the end of o1 (line 3
or 6) and the SYNCH message sent at the beginning of o2 (line 1 or 4). Moreover, if o2 is a write, then
ts(o2) > ts(o1) by line 2.

Let us prove that → is cycle-free. Indeed, suppose there is a cycle o1 → o2 → . . . → ok =
o1 containing at least two operations. By what precedes, all operations in the cycle have the same
timestamp, hence there cannot be any write operation. Moreover, there cannot be only reads, because
they would be ordered only by →1 which is cycle-free.

Finally, the reflexive and transitive closure of → can be extended into a total order that respects real
time thanks to →1, and such that any read returns the initial value if its timestamp is ⟨0, 0⟩, or the value
written by the preceding write since vali and clocki are updated jointly on line 8, thanks to →2 and →3.
Hence, the algorithm is linearizable.

2Theorem 3

Suppressing Line 1 (resp. Line 6) builds an SWMR atomic register (resp. an SWMR regular reg-
ister). Algorithm 4 can also be easily adapted to work with the four types of MWMR regular registers
defined in [51].

5.3 A remark on complexity

Although Algorithms 3 and 4 prove that mbroadcast and atomic RW registers have the same computabil-
ity power, the same cannot be said from a complexity point of view, since n single-writer multi-reader
atomic registers must be used and read in Algorithm 3 to implement MBroadcast.

In fact, this complexity is necessary, even with the use of multi-writer multi-reader atomic registers.
It was proven in [28], that at least n multi-writer multi-reader atomic registers are necessary to implement
an array of one single-writer multi-reader atomic register per process. This lower bound also applies to
MBroadcast since, if k < n registers were sufficient to implement MBroadcast, Algorithm 3 could, in
turn, be used to simulate the array of n single-writer multi-reader registers. This justifies our introduction
of a new abstraction, that allows algorithms with better complexities than read/write registers.

5.4 What is actually needed to build a RW register

It follows from the previous results that the operational condition
(MP2 ∨ MP3) or (t < n/2)

is necessary and sufficient to build an atomic RW register on top of a crash-prone asynchronous message-
passing system. It is worth noticing that the first sub-condition MP2∨MP3 is on the messages exchanged
by each pair of processes (and, for any pair of processes, can change from one message exchange to
another one without being explicitly known by the processes) while the other one t < n/2 is on global
system parameters.

What is captured by MP2 ∨ MP3 is the fact that, for each pair of processes, as soon as one of them
does not ignore the message from the other one (which is not a pattern captured by MP1), it is possible
to build an atomic RW register.

Remark: From consensus on pairs of processes to multi-writer multi-reader registers. Since
PBroadcast is stronger than MBroadcast, the implementation of PBroadcast in the model CAMPn,t[consensus2]
presented in Appendix C also provides an implementation of MBroadcast that can be exploited to im-
plement an atomic register (using Algorithm 4), in any message-passing system where consensus is
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operation acquire() is % code for pi
(1) fifo_synchro_mbroadcast HELLO();
(2) let ti such that ⟨ti, i⟩ > max(ticketsi);
(3) fifo_synchro_mbroadcast TICKET(ti);
(4) wait

(
⟨ti, i⟩ = min(ticket i)

)
end operation.

operation release() is
(5) fifo_broadcast GOODBYE(ti)
end operation.

when HELLO() is fifo-mdelivered from pj do
(6) ticket i ← ticket i ∪ ⟨0, j⟩.

when TICKET(t) is fifo-mdelivered from pj do
(7) ticket i ←

(
ticket i \ {⟨0, j⟩}

)
∪ {⟨t, j⟩}.

when GOODBYE(t) is fifo-delivered from pj do
(8) ticket i ← ticket i \ {⟨t, j⟩}.

Algorithm 5: An MBroadcast-based version of Lamport’s Bakery algorithm

available between any pair of processes. In particular, the assumption that t < n
2 is not required in this

case. Remark that this fact could have been previously established by using the consensus between two
processes to implement single-reader single-writer registers, that have the same computability power as
multi-writer multi-reader registers [33], but, to our knowledge, it had never been stated explicitly.

6 MBroadcast in Action: Mutex

Preliminary remark. As announced in the Introduction, this section and the next section illus-
trate uses of the MBroadcast abstraction, where design simplicity is considered as a first class criterion.
As already said, it is important to notice that none of the algorithms presented below is based on quo-
rums. Moreover, as the reader will see, the mutex algorithm and the consensus algorithm have the same
structure as Algorithm 4.

6.1 Mutex

Considering the asynchronous message-passing system (i.e. the computing model CAMPn,t[∅]) this
section addresses the mutual exclusion problem (mutex). This problem was introduced by E.W. Dijkstra
in 1965 [17]. From a historical point of view it is the first distributed computing problem (see [49] for
a historical survey on RW-based mutex algorithms). It is defined by two operations denoted acquire()
and release(), that are used to bracket a section of code, called critical section, such that the following
properties are satisfied.

• Safety. At most one process at a time can be executing the critical section.

• Liveness. If a process invokes acquire(), it eventually enters the critical section.

One of the most famous mutex algorithms is the Bakery algorithm due to L. Lamport [31, 35]. This
algorithm is based on non-atomic RW registers. This section presents an MBroadcast-based re-writing
of this algorithm suited to the asynchronous message-passing communication model.

6.2 An MBroadcast-based rewriting of Lamport’s Bakery algorithm

Local variables. Each process pi manages two local variables.
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• An initially empty set ticket i that will contain timestamps ⟨t, id⟩ where t is a ticket number and
id a process identity.

• The variable ti contains the last ticket number used by pi.

Description of the algorithm. Algorithm 5 is an MBroadcast-based version of Lamport’s Bak-
ery algorithm [31]. When a process pi invokes acquire(), it first invokes fifo_synchro_mbroadcast
HELLO() to make public the fact that it starts competing to access the critical section (line 1). When
this synchronized fifo_synchro_mbroadcast() invocation terminates, pi knows that processes that will
start competing afterwards are informed it started competing. Process pi then computes a ticket number
higher than all the ticket numbers it knows (line 2) and invokes again fifo_synchro_mbroadcast to in-
form the processes that its request for the critical section is timestamped ⟨ticket i, i⟩ (line 3). Finally, pi
waits until its request has the smallest timestamp (according to lexicographical order) (line 4).

When a process pi fifo-mdelivers the message HELLO() from process pj , it adds the pair ⟨0, j⟩ to its
set ticket i, which registers the requests of all the competing processes as known by pi (line 6);

When a process pi fifo-mdelivers the message TICKET(t) from process pj , it replaces the pair ⟨0, j⟩
by the pair ⟨t, j⟩ in its local ticket i, which now stores the request of pj with its competing timestamp
(line 7).

When a process pi invokes release(), it invokes synchro_mbroadcast GOODBYE() to inform the
other processes it is no longer interested in the critical section. (line 5). Consequently when a process
pi fifo-delivers a message GOODBYE() from a process pj , it updates accordingly its local set of requests
ticket i (line 8).

Theorem 4 Considering the system model CAMPn,t[MBroadcast], Algorithm 5 ensures that there is at
most one process at a time in the critical section (safety), and that if no process crashes while executing
acquire(), release(), or the code inside the critical section, then all invocations of acquire() and release()
terminate (liveness).

Proof Proof of the safety property. Suppose, by contradiction, that two processes pi and pj are in the
critical section at the same time, and let ti and tj be their respective order values after line 2. Without
loss of generality, let us suppose that ⟨ti, i⟩ < ⟨tj , j⟩. Two cases are consistent with the Mutual Ordering
property applied to pi’s HELLO() message and pj’s TICKET(tj) message.

• If pi receives TICKET(tj) before it fifo-mbroadcasts HELLO(), then ⟨tj , j⟩ ∈ ticket i after line 2
thanks to line 7, and, due to fifo ordering, this will remain true as long as pj remains in critical
section. Then, pi picks ti such that ⟨ti, i⟩ > ⟨tj , j⟩ (line 2). This is in contradiction with the fact
that ⟨ti, i⟩ < ⟨tj , j⟩.

• If pj fifo-mdelivers HELLO() from pi before it fifo-mbroadcasts TICKET(tj), then, when pj entered
the critical section, either ⟨0, i⟩ ∈ ticket j (by line 6) or ⟨ti, i⟩ ∈ ticket j (by line 7), due to the fifo
ordering. In both cases, this contradicts the fact that ⟨tj , j⟩ = min(ticket j) (line 4).

Proof of the liveness property. Let us observe that the release() operation has no loop, and the
acquire() operation has a single wait() statement (line 4). Suppose, by contradiction, that some process
pi remains forever blocked at line 4. Without loss of generality, let us assume that its timestamp is
the smallest one, (i.e. all processes with a lower timestamp eventually entered and exited the critical
section).

After all correct processes have received the message TICKET(ti) sent by pi (line 3), all processes pj
that execute line 2 pick a value tj such that ⟨tj , j⟩ > ⟨ti, i⟩. In other words, a finite number of timestamps
⟨tj , j⟩ < ⟨ti, i⟩ are ever picked in the execution, and, by minimality of ⟨ti, i⟩, all these timestamps let
their process enter the critical section. As all critical sections terminate, they also all leave critical
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section and send a GOODBYE() message, that is eventually received by pi. After pi has received all these
messages, a finite number of processes pj will call acquire() again and pick tj such that ⟨tj , j⟩ > ⟨ti, i⟩.
When pi has received all the respective ticket(tj) messages, it will have ⟨t, i⟩ = min(ticket i). A
contradiction. 2Theorem 4

Remark. Using the failure detector introduced in [16], it is possible to implement mutex in the
presence of process crashes occurring while a process is executing acquire(), release(), or the code
inside the critical section.

7 MBroadcast in Action: Consensus

The consensus problem was introduced by Lamport, Shostak and Pease [36, 42] in the context of syn-
chronous systems prone to Byzantine process failures. As stated previously, here we consider it in the
context of asynchrony and process crashes. Let us recall that consensus is a fundamental problem that
lies at the center of the set of distributed agreement problems.

7.1 Definition

Consensus is defined by a single one-shot operation denoted propose() that takes a value as input pa-
rameter and returns a value as result. When a process invokes propose(v), we say it proposes v. If the
returned value is w, we say the process decides w. Consensus is defined by the following three proper-
ties. Validity: If a process decides v, some process proposed v. Agreement: No two processes decide
different values. Termination: If a process does not crash, it decides a value.

7.2 Enriching the model with additional computability power

It is well-known that consensus cannot be solved in asynchronous distributed systems where even a
single process may crash, be the underlying communication medium message-passing [20] or RW reg-
isters [37]. We consider here that this additional computability power is given by the failure detector
denoted Ω, which is the weakest failure detector with which consensus can be solved [11].

Ω provides the processes with a single operation denoted leader(). This operation has no input, and
each of its invocations returns a process identifier. It is defined by the following property.

• Eventual leadership. In any execution, there exists a process identifier j such that (1) pj is a correct
process and (2) the number of times leader() returns an identifier k ̸= j to any process is finite.

7.3 An MBroadcast-based variant of the Paxos consensus algorithm

⊥ denotes a default value that cannot be proposed to consensus.

Local variables. Each process pi manages three local variables.

• decidedi, initialized to ⊥, will contain the decided value.

• ti is a scalar logical time (its initial value is irrelevant). Each round of the algorithm initiated by
pi is uniquely identified by a timestamp ⟨ti, i⟩, that plays the same role as the ballot number in
Lamport’s article. Recall that any two such pairs can be ordered by lexicographical order.

• clocki, initialized to ⟨0, 0⟩, contains the timestamp identifying the current round.
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operation propose(vi) is % code for pi
(1) vali ← vi;
(2) while (decidedi = ⊥) do
(3) if (leader() = i) then
(4) let ti such that ⟨ti, i⟩ > clocki;
(5) synchro_mbroadcast BEGIN(ti);
(6) if ⟨ti, i⟩ = clocki then synchro_mbroadcast VOTED(t, vali) end if;
(7) if ⟨ti, i⟩ = clocki then reliable_broadcast SUCCESS(vali) end if
(8) end if
(9) end while;
(10) return(decidedi)
end operation.

when BEGIN(t) is mdelivered from pj do
(11) if ⟨t, j⟩ > clocki then clocki ← ⟨t, j⟩ end if.

when VOTED(t, v) is mdelivered from pj do
(12) if ⟨t, j⟩ > clocki then clocki ← ⟨t, j⟩; vali ← v end if.

when SUCCESS(v) is reliable-delivered from pj do
(13) decidedi ← v.

Algorithm 6: An MBroadcast-based variant of Lamport’s Paxos algorithm

Description of the algorithm. Algorithm 6 solves the consensus problem in the system model
CAMPn,t[MBroadcast,Ω]. When a process pi invokes propose(vi) it first initializes vali (its current
local estimate of the decided value) to vi (line 1). It then enters a loop it will exit when decidedi is
different from ⊥ (lines 2-9). If decidedi ̸= ⊥, it decides it (line 10). Otherwise, pi checks if it is
the leader by calling leader() on Ω (line 3). If it is not, it re-enters the while loop. If leader() = i,
pi competes to impose its current estimate to be the decided value. To this end, it first computes a
new timestamp ⟨ti, i⟩ greater than any timestamp it knows (line 4) (this timestamp identifies its current
competition to impose a decided value) and invokes synchro_mbroadcast BEGIN(ti) to inform the other
processes it starts competing (line 5). Process pi then checks if the timestamp ⟨ti, i⟩ is equal to clocki
(line 6). If it is not the case, it aborts the competition. Otherwise, it invokes synchro_mbroadcast
VOTED(t, vali) (line 7) to inform the processes that it champions vali timestamped ⟨ti, i⟩. Then, it
checks again that ⟨ti, i⟩ = clocki, and aborts its competition if it is not. It then discovers that it has won
the competition and informs the other processes that vali is the decided value (line 7). Let us notice that
between its reads at line 6 and line 7, the value of clocki may have been modified.

When pi mdelivers BEGIN(t) or VOTED(t, v) from a process pj , it updates its local variables accord-
ingly. It does the same when it delivers the message SUCCESS(v).

Theorem 5 Algorithm 6 solves consensus in the system model CAMPn,t[MBroadcast,Ω].

Proof Proof of the Validity property. Only proposed values or ⊥ are ever contained in vali and decidedi,
or carried by VOTED(−, v) and SUCCESS(v), and the decided value cannot be ⊥ by line 2.

Proof of the Agreement property. Due to lines 10 and 13, a process can only decide a value that was
carried by a SUCCESS() message. Let us consider the process pi that broadcast a message SUCCESS(vi)
when its variable ti = t, such that ti is minimal. Let us prove that, for all messages VOTED(tj , vj) such
that tj > ti, vj = vi. Let us suppose, by contradiction, that this is not the case, and let us consider such a
message with a minimal tj . Due to lines 7 and 11, pi had not yet received BEGIN(bj) mbroadcast by pj ,
before mdelivering its own message VOTED(ti, vi). So, by the mutual ordering property, pj mdelivered
VOTED(ti, vi) before BEGIN(tj). By minimality of tj , this implies that valj = vi when pj executes
line 6, which contradicts the fact that vj ̸= vi.

Let us consider a message SUCCESS(vk) broadcast by a process pk, and let tk its value of t at that
time. By the minimality of ti, we have tk ≥ ti. By what precedes, pk mbroadcast VOTED(tk, vi) at
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line 6, and did not mdeliver any message VOTED(tl, vl) with tl > ti and vl ̸= vi. As valk is only
updated at line 12, valk = vi at line 7 and vk = vi. Therefore, no two processes decide different values.

Proof of the Termination property. By the definition of Ω, there is a time after which only one
process pi, that is correct, will execute the lines 4-7. In particular, after some finite time, pi will choose
a round (ballot) number ⟨ti, i⟩, greater than all other round (ballot) numbers chosen by other processes.
After line 5, ⟨ti, i⟩ = clocki, so pi broadcasts a message SUCCESS(v) at line 7. At the delivery of this
message, all the non-crashed processes pj will set their variable decidedj to some non-⊥ value and
terminate their execution. 2Theorem 5

8 Conclusion

Having a better understanding of the power and weaknesses of the basic communication mechanisms
provided by asynchronous crash-prone distributed systems is a central issue of distributed computing.
The aim of this article was to be a step in such an approach. To this end, the article investigated basic
relations linking send/receive message patterns and read/write patterns. It introduced three basic mes-
sage patterns, each involving a pair of processes, and showed that only two of these patterns have a
RW counterpart. This gives a new and deeper view of the different ways processes communicate (and
consequently cooperate) in RW systems and in message-passing systems. Then the article introduced a
new message-passing communication abstraction denoted Mutual Broadcast, the computability power
of which is the same as the one of RW registers. Its main property (called mutual ordering) is the fact
that, for each pair of processes p and p′, if p broadcasts a message m and p′ broadcasts a message m′,
it is not possible for p to deliver first (its message) m and then m′ while p′ delivers first (its message)
m′ and then m. In a very interesting way, it appears that this implicit synchronization embedded in the
MBroadcast abstraction allows for the design of simple algorithms in which, among other properties,
no notion of quorums is explicitly required. The simplicity of MBroadcast-based algorithms has been
highlighted with examples including simple re-writing of existing algorithms such Lamport’s Bakery
and Paxos algorithms.

Nevertheless the quest for the Grail of a deeper understanding of message-passing systems is not
complete. On the side of shared memory systems an apex has been attained with Herlihy’s consensus
hierarchy and its extensions [2, 13, 25, 43, 46]. The same has not yet been achieved for message-passing
systems: is there a consensus hierarchy based on specific broadcast abstractions? If the answer is “yes”,
which is this hierarchy? The case for the consensus number ∞ is total order broadcast [12], the case for
the consensus number 2 is PBroadcast, but no specific broadcast abstraction is known for each consensus
number x ∈ [3..+∞). We conjecture that there are no such specific broadcast abstractions.3
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A The failure Detector Σ

The failure detector denoted Σ, introduced in [14], is the weakest failure detector that allows to build
an atomic RW register. Σ is a quorum-based failure detector (which can be trivially implemented in
CAMPn,t[t < n/2]). It provides each process with an operation denoted quorum() which returns a
non-empty set of processes with the following properties.

• Local Termination (Liveness): Any invocation of quorum() by a correct process terminates.

• Intersection (Safety): If an invocation of quorum() returns set1 and another invocation of quorum()
returns set2, we have set1 ∩ set2 ̸= ∅.

• Global Termination (Convergence): There a finite time after which any invocation of quorum()
contains only correct processes.

B MBroadcast in Action: Lattice Agreement

One of the very first articles on the use of lattices to solve distributed computing problems is [8] where
a snapshot object is built from a lattice data structure. Later developments appeared in [19]. More
recently, lattice agreement has been used as a building block to solve accountability and reconfiguration
issues encountered in distributed computing [22].

B.1 Definition

A bounded join-semilattice (L,⊥,⊑,⊔) is composed of a set L of elements partially ordered according
to a relation ⊑, such that there is a smallest element ⊥ and for all x, y ∈ L, there exists a least upper
bound of x and y, denoted by x ⊔ y.

Lattice agreement is similar to consensus, namely each process may propose a value and decide a
value. It is defined by the following properties.
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operation propose(vi) is % code for pi
(1) repeat previ ← viewi;
(2) synchro_mbroadcast STATE(viewi ⊔ vi)
(3) until (previ = viewi);
(4) return(viewi)
end operation.

when STATE(v) is mdelivered from pj do
(5) viewi ← viewi ⊔ v.

Algorithm 7: Lattice agreement in CAMPn,t[MBroadcast]

Validity. The value decided by a process pi is the least upper bound of a subset of the proposed values
and contains the value proposed by pi.

Consistency. If pi decides xi and pj decides xj , then xi ⊑ xj or xj ⊑ xi.

Termination. If a process does not crash, it decides a value.

B.2 An MBroadcast-based lattice agreement algorithm

Local variables. Each process pi manages two local variables.

• viewi contains the current view of the value that pi will return. It is initialized to ⊥.

• previ is an auxiliary variable. g

Description of the algorithm. Algorithm 7 solves lattice agreement in the system model CAMPn,t[MBroadcast].
It is based on the classical double-scan principle. When a process pi invokes propose(vi) it repeatedly
mbroadcasts its current view of the decided value enriched with the value vi it proposes, until viewi has
not been modified since the previous mbroadcast. When it mdelivers a message STATE(v), pi updates
its local view viewi. Let us notice that viewi can be updated before pi invokes propose(vi).

B.3 Proof of the lattice agreement algorithm

Theorem 6 Algorithm 7 solves lattice agreement in the system model CAMPn,t[MBroadcast].

Proof Proof of the Validity property. Let us notice that viewi is updated only at line 5 as the upper
bound of values pi has mdelivered, and those values have been built at line 2 by their sender. It follows
that, at any time, a local variable viewi contains only an upper bound of proposed values. Moreover, it
follows from the use of the synchronized MBroadcast that pi can terminate its invocation of propose(vi)
only after it receives a view including vi. The validity property follows.

Proof of the Consistency property. Let us suppose pi proposes vi and decides xi, and pj proposes
vj and decides xj . By the Validity property, vi ⊑ xi and vj ⊑ xj . So, just before deciding, pi and pj
mbroadcast xi = xi ⊔ vi and xj = xj ⊔ vj . By the mutual ordering property, pi mdelivered the message
from pj before its own, in which case, by lines 2 and 5, xi = viewi = viewi ⊔ xj = xi ⊔ xj , i.e.
xj ≤ xi, or pj mdelivered the message from pi before its own, in which case xi ≤ xj .

Proof of the Termination property. Due to line 5, viewi can only grow and by line 3, the value
of viewi between two iterations of the loop must be different. As seen in the proof of the Validity
property, viewi can only take values obtained as a least upper bound of proposed values, which are in
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operation CONSENSUS{i, j}.propose(v) is % code for pi
(1) synchro_pbroadcast PROPOSITION(v, {i, j});
(2) return(decided{i, j}i)
end operation.

when PROPOSITION(v, {i, j}) is pdelivered from pi or pj do
(3) if decided{i, j}i = ⊥ then decided{i, j}i ← v end if.

Algorithm 8: Consensus between two processes pi and pj in CAMPn,t[PBroadcast]

finite number. Therefore, if N values are proposed in an execution, viewi can take at most N different
values at line 3. It follows that the number of iterations is finite. 2Theorem 6

C On the Computability Side: MP2 Alone Characterizes Test&Set()

C.1 From PBroadcast to two-process consensus

Based on PBroadcast, Algorithm 7 implements consensus between any pair of processes pi and pj . Each
process pi manages a local variable decided{i, j}i that is initialized to a default value ⊥ that cannot be
proposed. The set-based notation is used to distinguish the different two-process consensus in which pi
can be involved e.g., decided{i, j}i and decided{i, k}i.

Description and proof of the algorithm Given a pair of distinct processes (pi, pj), let CONSENSUS{i, j}
denote the consensus object that is shared by the set of processes {i, j}. So, at the upper level, this ob-
ject is accessed only by pi and pj by invoking invokes CONSENSUS{i, j}.propose(). When pi invokes
CONSENSUS{i, j}.propose(v), it executes a synchronized PBroadcast4 of the value v it proposes to
the two-process consensus object CONSENSUS{i, j} (line 1). When this synchronized PBroadcast
terminates, pi decides (line 2) the proposed value that has been deposited in decided{i, j}i (line 3).

Theorem 7 Algorithm 8 solves binary consensus in the system model CAMPn,t[PBroadcast].

Proof Proof of the Validity property. When process pi returns decided{i, j}i on line 2, it has already
received the message PROPOSITION(v, {i, j}) it pbroadcast at line 1. Hence, pi executed line 3 at least
once, so decided{i, j}i ̸= ⊥. Moreover, only proposed values can be pbroadcast within a PROPOSI-
TION() message on line 1, so only proposed values can be assigned to decided{i, j}i on line 3.

Proof of the Agreement property. By the Pair ordering property applied to the PROPOSITION() mes-
sages pbroadcast by pi and pj , pi and pj receive the two messages in the same order. By line 3, they
both decide the value carried by the first message they receive.

Proof of the Termination property. Algorithm 8 contains no loops nor recursive calls. 2Theorem 7

C.2 From two-process consensus to PBroadcast

Algorithm 9 implements PBroadcast on top of consensus between two processes. It is inspired by the
implementation of the total-order broadcast given in [12]. The main difference lies in the fact that the
messages are not globally ordered by all processes, but rather by each pair of processes independently.

As far as shared objects are concerned, for all i and j ̸= i, CONSENSUS{i, j} denotes an un-
bounded sequence of consensus instances between pi and pj . The kth element of this sequence is denoted
CONSENSUS{i, j}[k].

Moreover, each process pi manages two local variables.
4The implementation of synchro_pbroadcast is the same as the one of synchro_mbroadcast described in Algorithm 1.
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operation pb_broadcast(m) is % code for pi
(1) reliable_broadcast PB(m);
(2) for j from 1 to i− 1 and then from i+ 1 to n do order(m, j) end for;
(3) deliver(m, i)
end operation.

when PB(m) is reliable-delivered from pj
(4) if j ̸= i then order(m, j); deliver(m, j) end if.

operation order(m, j) is
(5) repeat m′ ← CONSENSUS{i, j}[ordered i[j]].propose(m);
(6) ordered i[j]← ordered i[j] + 1;
(7) if m′ ̸= m then deliver(m′, j) end if
(8) until m′ = m
end operation.

operation deliver(m, j) is
(9) if m /∈ delivered i then
(10) delivered i ← delivered i ∪ {m};
(11) pb_delivery of m from pj
(12) end if
end operation.

Algorithm 9: PBroadcast on top of CAMPn,t[consensus2]

• delivered i is the set of all messages that pi has already pdelivered (initially ∅).

• ordered i, an array of n integer values (initially 0, ordered i[i] is not used), such that ordered i[j] is
the number of consensus instances between pi and pj in which pi took part, i.e. the index of the
next consensus object CONSENSUS{i, j} that can be used by pi.

Each pair of processes (pi, pj) agrees on a sequence of all messages pbroadcast by pi or pj , thanks to
the sequence of consensus instances saved in CONSENSUS{i, j} (Lines 5-6). Notice that it is possible
that the same message happens twice in this sequence, in which case only the first occurrence will be
considered in the order in which messages are delivered (Lines 9-12).

In order to pbroadcast a message m, a process pi first broadcasts a message PB(m) on line 1 to
ensure that m will eventually win a consensus against messages from pj . Upon delivery of this message,
pj helps pi to win a consensus by proposing m as well on CONSENSUS{i, j} until some consensus is
won by m. It is assumed that there is no concurrency between the execution of pb_broadcast(m) and
the code associated to the reliable delivery of PB(m).

Then pi tries to insert its message m in the sequences it shares will all the other processes, until m is
the next message it has agreed to pdeliver with all other processes (line 2), and then pdelivers m (line 3).

Theorem 8 Algorithm 9 implements reliable-PBroadcast.

Proof Proof of the Validity property. Process pi can only pdeliver a message m from pj on line 11, by
calling deliver(m, j). This can happen on three places. On line 3, pi did pbroadcast m. On line 4, pi
reliable-delivered a message PB(m) from pj , that pj reliable-broadcast on line 1 after pbroadcasting m.
The remaining case is the call to deliver(m′, j) on line 7. By validity of Consensus on line 5, m′ was
proposed when pi or pj called order(m′, j) or order(m′, i), which indicates that m′ was pbroadcast by
pi or pj . Let us remark that pi cannot pdeliver its own messages on line 7: if pi already delivered m′

from itself, then pi will be filtered out by Lines 9-10; if pi has not yet delivered m′ from itself, then
pi is actually executing order(m, j) from line 2, and m = m′. Hence, m′ was pbroadcast by pj which
concludes the proof of the Validity property.

Proof of the No-duplication property. Process pi can only pdeliver a message m on line 11 if it was
not previously in set delivered i (line 9), and then m is added to delivered i on line 10.
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Proof of the Local termination property. Suppose that a correct process pi does not terminate its
invocation of pb_broadcast(mi). As pb_broadcast(mi) itself does not contain loops or recursive calls,
it means there exists j ̸= i such that the invocation of order(mi, j) does not terminate, i.e. that for
all k, CONSENSUS{i, j}[k].propose(mi) never yields mi on line 5. This is not possible since, by
the Global-CF property of reliable-broadcast, pj eventually reliable-delivers the message PB(m) that pi
reliable-broadcasts on line 1. This results in both processes proposing mi, which must be decided by the
validity property of consensus.

Proof of the Global-CF property. Suppose a process pj pdelivers a message mi from pi. By the
proof of validity above, it means that pi pbroadcast mi, and reliable-broadcast PB(mi) on line 1, since
mi could have never been delivered if pi crashed before line 1. Let pk be a correct process. By the
Global-CF property of reliable-broadcast, pk reliable-delivered PB(mi). Then, by the same reasoning as
developed in the proof of the Local termination property, pk pdelivers mi from pi.

Proof of the Pair ordering property. Let mi and mj be two messages pbroadcast respectively
by pi and pj . As seen above, there is ki and kj such that CONSENSUS{i, j}[ki] decides mi and
CONSENSUS{i, j}[kj ] decides mj . Let us consider the smallest such ki and kj , and without loss
of generality, let us suppose that ki < kj . Remark that the pdelivery of mi by pi happens when pi
calls deliver(mi, i) on line 3. At that point, its variable ordered i[j] was last modified when it called
order(mi, j) on line 2, which returned when m′ = mi, i.e. when ordered i[j] = ki + 1 (by Lines 5-6).
Differently, pi pdelivers mj by calling deliver(mj , j) either on line 4 or line 7, in both cases just after
it has executed Lines 5-6, so ordered i[j] = kj + 1. Hence, pi pdelivers mi before mj . Similarly, pj
pdelivers mi when ordered j [i] = ki + 1 and mj when ordered j [i] = kj + 1, hence pj pdelivers mi

before mj . Therefore, pi and pj pdeliver mi and mj in the same order which concludes the proof of the
Pair ordering property. 2Theorem 8

C.3 From PBroadcast to Test&Set()

For simplicity, this section considers one-shot Test&Set(). It can be easily generalized to multi-shot
Test&Set().

Definition of Test&Set(). A test&set object is an object that can take only two values true or
false. Its initial value is true. It provides the processes with a single one-shot atomic operation
denoted Test&Set(), that sets the value of the object to false and returns the previous value of the
object. As the operation is atomic, its executions can be linearized and the only invocation that returns
true is the first that appears in the linearization order. From a computability point of view the consensus
number of Test&Set() is 2 [3, 25].

A PBroadcast-based implementation of Test&Set() and its proof. Algorithm 10 is a PBroadcast-
based implementation of a Test&Set() object. It uses a series of two-process tournaments to elect one
and only one winner. To this end each process pi manages two local variables.

• round i is an integer between 0 and max (2, ⌈log2(n)⌉+ 1) (initially 0) that represents pi’s current
progress.

• vying i a Boolean, initially true, that becomes false after pi has lost a tournament.

The levels of the tournament tree are associated with rounds such that at each round r, two winners
from round r − 1 compete by PBroadcasting a message COMPETE(r) (line 2). Since both processes
pdeliver both messages in the same order, the first message decides which process reaches round r + 1.
More precisely, the tournament tree is such that the set of processes is partitioned into subsets of size 2r,
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operation Test&Set() is % code for pi
(1) while round i < 2 ∨ (round i ≤ ⌈log2(n)⌉ ∧ vying i) do
(2) synchro_pbroadcast COMPETE(round i)
(3) end while;
(4) return(vyingi)
end operation.

when COMPETE(r) is pdelivered from pj do
(5) if i = j then round i ← r + 1
(6) else if round i = 0 ∧ r = 1 then vying i ← false

(7) else if round i < r ∧
⌊
i−1
2r

⌋
=

⌊
j−1
2r

⌋
then vying i ← false

(8) end if.

Algorithm 10: Test&Set() on top of CAMPn,t[PBroadcast]

i.e. {p1, ..., p2r}, {p2r+1, ..., p2×2r}, ...,
{
p⌊n−1

2r ⌋×2r+1, ..., pn

}
. Hence, pi looses round r if it receives a

message COMPETE(r) from another process pj playing in the same set at round r, i.e. such that
⌊
i−1
2r

⌋
=⌊

j−1
2r

⌋
, when roundi < r (line 7), which indicates that pi did not receive its own message COMPETE(r)

yet (line 5). Processes play until they loose a round or they win the finale at round ⌈log2(n)⌉ (condition
round i ≤ ⌈log2(n)⌉ ∧ vying i on line 1). Then, they return the content of their variable vying i, which
can be true only for a process that won all its tournaments.

In order to ensure linearizability, Algorithm 10 adds a round 0 to prevent late processes to win if
they start their execution after another process played its first tournament: pi forfeits if it receives a
message COMPETE(1) from another process before its own message COMPETE(0) (line 6). In this case,
pi still participates in round 1, so its message COMPETE(1) forces even slower processes to forfeit as
well (condition round i < 2 on line 1).

Lemma 1 In any execution of Algorithm 10 in which some process invokes Test&Set() and no process
crashes, exactly one operation returns true.

Proof Let us say that a participating process pi “wins at round r” if, at some point of the execution,
round i = r + 1 and vying i = true. We prove the predicate P (r) ∧ Q(r) defined as follows, by
induction on r ∈ {0, ...,max (2, ⌈log2(n)⌉)}:

• P (r): for all k, at most one process in the subset
{
pk×2r+1, ..., p(k+1)×2r

}
wins at round r,

• Q(r): at least one process wins at round r.

Initialization: P (0). For all k,
{
pk×20+1, ..., p(k+1)×20

}
= {pk+1} contains at most one process.

Initialization: Q(0). By the condition round i < 2 on line 1, all participating processes pbroad-
cast messages COMPETE(0) and COMPETE(1). Let pi be the first process that pbroadcasts a message
COMPETE(1). Process pi cannot pdeliver a message COMPETE(1) before its own message COMPETE(0),
hence, it does not execute line 6. Moreover, pi does not execute line 7 when r = 0 because there is no
j ̸= i such that

⌊
i−1
20

⌋
=

⌊
j−1
20

⌋
. Hence, pi wins at round 1.

Induction: P (r) ∧ Q(r) =⇒ P (r + 1). Let us consider a set S =
{
pk×2r+1+1, ..., p(k+1)×2r+1

}
,

for some k. If r = 0, S contains two processes q1 and q2. Otherwise, S can be partitioned into two
subsets S1 =

{
p2k×2r+1, ..., p(2k+1)×2r

}
and S2 =

{
p(2k+1)×2r+1, ..., p(2k+2)×2r

}
. By P (r), at most

one process q1 (resp. q2) wins in S1 (resp. S2) at round r. In both cases, either at most one process
participates at round r, hence at most one process wins at round r+1, or q1 and q2 are the only processes
in S for which the condition on line 1 is true, so they are the only processes in S to pbroadcast a message
COMPETE(r+1). Let pj be the process whose message is pdelivered first, and let pi be the other process.
When pi pdelivers pj’s message, round i < r+1, because round i can only be updated to r+1 on line 5
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after pi pdelivers its own message; and
⌊

i−1
2r+1

⌋
=

⌊
j−1

22r+1

⌋
by definition of S. Hence, vying i is set to

false on line 7, and only pj wins at round r + 1 in S.
Induction: P (r) ∧Q(r) =⇒ Q(r + 1). By Q(r), some process pi wins at round r. Since pi does

not crash and the condition is true on line 1, pi pbroadcasts a message COMPETE(r + 1), and by P (r)
at most one other process pj does the same thing in the same set as pi. Without loss of generality, let us
assume that pi’s message COMPETE(r + 1) is the first that pi and pj pdeliver between theirs. Then pi
wins at round r + 1.

Conclusion. For r = max (2, ⌈log2(n)⌉), all processes belong to the same set S = {p1, ..., pn}, and
exactly one process pi ∈ S wins at round r. Then, pi returns true on line 4, and all other processes
return false. 2Lemma 1

Theorem 9 Algorithm 10 implements a wait-free linearizable Test&Set() object in the system model
CAMPn,t[PBroadcast].

Proof Proof of wait-freedom. At each iteration of the only loop (Lines 1-3), Process pi executes line 5
at pdelivery of the message is pbroadcasts on line 2. Hence, round i is incremented at each iteration, but
cannot go passed max (2, ⌈log2(n)⌉+ 1) by line 1.

Proof of Linearizability. Let us consider an execution E admitted by Algorithm 10. If E is the empty
execution, then it is linearizable. Otherwise, since the algorithm is wait-free and there is a finite number
of processes, E is finite. Therefore, there exists a finite extension E′ of E in which all processes that
crashed in E terminate the execution of their operation in E′.

By Lemma 1, exactly one operation o, performed by some process p, returns true in E′. We define
the binary relation → between operations as o1 → o2 if either 1) o1 was terminated before o2 was started
(denoted by o1 →1 o2), or 2) o1 = o (denoted by o1 →2 o2).

Let us prove that → is cycle-free. Indeed, suppose there is a cycle o1 → o2 → . . . → ok = o1
containing at least two different operations. Since →1 is cycle-free, o is part of the cycle, so there exists
k such that ok →1 o, where ok is executed by some process pk. By the condition round i < 2 on line 1,
pk pbroadcasts a message COMPETE(1) on line 2. Process pk pdelivers its message COMPETE(1) before
it returns from ok, which happens before p starts o. Hence, p pdelivers pk’s message before any message
it pbroadcasts during o. In particular, p returns vying i on line 4 after setting vying i to false on line 6,
which contradicts the fact that o returns true.

Finally, the reflexive and transitive closure of → can be extended into a total order that respects real
time thanks to →1, and such that the first operation returns true and the others return false thanks to
→2. Hence, E′ is linearizable. In other words, all operations started in E can be completed, so that the
resulting execution E′ is linearizable, which concludes the proof.

2Theorem 9
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